×
20.03.2019
219.016.e4d9

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОЛИЭФИРПОЛИОЛОВ СО СЛАБЫМ ЗАПАХОМ

Вид РИД

Изобретение

№ охранного документа
0002219192
Дата охранного документа
20.12.2003
Аннотация: Изобретение относится к способу получения полиэфирполиолов со слабым запахом. Способ включает стадии контактирования ненейтрализованного полиэфирполиольного продукта с избытком кислоты, контактирования реакционной смеси с водой и извлечения полиэфирполиола со слабым запахом. Технической задачей является разработка способа умешьшения запаха полиэфирполиолов. 5 з. п.ф-лы.

Изобретение относится к способу получения по существу со слабым запахом полиэфирполиолов из полиэфирполиольного исходного вещества, которое было получено в результате полимеризации, по меньшей мере, одного алкиленоксида в присутствии подходящего катализатора полимеризации.

Способы получения полиэфирполиолов, также иногда называемых полиалкиленоксидполиолами, на современном уровне техники хорошо известны. Обычно такие способы включают проведение реакции исходного соединения, имеющего несколько активных атомов водорода, с одним или несколькими алкиленоксидами, такими, как этиленоксид, пропиленоксид, бутиленоксид или смеси двух или нескольких из них. Подходящие исходные соединения включают полифункциональные спирты, в общем случае содержащие от 2 до 6 гидроксильных групп. Примерами таких спиртов являются гликоль, такой, как диэтиленгликоль, дипропиленгликоль, глицерин, ди- и полиглицерины, пентаэритрит, триметилолпропан, триэтаноламин, сорбит, маннит и тому подобное. Обычно в качестве катализатора для этого типа реакции используют сильное основание, такое, как гидроксид калия.

Полиэфирполиолы, полученные по описанному выше типу реакции, а также пенополиуретаны, получаемые из этих полиэфирполиолов, обычно имеют достаточно неприятный запах. Хотя этот запах ни коим образом отрицательно не влияет на химические свойства полиэфирполиола, было бы желательно иметь возможность получения полиэфирполиолов, не имеющих такого неприятного запаха. Так как с течением времени потребители в этом отношении становятся все более и более придирчивыми, потребность в получении продуктов со слабым запахом возрастает. Запах пенопласта может представлять из себя проблему в особенности в тех приложениях, где люди имеют тесный контакт с пенополиуретанами (например, в случае матрасов и подушек). Так как в производстве гибких пенополиуретанов используются относительно большие количества полиолов, можно было бы ожидать, что, по меньшей мере, частично неприятный запах от полиуретанов возникает от полиолов.

Поэтому настоящее изобретение имеет своей целью создание способа уменьшения запаха полиэфирполиолов, получаемых как алкиленовые аддукты полифункциональных спиртов, по существу так, как описано выше.

Соответственно этому настоящее изобретение относится к способу получения полиэфирполиола со слабым запахом из ненейтрализованного полиэфирполиольного исходного вещества, которое получают в результате реакции исходного соединения, имеющего множество активных атомов водорода, с одним или более алкиленоксидами, причем этот способ включает стадии
a) контактирования ненейтрализованного полиэфирполиольного продукта с избытком кислоты, имеющей рКа меньше 5, при температуре от 80 до 130oС,
b) контактирования реакционной смеси с водой при температуре от 80 до 130oС и
c) извлечения полиэфирполиола со слабым запахом,
где кислоту добавляют на стадии (а) в таком избытке, чтобы придать реакционной среде кислотность, достаточную для протекания реакции гидролиза на стадиях (а) и (b).

Не желая связывать себя какой-либо конкретной теорией, заявители полагают, что компонентами, которые в значительной степени ответственны за кратковременный химический запах полиэфирполиолов, являются альдегиды, присутствующие либо как таковые, либо в скрытой форме в виде концевых алкенилэфирных групп полиэфирполиола, тогда как долговременный затхлый запах пенополиуретанов объясняется присутствием соединений, подобных простым эфирам, - предположительно циклических простых эфиров, образованных во время получения полиола, то есть во время алкоксилирования (обычно в основной среде). Примерами таких циклических простых эфиров могли бы быть 2-этил-4,7-диметил-1,3,6-триоксациклооктан и 2,5,8-триметил-1,4,7-триоксациклононан. В случае пропиленоксида, например, считается, что кратковременный химический запах возникает от альдегида пропионовой кислоты и концевых пропенилэфирных групп полиэфирполиола. Для удобства далее в этой патентной заявке будут иметься в виду те вызывающие запах соединения, когда в качестве алкиленоксида будет использоваться пропиленоксид. Однако необходимо понимать, что, если будут использоваться другие алкиленоксиды, то соответственно этому изменятся и вызывающие запах соединения.

На стадии (а) этого способа концевые пропенилэфирные группы удаляют из ненейтрализованного (то есть полиольного конечного продукта в том виде, в котором он покидает реактор перед переработкой) полиэфирполиола в результате гидролиза, в результате, таким образом, возникают альдегид пропионовой кислоты и концевая гидроксильная группа в полиэфирполиоле. На последующей или одновременной стадии (b) добавляют воду для того, чтобы гидролизовать имеющиеся циклические простые эфиры, например, до получения альдегида пропионовой кислоты и дипропиленгликоля. Наконец, на стадии (с) извлекают полиол со слабым запахом. Выгодно, чтобы это извлечение включало бы несколько обработок, в том числе обезвоживание и отгонку паром или азотом для удаления альдегида пропионовой кислоты, образованного в качестве одного из продуктов гидролиза на стадиях (а) и (b), как это будет обсуждаться в настоящем документе.

В контексте настоящего изобретения предпочитается, чтобы полиэфирполиольное исходное вещество было бы получено в результате полимеризации пропиленоксида и возможно этиленоксида. Тем не менее также могут быть использованы и другие алкиленоксиды.

Кислотой, используемой на стадии (а) настоящего способа, в принципе может быть любая водорастворимая кислота, имеющая рКа меньше 5, предпочтительно меньше 3. Кислотой может быть органическая или минеральная кислота. Примерами подходящих органических кислот являются пара-толуолсульфоновая кислота и уксусная кислота. Примеры подходящих минеральных кислот включают серную кислоту, хлористоводородную кислоту, азотную кислоту и фосфорную кислоту. Было обнаружено, что особенно полезно использовать пара-толуолсульфоновую кислоту или фосфорную кислоту (Н3РO4). Также может быть пригодна для использования и комбинация обеих кислот. Было обнаружено, что пара-толуолсульфоновая кислота в особенности пригодна тогда, когда стадии (а) и (b) проводят одновременно, тогда как фосфорную кислоту выгодно использовать при последовательном проведении стадий (а) и (b).

Если стадию (а) проводят перед стадией (b), кислоту удобно добавлять в виде концентрированного раствора в воде, например в концентрации 50-90%. В дополнение к этому также можно еще добавить воды. Кислоту следует использовать в таких количествах, чтобы придать реакционной среде кислотность, достаточную для протекания реакции гидролиза на стадиях (а) и (b). На практике термин "избыток" в отношении добавляемой на стадии (а) кислоты обозначает такое количество кислоты, что количество свободной кислоты находится в пределах от 0,001 до 0,5 моль кислоты на 1 кг полиэфирполиола, предпочтительно от 0,005 до 0,2 моль кислоты на 1 кг полиэфирполиола. Выражение "свободная кислота", как оно используется в настоящем документе, обозначает кислоту, которая не вступила в реакцию ни с одним из имеющихся в реакционной среде компонентов. Например, если в качестве исходного вещества на стадии (а) настоящего способа используют ненейтрализованный полиэфирполиол, то в полиоле будут присутствовать ионы калия инициатора КОН. Тогда анион добавляемой кислоты сначала будет реагировать с ионами калия. Только после того, как ионы калия будут "нейтрализованы", любая добавляемая кислота будет присутствовать в виде свободной кислоты.

Условия, при которых проводят гидролиз на стадии (а), могут варьироваться в широких пределах. В общем случае условия гидролиза можно варьировать в пределах, известных специалисту в соответствующей области. Было обнаружено, что в особенности выгодно проводить стадию (а) при температуре от 80 до 130oС, предпочтительно от 100 до 120oС, при любом произвольном давлении в диапазоне от по существу 0 бар вплоть до 15 бар, предпочтительно от 0,1 до 5 бар. Если стадию (а) проводят в вакууме, тогда, как только стадия (а) будет завершена, вакуум должен быть нарушен. Время, необходимое для проведения реакции на стадии (а), также может варьироваться в широких пределах. В зависимости от величины избытка использованной кислоты и от использованной температуры длительность стадии (а) при ее проведении перед стадией (b) обычно варьируется от нескольких минут до нескольких часов, выгодно, если от 10 минут до 5 часов. Предпочитается, чтобы при проведении стадии (а) происходило бы непрерывное перемешивание компонентов для обеспечения оптимального контакта между реагентами.

На стадии (b) настоящего способа в реакционную смесь добавляют воду. Вода необходима для гидролиза циклических простых эфиров. Воду можно добавлять либо в избытке, либо в эквивалентном, либо даже в еще меньшем количестве. Термин "избыток", как он используется в этой связи, обозначает такое количество, при котором может быть образована двухфазная система, то есть количество воды, которое превышает растворимость воды в конкретном полиоле, обрабатываемом при используемых условиях процесса. Когда добавляют эквивалентные или еще меньшие количества воды, никакой отдельной водной фазы не образуется, то есть количество добавляемой воды не превышает растворимости воды в полиоле при использованных условиях.

Если добавлять воду в избытке, то это возможно приведет к образованию двухфазной системы: органической фазы, содержащей полиол и часть свободной кислоты, и водно-кислотной фазы. Представляется, что в такой системе циклические простые эфиры, которые первоначально присутствуют в органической фазе, будут экстрагироваться в водно-кислотную фазу, где произойдет их гидролиз. Если избытка воды использоваться не будет, и будут использоваться только эквивалентные или даже еще меньшие количества, никакой отдельной водно-кислотной фазы образовываться не будет. Стадию (b) можно проводить после стадии (а) или одновременно со стадией (а). В первом случае стадия (b) включает контактирование с водой продукта реакции со стадии (а) (выгодно, когда с избытком воды), тогда как в последнем случае к нейтрализованному или ненейтрализованному полиэфирполиольному исходному веществу одновременно добавляют избыток кислоты и воды (выгодно добавлять в таких количествах, чтобы образовалась однофазная система). Как указывалось в настоящем документе ранее, представляется, что вода гидролизует присутствующие в полиоле циклические простые эфиры. Количество добавляемой воды должно быть достаточным для гидролиза имеющихся циклических простых эфиров. Условия, при которых проводят стадию (b), могут варьироваться в широких пределах. Однако было обнаружено, что для достижения оптимального результата выгодно проводить реакцию гидролиза при температуре от 80 до 130oС, предпочтительно от 100 до 120oС, при любом произвольном давлении. Опять-таки время реакции не является особенно критичным, но оно должно быть достаточно долгим для по возможности полного протекания реакции гидролиза. Обычно время реакции варьируется от приблизительно 10 минут до 10 часов, выгодно, когда от 15 минут до 4 часов. Предпочитается, чтобы при проведении стадии (b) происходило бы непрерывное перемешивание компонентов для обеспечения оптимального контакта между реагентами. Если стадии (а) и (b) проводят одновременно, условия, при которых проводят обе стадии, будут одинаковыми.

Стадию (с) настоящего способа, извлечение полиэфирполиола со слабым запахом, можно проводить различными способами. В общем случае извлечение будет включать обработки, обеспечивающие удаление продуктов реакции со стадий (а) и (b) и избытка воды и кислоты, все еще присутствующего в реакционной смеси. В предпочтительном варианте реализации стадия (с) включает следующие последовательные стадии:
(i) нейтрализацию,
(ii) возможно обезвоживание,
(iii) отгонку паром и
(iv) сушку и фильтрацию.

Нейтрализация включает добавление основания к реакционной смеси для увеличения рН. Полезными основаниями являются водорастворимые сильные основания, такие, как гидроксид калия, гидроксид натрия и тому подобное. Использование гидроксида калия предпочтительно. Основание можно добавлять в одну или в несколько стадий. Выгодно первую порцию основания добавить при непрерывном перемешивании и спустя некоторое время (например, от 10 минут до 1 часа) добавить остаток основания для приведения рН к желательному уровню. Нейтрализацию выгодно проводить приблизительно при той же температуре, что и температура на стадии (b), что предотвращает ненужную потерю энергии и обеспечивает хорошую конверсию при нейтрализации.

Обезвоживание, то есть удаление воды из реакционной системы, можно проводить теми способами, что известны на современном уровне техники, например, проводя обезвоживание при атмосферных условиях, возможно в комбинации с вакуумной обезвоживающей обработкой.

Отгонку паром и/или отгонку азотом проводят для удаления по существу всех продуктов гидролиза, образованных на стадиях (а) и (b) из полиэфирполиола. В возможно обезвоженный полиэфирполиол для отгона этих продуктов гидролиза вводят горячий пар и/или азот. В случае, если полиэфирполиол получен из пропиленоксида, основным продуктом гидролиза будет альдегид пропионовой кислоты. Прикладываемое давление может варьироваться в широких пределах, обычно оно находится в пределах от 0,01 до 10 бар, хотя также могут быть приложены и более высокие давления. В общем случае могут быть использованы любые методики отгонки паром и/или методики отгонки азотом, но для целей настоящего изобретения предпочтительно работать при субатмосферных условиях, более конкретно при давлении от 0,05 до 0,5 бар.

Полиэфирполиольный продукт, остающийся после удаления продуктов гидролиза (то есть в основном альдегид пропионовой кислоты), в заключение высушивают и фильтруют с получением полиэфирполиола со слабым запахом.

Изобретение далее будет проиллюстрировано следующими примерами.

Пример 1.

В реактор на 5 литров, оборудованный мешалкой, загрузили 3000 г ненейтрализованного полиэфирполиола (ММ 3500, содержание 0,24 вес.% калия). При перемешивании и при слабом потоке азота загрузку нагрели до 110oС и добавили 31,4 г 75%-ной (вес.) Н3РO4 (30%-ный избыток по отношению к калию). Реакционную смесь выдержали при 110oС в течение 60 минут. После этого добавили 352 г воды и в течение 60 минут продолжили перемешивание при 110oС. Реакционную смесь нейтрализовали, используя 6,2 г 50%-ного (вес.) КОН, в течение 30 минут при 110oС. Температуру подняли до 120oС и провели сушку реакционной смеси и отгон легколетучих компонентов при 120oС и конечном давлении 100 мбар, используя для отгонки газообразный азот. Кристаллы отфильтровали.

Конечный продукт содержал 0,2 ммоль концевых пропенилэфирных групп на 1 кг, что соответствует уменьшению их количества на 98%. Затхлый запах, первоначально ощущавшийся для ненейтрализованного полиэфирполиола, больше не проявлялся. Это было проиллюстрировано сравнительным анализом методом газовой хроматографии/масс-спектрометрии, который показал уменьшение на 99% количества циклических простых эфиров (2-этил-4,7-диметил-1,3,6-триоксациклооктана и 2,5,8-триметил-1,4,7-триоксациклононана) по сравнению с исходным полиолом. Содержание альдегида пропионовой кислоты было менее 1 м.д. Продукт признали имеющим слабый запах.

Пример 2.

В реактор на 1 литр, оборудованный мешалкой, загрузили 491 г ненейтрализованного полиэфирполиола (ММ 3500, содержание 0,24 вес.% калия). При перемешивании и при слабом потоке азота загрузку нагрели до 90oС и добавили 7,5 г моногидрата пара-толуолсульфоновой кислоты (30%-ный избыток по отношению к калию), растворенного в 59,1 г воды. Реакционную смесь, которая содержала дисперсию водной фазы в полиоле, выдержали при 90oС в течение 2 часов.

Реакционную смесь нейтрализовали, используя 1,05 г 50%-ного (вес.) КОН, в течение 30 минут при 90oС. Температуру подняли до 120oС и провели сушку конечной смеси и отгон легколетучих компонентов при 120oС и конечном давлении 100 мбар, используя для отгонки газообразный азот. Кристаллы отфильтровали.

Конечный продукт содержал 0,1 ммоль концевых пропенилэфирных групп на 1 кг, что соответствует уменьшению их количества на 99%. Затхлый запах, первоначально ощущавшийся для ненейтрализованного полиэфирполиола, больше не проявлялся. Это было проиллюстрировано сравнительным анализом методом газовой хроматографии/масс-спектрометрии, который показал уменьшение на 99% количества циклических простых эфиров (2-этил-4,7-диметил-1,3,6-триоксациклооктана и 2,5,8-триметил-1,4,7-триоксациклононана) по сравнению с исходным полиолом. Содержание альдегида пропионовой кислоты было менее 1 м.д. Продукт признали имеющим слабый запах.

Пример 3
В реактор на 1 литр, оборудованный мешалкой, загрузили 473 г ненейтрализованного полиэфирполиола (ММ 3500, содержание 0,24 вес.% калия). При перемешивании и при слабом потоке азота загрузку нагрели до 90oС и добавили 7,2 г моногидрата пара-толуолсульфоновой кислоты (30%-ный избыток по отношению к калию), растворенного в 3,7 г воды. Реакционную смесь, которая представляла собой гомогенную жидкую смесь избыточной пара-толуолсульфоновой кислоты, растворенной в полиоле, и твердую фазу соли калия упомянутой кислоты, выдержали при 90oС в течение 2 часов.

Реакционную смесь нейтрализовали, используя 1,01 г 50%-ного (вес.) КОН, в течение 30 минут при 90oС. Температуру подняли до 120oС и провели сушку конечной смеси и отгон легколетучих компонентов при 120oС и конечном давлении 100 мбар, используя для отгонки газообразный азот. Кристаллы отфильтровали.

Конечный продукт содержал 0,1 ммоль концевых пропенилэфирных групп на 1 кг, что соответствует уменьшению их количества на 99%. Затхлый запах, первоначально ощущавшийся для ненейтрализованного полиэфирполиола, больше не проявлялся. Это было проиллюстрировано сравнительным анализом методом газовой хроматографии/масс-спектрометрии, который показал уменьшение на 96% количества циклических простых эфиров (2-этил-4,7-диметил-1,3,6-триоксациклооктана и 2,5,8-триметил-1,4,7-триоксациклононана) по сравнению с исходным полиолом. Содержание альдегида пропионовой кислоты было менее 1 м.д. Продукт признали имеющим слабый запах.

Сравнительный пример 1.

Методику примера 1 повторили за исключением того, что не проводили добавление 352 г воды.

Конечный продукт содержал 0,2 ммоль концевых пропенилэфирных групп на 1 кг, что соответствует уменьшению их количества на 98%. Однако уровень содержания циклических простых эфиров (2-этил-4,7-диметил-1,3,6-триоксациклооктана и 2,5,8-триметил-1,4,7-триоксациклононана) по данным сравнительного анализа методом газовой хроматографии/масс-спектрометрии понизился только на 50% по сравнению с исходным полиолом. Содержание альдегида пропионовой кислоты было менее 1 м.д. Продукт обладал затхлым запахом, что рассматривалось как следствие наличия циклических простых эфиров.

1.Способполученияпоэфирполиоласослабымзапахомизненейтрализованногополиэфирполиольногоисходноговещества,котороеполучаютврезультатереакцииисходногосоединения,имеющегомножествоактивныхатомовводорода,соднимилиболееалкиленоксидами,причемэтотспособвключаетстадии:a)контактированияненейтрализованногополиэфирполиольногопродуктасизбыткомкислоты,имеющейрКаменьше5,притемпературеот80до130°С,b)контактированияреакционнойсмесисводойпритемпературеот80до130°С,c)извлеченияполиэфирполиоласослабымзапахом,гдекислотудобавляютнастадии(а)втакомизбытке,чтобыпридатьреакционнойсредекислотность,достаточнуюдляпротеканияреакциигидролизанастадиях(а)и(b).12.Способпоп.1,гдестадии(а)и(b)проводятодновременно.23.Способпоп.1,гдестадии(а)и(b)проводятпоследовательно.34.Способполюбомуодномуизпп.1-3,гдекислотой,используемойнастадии(а),являетсяфосфорнаякислотаи/илипаратолуолсульфоноваякислота.45.Способполюбомуодномуизпп.1-4,гденастадии(b)добавляюттакоеколичествоводы,чтообразуетсядвухфазнаясистема.56.Способполюбомуодномуизпп.1-4,гденастадии(b)добавляюттакоеколичествоводы,чтообразуетсяоднофазнаясистема.6
Источник поступления информации: Роспатент

Показаны записи 61-70 из 389.
10.07.2014
№216.012.dce2

Регенерация катализатора фишера-тропша путем его окисления и обработки смесью карбоната аммония, гидроксида аммония и воды

Изобретение относится к области катализа. Описан способ регенерирования одной или более частиц кобальтсодержащего катализатора Фишера-Тропша in situ в реакторной трубе, включающий стадии: (i) окисление частицы (частиц) катализатора при температуре от 20 до 400°C; (ii) обработку частицы (частиц)...
Тип: Изобретение
Номер охранного документа: 0002522324
Дата охранного документа: 10.07.2014
27.07.2014
№216.012.e5aa

Системы и способы обработки подземного пласта с помощью электрических проводников

Группа изобретений относится к области добычи углеводородов водорода и/или других аналогичных продуктов. В частности, изобретения относятся к системам и способам, при которых для обработки различных подземных пластов, содержащих углеводороды, используют источники тепла. Обеспечивается повышение...
Тип: Изобретение
Номер охранного документа: 0002524584
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e777

Способ охлаждения углеводородного потока и устройство для его осуществления

В способе и устройстве для охлаждения углеводородного потока охлаждаемый углеводородный поток (45) подвергается теплообмену в первом теплообменнике (50) с по меньшей мере одним потоком хладагента (145b, 185b), характеризующимся скоростью (FR1) первого потока хладагента, в результате чего...
Тип: Изобретение
Номер охранного документа: 0002525048
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e8dd

Система и способ добычи нефти и/или газа

Группа изобретений относится к системе и способу добычи нефти. Обеспечивает повышение нефтеотдачи пласта и производства сероуглерода. Сущность изобретений: система для добычи нефти содержит: пласт, содержащий смесь нефти с сероуглеродом и/или сероокисью углерода; сепарирующее вещество,...
Тип: Изобретение
Номер охранного документа: 0002525406
Дата охранного документа: 10.08.2014
10.09.2014
№216.012.f312

Способ получения дифенилкарбоната

Изобретение относится к способам получения диарилкарбонатов, которые позволяют получать диарилкарбонаты из газов, вызывающих парниковый эффект, таких как диоксид углерода. Способ получения диарилкарбоната включает реакцию эпоксида и диоксида углерода в первой реакционной зоне с образованием...
Тип: Изобретение
Номер охранного документа: 0002528048
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f8d4

Системы для обработки подземного пласта с циркулируемой теплопереносящей текучей средой

Группа изобретений относится к системам и способам для добычи продукции из подземных пластов. Способ нагрева подземного пласта включает подведение тепла от множества нагревателей по меньшей мере к одному участку подземного пласта путем циркуляции теплопереносящей текучей среды через по меньшей...
Тип: Изобретение
Номер охранного документа: 0002529537
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fd73

Системы и способы формирования подземных стволов скважин

Группа изобретений относится к области формирования подземных стволов скважин. Система для формирования подземного ствола скважины cодержит систему реечной передачи, содержащую систему привода с зажимным устройством, выполненную с возможностью управления бурильной колонной; и систему...
Тип: Изобретение
Номер охранного документа: 0002530729
Дата охранного документа: 10.10.2014
27.10.2014
№216.013.00de

Способ получения алкандиола и диалкилкарбоната

Настоящее изобретение относится к способу получения алкандиола и диалкилкарбоната, включающему: (a) реакцию алкиленкарбоната и алканола в присутствии катализатора переэтерификации для получения реакционной смеси, содержащей диалкилкарбонат, непревращенный алканол, алкандиол и непревращенный...
Тип: Изобретение
Номер охранного документа: 0002531620
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.02fa

Композиция, пропитанная маслом и полярной добавкой, пригодная в каталитической гидропереработке углеводородов, способ изготовления такого катализатора и способ применения такого катализатора

Изобретение относится к каталитической композиции для каталитической переработки углеводородного сырья. Данная композиция содержит материал носителя, который содержит предшественник активного металла, углеводородное масло и полярную добавку, имеющую дипольный момент, по меньшей мере, 0,45 Д и...
Тип: Изобретение
Номер охранного документа: 0002532160
Дата охранного документа: 27.10.2014
20.11.2014
№216.013.066b

Способ и установка для охлаждения потока газообразных углеводородов

Группа изобретений относится к способу охлаждения потока газообразных углеводородов. Газообразный поток углеводородов охлаждают для получения потока сжиженных углеводородов. Газообразный поток углеводородов охлаждают в одном или большем количестве теплообменников, используя первый хладагент из...
Тип: Изобретение
Номер охранного документа: 0002533044
Дата охранного документа: 20.11.2014
+ добавить свой РИД