×
20.03.2019
219.016.e333

Результат интеллектуальной деятельности: Средства распределения и подачи термостатирующего воздуха на поверхность панельного космического аппарата при наземных испытаниях

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам термостатирования космического аппарата (КА) при его различных (электрических, радиотехнических и др.) наземных испытаниях. Предлагаемые средства выполнены в виде модульной конструкции – панелей термостатирования, содержащих закрепленные на технологической оснастке (3) воздушные тракты, включающие коллекторы (2) и распределители (4) воздуха по поверхности (7) панельного КА. Входы (1) коллекторов (2) герметично соединены с установкой воздушного термостатирования (не показана), а выходы (5) - с входами распределителей (4), имеющих параллельные ответвления с соплами (6). Сопла снабжены съёмными дросселями для настройки расхода воздуха. При термостатировании КА некоторое число сопел (6) может быть закрыто крышками. Технический результат состоит в снижении требуемого расхода термостатирующего воздуха, а также в унификации средств его распределения и подачи на поверхность КА. 6 ил.

Изобретение относится к ракетно-космической технике, а именно к воздушному термостатированию панельных космических аппаратов (КА) при проведении наземной подготовки, сопряженной с работой тепловыделяющего оборудования. Изобретение может быть использовано при создании средств наземного термостатирования панельных КА в рамках организации рабочего места для наземных испытаний.

Известно устройство подачи термостатирующей среды в отсек ракеты-носителя [патент RU 2368548, опубл. 27.09.2009, Бюл. №27, МПК: B64G 1/50 (2006.01), B64G 1/48 (2006.01)], содержащее устройство (трубопровод) для подачи термостатирующей среды в отсек ракеты-носителя и устройство для формирования газодинамического потока (диффузор), являющийся сменным и связанный с оболочкой отсека с помощью разъемного соединения.

Недостаток известного устройства - подача воздуха на объект термостатирования осуществляется интегрально, то есть отсутствует возможность распределенной подачи термостатирующей среды (ТС) на различные зоны объекта. В соответствии с этим для обеспечения требуемых коэффициентов теплоотдачи в наиболее теплонагруженных зонах общий расход термостатирующей среды является изначально завышенным для менее теплонагруженных зон.

Задачей изобретения является создание средств распределения и подачи термостатирующего воздуха на поверхность КА при проведении наземных испытаний (далее устройство), обеспечивающих регулируемый перпендикулярный позонный обдув поверхности КА.

Техническими результатами изобретения являются:

- снижение требуемого расхода ТС для осуществления термостатирования КА;

- снижение стоимости и унификации средств распределения и подачи термостатирующего воздуха на поверхность КА при наземных испытаниях;

- возможность адаптации имеющейся конструкции панелей термостатирования под любой объект термостатирования за счет модульной конструкции предложенного устройства.

Технический результат достигается за счет того, что средства распределения и подачи термостатирующего воздуха на поверхность панельного космического аппарата при наземных испытаниях, выполненные в виде модульной конструкции - панели термостатирования, включают устройство для подачи термостатирующего воздуха и устройство для формирования газодинамического потока, причем устройство для подачи термостатирующего воздуха выполнено в виде коллекторов с распределителями термостатирующего воздуха по поверхности панельного космического аппарата, при этом входы коллекторов герметично соединены воздуховодом с установкой воздушного термостатирования, а выходы - с входами упомянутых распределителей, имеющих параллельные между собой ответвления, в каждом из которых выполнено выходное отверстие, устройство для формирования газодинамического потока выполнено в виде сопел с расположенными в них съемными дросселями, причем сопла установлены в выходных отверстиях упомянутых распределителей перпендикулярно поверхности панельного космического аппарата, а коллекторы и распределители выполнены в виде гребенок и установлены перпендикулярно относительно друг друга, при этом часть выходов распределителей или выходов коллекторов может быть закрыта крышками.

Сущность изобретения заключается в следующем.

Конструктивно предложенное устройство выполнено в виде модульной конструкции - панели термостатирования. В устройство входят коллекторы с распределителями, выполненные в виде гребенок. Гребенка распределителя обеспечивает размещение выходных отверстий для термостатирующей среды в виде матричной структуры. Каждое выходное отверстие снабжается соплом с установленным в нем дросселем, формирующим необходимые газодинамические характеристики струи. Подача воздуха производится перпендикулярно поверхности КА. Регулируемость обеспечивается возможностью установки в каждое выходное отверстие дросселя заданного диаметра проходного сечения, изменяющей гидравлическое сопротивление канала. Распределение выходных отверстий по площади термостатируемой поверхности КА позволяет раздельную подачу воздуха на более нагруженные и менее нагруженные зоны. В качестве основного конструкционного материала коллекторов и распределителей используется полипропилен, являющийся радиопрозрачным неэкранирующим материалом.

Адаптация конструкции панелей термостатирования достигается благодаря модульности предложенного устройства, которая обусловлена разъемностью основных конструктивных элементов (коллекторов и распределителей) и возможностью оперативного изменения конструкции под конкретные требования объекта термостатирования путем изменения количества распределителей или закрытия крышками неиспользуемых соединений с распределителями.

Сущность изобретения поясняется чертежами (фиг. 1-5).

На фиг. 1 и 2 приведен пример компоновки средств распределения и подачи термостатирующего воздуха на поверхность панельного космического аппарата при наземных испытаниях в виде панели термостатирования с размещенными на ней четырьмя коллекторами (в трехмерном и двумерном изображениях соответственно).

На фиг. 3 приведен единичный коллектор с возможностью установки четырех распределителей, распределители не показаны.

На фиг. 4 приведен единичный распределитель с возможностью установки трех сопел, сопла не показаны.

На фиг. 5 приведено единичное сопло.

На фиг. 6 представлена таблица, в которой приведены данные по средним температурам термостатируемой поверхности с учетом параметров подачи воздуха.

На фигурах 1-5 введены следующие обозначения:

1 - вход коллектора 2;

2 - коллектор;

3 - технологическая оснастка;

4 - распределитель;

5 - выход коллектора 2;

6 - сопло;

7 - термостатируемая поверхность;

8 - выходное отверстие распределителя 4;

9 - дроссель;

10 - ответвления распределителя 4.

Средства распределения и подачи термостатирующего воздуха на поверхность панельного космического аппарата при наземных испытаниях выполнены в виде модульной конструкции - панелей термостатирования (фиг. 1, 2), представляющих собой закрепленные на технологической оснастке 3 тракты движения воздуха, образованные соединенными между собой коллекторами 2 и распределителями 4 термостатирующего воздуха по поверхности панельного космического аппарата (устройство для подачи термостатирующего воздуха). На каждой панели термостатирования расположено несколько коллекторов 2 (фиг. 2) с установленными на них распределителями 4 (фиг. 4). Входы 1 коллекторов 2 герметично соединены воздуховодом с установкой воздушного термостатирования (на фигурах не показаны), а выходы 5 - с входами распределителей 4, имеющих параллельные между собой ответвления 10, в каждом из которых выполнено выходное отверстие 8.

В состав средств распределения и подачи входит также устройство для формирования газодинамического потока, выполненное в виде сопел 6 с расположенными в них съемными дросселями 9 (фиг. 5), причем сопла установлены в выходных отверстиях 8 распределителей 4 перпендикулярно поверхности панельного космического аппарата, а коллекторы 2 и распределители 4 выполнены в виде гребенок и установлены перпендикулярно относительно друг друга.

Часть выходов распределителей 4, а также выходов коллекторов 2 может быть закрыта крышками (на фигурах не показаны).

Дроссели 9, увеличивая гидравлическое сопротивление сопел 6, перераспределяют расход через остальные сопла, относящиеся к одному коллектору 2.

Соединение конструктивных элементов между собой выполняется пайкой (для соединения элементов коллектора 2 и распределителя 4 между собой) или резьбовым соединением (для присоединения коллекторов 2, распределителей 4 и сопел 6 друг к другу).

Коллекторы 2 и распределители 4 изготавливаются из полипропиленовых труб и соединителей (тройников, муфт, уголков и т.д.) ТУ 2248-032-00284581-98, сопла 6 изготавливаются методом 3D печати.

Конкретное количество элементов (распределителей, подключаемых к одному коллектору, и сопел, относящихся к одному распределителю) определяется геометрией термостатируемой поверхности и технологической возможностью состыковки элементов, входящих в состав коллектора и распределителей.

Эксплуатация устройства осуществляется следующим образом.

1. Положение устройства в режиме хранения

В режиме хранения панель термостатирования находится в разобранном состоянии: коллекторы 2 с установленными на них распределителями 4 отсоединены от технологической оснастки 3, сопла 6 отсоединены, дроссели 9 сняты. Места установки сопел 6 на распределителях 4, входные соединения 1 коллекторов 2 закрыты пылевыми фильтрами из плотной ткани или полимерного материала.

2. Подготовка устройства к работе

При подготовке устройства к работе снимаются все пылевые фильтры, выходные отверстия 8 распределителей 4 снаряжаются соплами 6, не снаряженными дросселями 9. Коллекторы 2 устанавливаются на технологическую оснастку 3 и закрепляются штатным крепежом.

3. Настройка расходных характеристик

При помощи переносного устройства измерения скорости воздушного потока термоанемометрического типа (например, модели ТТМ-2-01 или ТТМ-2-02-1) определяются расходы из каждого из сопел 6. При избыточном расходе устанавливаются дроссели 9, начиная с сопел 6, ближайших к входному соединению 1 коллектора 2.

4. Процесс термостатирования

После достижения нужных расходных характеристик панель термостатирования устанавливается напротив изделия, к входам 1 коллекторов 2 подсоединяют воздуховоды от установки воздушного термостатирования. При подаче термостатирующего воздуха в каждый из коллекторов 2 панели термостатирования воздух распределяется по внутренней полости коллекторов 2 и распределителей 4 (через выходы коллектора 5), при этом распределяясь между ответвлениями распределителей 10, не закрытыми соплами 6, и подается на термостатируемую поверхность 7. Регулирование расхода воздуха, проходящего через каждое сопло 6, определяется его удаленностью от входа 1 коллектора 2 и сечением дросселей 9, установленных на все сопла 6, относящиеся к одному коллектору 2.

Промышленная применимость предлагаемого изобретения поясняется расчетами коэффициентов теплоотдачи при перпендикулярном обдуве плоской поверхности, а также результатами натурных испытаний экспериментального образца (таблиц сравнений результатов расчета и эмпирических данных).

Для моделирования процесса обдува плоской пластины с перпендикулярным направлением струи воздуха использовалось эмпирическое уравнение Шлюндера-Гнилинского для теплоотдачи в формируемой пристенной струе.

Общий вид уравнения Шлюндера-Гнилинского для одиночного круглого сопла:

где

2000≤Re≤400000;

, где

Nu - критерий Нуссельта;

Pr - критерий Прандтля;

r - удаленность от эпицентра попадания струи термостатирующего воздуха, м;

D - диаметр выходного сечения сопла, м;

H - расстояние от выходного сечения сопла до термостатируемой поверхности, м;

Re - критерий Рейнольдса.

Результатом расчета по уравнению (1) стало распределение локальных значений коэффициента теплоотдачи а по мере удаления от эпицентра попадания струи воздуха. Недостатком уравнения является его ограниченный диапазон применимости. Наивысших значений коэффициент теплоотдачи достигает в точке эпицентра, прямо напротив выходного сечения подачи воздуха. Определение коэффициента теплоотдачи в эпицентре струи может приблизительно быть рассчитано по формуле для лобовой точке при обтекании сферы:

где - критерий Нуссельта;

d - характерный размер, м;

λ - коэффициент теплопроводности, Вт/(м⋅К);

Pr - критерий Прандтля (для воздуха равен 0,71);

Re - критерий Рейнольдса.

Для определения промежуточных значений коэффициента теплоотдачи между точкой эпицентра зоны термостатирования и зонами, в которых коэффициент был рассчитан по уравнению 2, необходимо проведение аппроксимации. При рассмотрении различных вариантов по скорости струи и расстоянию от выходного сечения до термостатируемой поверхности была выбрана линейная комбинация степенной и показательной функций вида:

где y - значение коэффициента теплоотдачи, Вт/(м2⋅К);

х - расстояние от эпицентра до рассматриваемой точки, м;

А, В, С, D, E - константы аппроксимации, подбираемые для каждой конкретной струи.

В результате проведенных расчетов было получено распределение локальных значений коэффициента теплоотдачи а. Для определения средней температуры обдуваемой поверхности необходимо определение среднего по площади значения коэффициента теплоотдачи. Это значение определяется как:

где αср - средний по поверхности коэффициент теплоотдачи, Вт/(м2⋅К);

αi - коэффициент теплоотдачи на i-м шаге от эпицентра, Вт/(м2⋅К);

Fi - площадь участка, находящегося на i-м шаге от эпицентра, м2;

F - полная площадь рассматриваемой поверхности, м2.

Значение средней температуры рассматриваемой поверхности определяется как:

где Тср - средняя температура пластины, °С

В дополнение к расчету был проведен эксперимент по обдуву плоской нагреваемой пластины воздухом с использованием экспериментальной установки, представляющей собой единичный коллектор с установленными направляющими и соплами.

В качестве объекта обдува использовалась плоская трехслойная сотопанель с установленными на ней пленочными электронагревателями. Панель имела габариты 1000×720 мм, мощность электронагревателей при номинальном режиме питания (27 В) составила 243 Вт.

Было проведено два эксперимента:

- режим «рабочий обдув», характеризующийся сниженным напряжением питания электронагревателей (напряжение 21,5 В, мощность тепловыделения 154 Вт);

- режим «стрессовый обдув, соответствующий номинальному режиму питания электронагревателей (напряжение 27 В, мощность тепловыделения 243 Вт).

От источника воздуха на средства распределения и подачи подавался воздух с расходом 80 м3/ч и температурой 18°С.

По приведенной выше расчетной методике была определена средняя температура поверхности с учетом параметров подачи воздуха, характерных для эксперимента. Сравнение полученных данных приведено в таблице (фиг. 6).

В результате сравнения наблюдается положительный запас по температуре в сторону экспериментальных данных, что позволяет сделать вывод о допустимости использования предлагаемых средств распределения и подачи воздуха в реальных условиях наземных испытаний.

Средства распределения и подачи термостатирующего воздуха на поверхность панельного космического аппарата при наземных испытаниях, выполненные в виде модульной конструкции - панели термостатирования, включающие устройство для подачи термостатирующего воздуха и устройство для формирования газодинамического потока, отличающиеся тем, что устройство для подачи термостатирующего воздуха выполнено в виде коллекторов с распределителями термостатирующего воздуха по поверхности панельного космического аппарата, при этом входы коллекторов герметично соединены воздуховодом с установкой воздушного термостатирования, а выходы - с входами упомянутых распределителей, имеющих параллельные между собой ответвления, в каждом из которых выполнено выходное отверстие, устройство для формирования газодинамического потока выполнено в виде сопел с расположенными в них съемными дросселями, причем сопла установлены в выходных отверстиях упомянутых распределителей перпендикулярно поверхности панельного космического аппарата, а коллекторы и распределители выполнены в виде гребенок и установлены перпендикулярно относительно друг друга, при этом часть выходов распределителей или выходов коллекторов может быть закрыта крышками.
Источник поступления информации: Роспатент

Показаны записи 91-100 из 111.
16.07.2020
№220.018.32c4

Устройство для разделения элементов конструкции

Изобретение относится к ракетно-космической технике, а более конкретно к устройствам для разделения элементов конструкции. Устройство для разделения элементов конструкции содержит пироболты, болты и разрезные гайки, размещенные в обоймах, и кольцо, жестко связывающее обоймы между собой. Кольцо...
Тип: Изобретение
Номер охранного документа: 0002726471
Дата охранного документа: 14.07.2020
18.07.2020
№220.018.33f7

Адаптивный фильтр

Изобретение относится к области электронной техники. Технический результат заключается в расширении арсенала средств того же назначения. Адаптивный фильтр, содержащий шины входного и выходного сигналов, генератор, первый, второй и третий элементы И, элемент ИЛИ, счетчик импульсов, первый...
Тип: Изобретение
Номер охранного документа: 0002726917
Дата охранного документа: 16.07.2020
24.07.2020
№220.018.35b4

Электропривод

Изобретение относится к области машиностроения и электротехники, в частности к ракетно-космической технике, а также может быть использовано в других областях техники. Сущность изобретения заключается в том, что в электроприводе, включающем герметичный корпус, закрепленный на основании, на...
Тип: Изобретение
Номер охранного документа: 0002727306
Дата охранного документа: 21.07.2020
12.04.2023
№223.018.4378

Способ испытаний изделий на суммарную герметичность в вакуумной камере

Изобретение относится к способам испытания изделий на суммарную негерметичность. Сущность: размещают изделие в вакуумной камере, имеющей низковакуумные и высоковакуумные насосы. Закрывают вакуумную камеру. Вакуумируют вакуумную камеру последовательно низковакуумными и высоковакуумными насосами...
Тип: Изобретение
Номер охранного документа: 0002793600
Дата охранного документа: 04.04.2023
20.04.2023
№223.018.4b1e

Способ экспериментального определения динамических характеристик гибких протяженных конструкций

Изобретение относится к области испытаний на стойкость к механическим внешним воздействующим факторам машин, приборов и других технических изделий и может быть использовано в машиностроении, ракетно-космической, авиационной и в других отраслях техники. Способ заключается в том, что гибкую...
Тип: Изобретение
Номер охранного документа: 0002775360
Дата охранного документа: 29.06.2022
20.04.2023
№223.018.4b21

Способ предпусковой инерционной сепарации в невесомости газовых включений в жидком компоненте топлива орбитального блока (варианты)

Группа изобретений относится к ракетно-космической технике и может быть использована при проектировании и эксплуатации орбитальных блоков с жидкостной ракетной двигательной установкой (ЖРДУ), особенно с многократным запуском маршевого двигателя (МД) в процессе длительного полета орбитального...
Тип: Изобретение
Номер охранного документа: 0002775946
Дата охранного документа: 12.07.2022
20.04.2023
№223.018.4bab

Магнитоплазменный электрореактивный двигатель

Изобретение относится к космической технике, точнее к электрореактивным двигателям, и может быть использовано в космических аппаратах. Магнитоплазменный электрореактивный двигатель содержит корпус, хотя бы по одному кольцевому магниту и радиочастотной антенне, подключенной к генератору...
Тип: Изобретение
Номер охранного документа: 0002764496
Дата охранного документа: 17.01.2022
14.05.2023
№223.018.5641

Бортовая экспериментально-испытательная установка и способ её эксплуатации

Группа изобретений относится к внекорабельной деятельности (ВКД) космонавта. Предлагаемая установка содержит гермокамеру, гермокрышку с иллюминатором, вакуумно-откачную система (ВОС), натекатель для подачи инертного газа, индикатор давления, фрагмент скафандра (ФС), ТВ-регистратор и устройства...
Тип: Изобретение
Номер охранного документа: 0002739647
Дата охранного документа: 28.12.2020
14.05.2023
№223.018.566a

Система обеспечения внекабинной деятельности космонавтов-операторов и способ её эксплуатации

Группа изобретений относится к средствам и методам выполнения ручных операций в вакууме, на поверхности планет, в опасных газовых и жидких средах и т.п. Предлагаемая система содержит обитаемую гермокабину (1) (гермокамеру) и функциональный блок (2), средства вакуумирования (с клапанами 6, 7),...
Тип: Изобретение
Номер охранного документа: 0002739648
Дата охранного документа: 28.12.2020
15.05.2023
№223.018.5c6e

Стенд для тепловакуумных испытаний элементов космических аппаратов

Изобретение относится к испытаниям элементов космических аппаратов (КА) с имитацией условий космического пространства. Стенд содержит вакуумную камеру (ВК) с системой ее вакуумирования (СВ), криогенный экран, расположенный по внутреннему контуру ВК, имитатор внешних тепловых потоков, систему...
Тип: Изобретение
Номер охранного документа: 0002759359
Дата охранного документа: 12.11.2021
Показаны записи 11-11 из 11.
23.05.2023
№223.018.6d00

Термомеханическая система обеспечения теплового режима космического аппарата

Изобретение относится к средствам терморегулирования космических аппаратов (КА). Предлагаемая система содержит плоские экраны (2), установленные над защищаемой поверхностью (1) посредством тепловых микромеханических актюаторов (ММА) (3), которые с одной стороны закреплены на поверхности (1)...
Тип: Изобретение
Номер охранного документа: 0002774867
Дата охранного документа: 23.06.2022
+ добавить свой РИД