×
20.03.2019
219.016.e305

Результат интеллектуальной деятельности: Способ производства жаропрочных сплавов на основе никеля (варианты)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, и может быть использовано при изготовлении лопаток, дисков, створок и других деталей газотурбинных двигателей. Способ производства жаропрочных сплавов на основе никеля включает расплавление в вакууме шихтовых материалов, проведение, вакуумную высокотемпературную обработку расплава при давлении 10-10 мм рт.ст. и температуре 1600-1750°С в течение не менее 3 мин, введение в него рафинирующих добавок и фильтрацию расплава через нагретый пенокерамический фильтр. В качестве рафинирующих добавок в расплав вводят один или более щелочноземельных металлов в количестве не более 0,025% каждого от массы расплава в следующей последовательности: барий, кальций, магний с выдержкой не менее 2 мин после введения каждого металла, после чего вводят один или более редкоземельных металлов в количестве 0,01-0,3% от массы расплава, причем не более 0,1% каждого. При необходимости после расплавления в вакууме шихтовых углеродсодержащих материалов проводят обезуглероживающее рафинирование расплава. Снижается содержание кислорода и азота, а также щелочноземельных металлов. Повышается длительная прочность как безуглеродистых, так и содержащих углерод жаропрочных сплавов на основе никеля. Также повышается выход годного по монокристальности для литейных монокристаллических жаропрочных сплавов на основе никеля. 2 н. и 10 з.п. ф-лы, 2 табл., 10 пр.

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, в том числе коррозионностойких, как безуглеродистых, так и содержащих углерод, которые могут быть использованы для изготовления лопаток, дисков, створок и других деталей газотурбинных двигателей.

Для получения высококачественных бездефектных деталей двигателя необходимо применение жаропрочных материалов с ультравысокой чистотой по вредным примесям, в частности по сере, кислороду и азоту. Это обусловлено тем, что данные примеси образуют с компонентами сплавов неметаллические включения, например, сульфиды, оксиды, нитриды, которые являются концентраторами напряжений, инициирующими зарождение трещин при эксплуатации деталей, и ухудшают механические свойства жаропрочных литейных и деформируемых сплавов, такие как длительная прочность, пластичность и усталость. При направленной кристаллизации деталей с монокристаллической структурой из жаропрочных сплавов на основе никеля неметаллические включения могут являться источниками гетерогенного зарождения «паразитных» зерен, закрывать каналы дендритов и снижать жидкотекучесть кристаллизующейся в последнюю очередь жидкости, вызывая появление микропористости и существенно снижая выход годного, а также уровень и стабильность их эксплуатационных свойств.

Для снижения содержания примесей серы, кислорода и азота в расплав при выплавке вводят рафинирующие добавки - щелочноземельные (ЩЗМ) и редкоземельные (РЗМ) металлы. При использовании в производстве жаропрочных сплавов на основе никеля отходов (головные и донные части слитков, отходы литейного производства: части литниковых и питательных систем, отходы производства деформируемых сплавов: обрезь со штамповочными дефектами, бракованные детали, детали, отработавшие свой ресурс и др.), имеющих повышенную загрязненность примесями, количество вводимых рафинирующих добавок увеличивают. Между тем, температуры плавления рафинирующих добавок, особенно ЩЗМ, значительно ниже рабочих температур жаропрочных сплавов на основе никеля, следовательно, повышенное остаточное содержание этих металлов в сплаве может привести к снижению его жаропрочности. Для получения стабильно высоких механических и эксплуатационных свойств жаропрочных сплавов на основе никеля содержание РЗМ в них должно находиться на оптимальном уровне, поскольку повышенное содержание этих металлов может привести к образованию нежелательных фаз и отрицательно повлиять на выход годного при литье монокристаллов из данных сплавов. Следовательно, при выборе количества рафинирующих добавок при выплавке жаропрочных сплавов на основе никеля следует учитывать не только обеспечение высокой чистоты по вредным примесям, но и достижение оптимального содержания РЗМ в отливке, а также минимизацию остаточного содержания ЩЗМ.

Известен способ получения литейных жаропрочных сплавов на основе никеля, включающий загрузку и расплавление отходов литейного производства сплавов на основе никеля, рафинирование отходов в вакууме и введение РЗМ. Рафинирование отходов осуществляют в вакууме 3⋅10-2-10-3 при температуре расплава 1500-1700° в течение 2-8 минут, а РЗМ вводят в количестве 0,015-0,2% от массы отходов (RU 2190680 С1, 10.10.2002).

Данный способ не обеспечивает глубокого рафинирования расплава от серы и кислорода, поскольку включает только вакуумное рафинирование и введение РЗМ (без ЩЗМ).

Известен способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля, включающий расплавление в вакууме чистых шихтовых материалов, обезуглероживающее рафинирование с введением окислителя в атмосфере инертного газа и последующее введение в вакууме хрома, активных легирующих элементов, РЗМ и рафинирование кальцием (RU 2310004 С2, 10.11.2007).

Данный способ не позволяет получить в сплаве требуемое ультранизкое содержание азота и кислорода, поскольку не включает вакуумную высокотемпературную обработку расплава, не обеспечивает минимизацию содержания кальция и не позволяет повысить уровень механических свойств.

Известен способ получения жаропрочных сплавов на основе никеля с ультранизким содержанием серы, который включает плавление в тигле шихты в виде чистых шихтовых материалов, либо в виде отходов или смеси отходов и чистых шихтовых материалов, введение в шихту до или после образования расплава рафинирующей добавки (оксидов кальция и магния) в виде десульфурирующего вещества, разливку расплава через фильтр в оболочковую форму для кристаллизации в виде отливок (US 5922148 А, 13.07.1999).

Использование в качестве рафинирующей добавки оксидов кальция и магния и отсутствие высокотемпературной обработки расплава не обеспечивают получение в сплаве ультранизкого содержания кислорода и азота и минимизацию содержания ЩЗМ, что не позволяет повысить длительную прочность жаропрочных сплавов на основе никеля.

Известен способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля, включающий расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование в две стадии с введением окислителя в атмосфере инертного газа при давлении 20-150 мм рт.ст. и последующим введением в вакууме редкоземельных металлов, хрома и активных легирующих элементов, при этом после введения в расплав активных легирующих элементов вводят кальций в количестве 0,02-0,20% от массы расплава под давлением инертного газа 20-130 мм рт.ст., затем создают вакуум, после чего вводят лантан (RU 2221067 С1, 10.01.2004).

Данный способ не обеспечивает получение в сплаве ультранизкого содержания примесей азота и кислорода, поскольку не включает высокотемпературную обработку расплава в вакууме, не обеспечивает минимизацию содержания ЩЗМ и не позволяет существенно повысить длительную прочность сплавов.

Известен способ получения литейных жаропрочных сплавов на основе никеля, включающий загрузку и расплавление отходов литейного производства никелевых сплавов, рафинирование отходов в вакууме, введение РЗМ, при этом рафинирование отходов осуществляют в вакууме 3⋅10-2-10-3 мм рт.ст. при температуре расплава 1500-1700°С в течение 2-8 мин, а РЗМ вводят в количестве 0,015-0,20% от массы отходов (RU 2190680 С1, 10.10.2002).

Данный способ не предусматривает введение щелочноземельных металлов и, следовательно, не может обеспечить ультранизкое содержание примесей в сплавах и не позволяет повысить их длительную прочность.

Наиболее близким аналогом предлагаемого способа производства безуглеродистых жаропрочных сплавов на основе никеля является способ, включающий расплавление в вакууме углеродсодержащих шихтовых материалов, проведение обезуглероживающего рафинирования расплава, введение отходов безуглеродистых литейных жаропрочных сплавов на основе никеля, введение активных легирующих элементов и рафинирующих добавок, отличающийся тем, что в качестве рафинирующих добавок в расплав вводят кальций и/или магний в количестве 0,001-0,10% от массы расплава в виде гранул кальций- или магнийсодержащей лигатуры в вакууме 1×10-2-5×10-4 мм рт.ст., затем в расплав вводят один или более редкоземельных металлов в виде никель - или кобальтсодержащей лигатуры, включающей редкоземельные металлы, после чего производят фильтрацию расплава через нагретый пенокерамический фильтр (RU 2541330 С1, пункт 1 формулы изобретения, 10.02.2015).

Наиболее близким аналогом предлагаемого способа производства жаропрочных сплавов на основе никеля (как углеродсодержащих, так и безуглеродистых) является способ, включающий расплавление в вакууме углеродсодержащих шихтовых материалов, введение отходов литейных жаропрочных сплавов на основе никеля, введение активных легирующих элементов и рафинирующих добавок, отличающийся тем, что в качестве рафинирующих добавок в расплав вводят кальций и/или магний в количестве 0,001-0,10% от массы расплава в виде гранул кальций-или магнийсодержащей лигатуры в вакууме 1×10-2-5×10-4 мм рт.ст., затем в расплав вводят один или более редкоземельных металлов в виде никель-или кобальтсодержащей лигатуры, включающей редкоземельные металлы, после чего производят фильтрацию расплава через нагретый пенокерамический фильтр (RU 2541330 С1, пункт 4 формулы изобретения, 10.02.2015). РЗМ вводят в расплав в количестве 0,01-0,50% от массы расплава (RU 2541330 С1, п.п. 2, 5 формулы изобретения).

Недостатками данных способов являются:

- отсутствие вакуумной высокотемпературной обработки расплава, способствующей его эффективной дегазации и удалению примесей азота и кислорода;

- применение в качестве рафинирующих добавок кальция и/или магния, которые вводят без учета их склонности к испарению в вакууме, что не обеспечивает высокой эффективности рафинирующего эффекта, достижения минимальных остаточных содержаний данных ЩЗМ и, соответственно, не приводит к повышению длительной прочности сплавов и выхода годного при литье монокристаллов из жаропрочных сплавов на основе никеля.

Общий недостаток известных способов заключается в несоблюдении оптимального содержания РЗМ в полученных сплавах. Способы, не предусматривающие введение РЗМ, либо предусматривающие введение небольшого количества в сплавы, не обеспечивают получение низких содержаний примесей, что приводит к снижению длительной прочности. Для снижения содержания примесей в расплав вводят РЗМ в количестве, которое в ряде случаев может оказаться избыточным, что также приводит к снижению длительной прочности.

Техническим результатом предлагаемой группы изобретений является снижение содержания кислорода и азота, а также щелочноземельных металлов, и повышение длительной прочности как безуглеродистых, так и содержащих углерод жаропрочных сплавов на основе никеля. Техническим результатом также является повышение выхода годного по монокристальности для литейных монокристаллических жаропрочных сплавов на основе никеля.

Технический результат достигается предложенным способом производства жаропрочных сплавов на основе никеля, включающим расплавление в вакууме углеродсодержащих шихтовых материалов, проведение обезуглероживающего рафинирования расплава, введение в него рафинирующих добавок и фильтрацию расплава через нагретый пенокерамический фильтр, при этом после проведения обезуглероживающего рафинирования расплава проводят вакуумную высокотемпературную обработку расплава при давлении 10-2-10-4 мм рт. ст. и температуре 1600-1750°С в течение не менее 3 минут, в качестве рафинирующих добавок в расплав вводят один или более щелочноземельных металлов в количестве не более 0,025% каждого от массы расплава в следующей последовательности: барий, кальций, магний с выдержкой не менее 2 минут после введения каждого металла, после чего вводят один или более редкоземельных металлов в количестве 0,01-0,3% от массы расплава, но не более 0,1% каждого.

В качестве углеродсодержащих шихтовых материалов допускается использование отходов углеродсодержащих жаропрочных сплавов на основе никеля в количестве до 100% металлошихты.

В случае использования отходов безуглеродистых жаропрочных сплавов на основе никеля и активных легирующих элементов, их вводят после проведения обезуглероживающего рафинирования расплава, а вакуумную высокотемпературную обработку расплава проводят до или после введения активных легирующих элементов.

Обезуглероживающее рафинирование расплава предпочтительно проводить в атмосфере инертного газа при давлении 10-400 мм рт. ст.

В расплав вводят один или более редкоземельных металлов из группы: иттрий, лантан, диспрозий, празеодим, неодим, эрбий, церий, скандий, самарий, гадолиний.

Щелочноземельные и редкоземельные металлы допускается вводить в расплав в виде бинарных сплавов с металлами, входящими в состав сплава.

Для достижения технического результата также предложен способ производства жаропрочных сплавов на основе никеля, включающий расплавление в вакууме шихтовых материалов, введение рафинирующих добавок и фильтрацию расплава через нагретый пенокерамический фильтр, при этом после расплавления в вакууме шихтовых материалов проводят вакуумную высокотемпературную обработку расплава при давлении 10-2-10-4 мм рт. ст. и температуре 1600-1750°С в течение не менее 3 минут, в качестве рафинирующих добавок в расплав вводят один или более щелочноземельных металлов в количестве не более 0,025% каждого от массы расплава в следующей последовательности: барий, кальций, магний с выдержкой не менее 2 минут после введения каждого металла, после чего вводят один или более редкоземельных металлов в количестве 0,01-0,3% от массы расплава, но не более 0,1% каждого.

В качестве шихтовых материалов допускается использование отходов жаропрочных сплавов на основе никеля в количестве до 100% металлошихты.

В случае использования активных легирующих элементов, их вводят в расплав после расплавления в вакууме шихтовых материалов, а вакуумную высокотемпературную обработку расплава проводят до или после введения активных легирующих элементов.

Щелочноземельные и редкоземельные металлы допускается вводить в расплав в виде бинарных сплавов с металлами, входящими в состав сплава.

В расплав вводят один или несколько редкоземельных металлов из группы: иттрий, лантан, диспрозий, празеодим, неодим, эрбий, церий, скандий, самарий, гадолиний.

Предлагаемые способы предусматривают получение жаропрочных сплавов на основе никеля как безуглеродистых, так и содержащих углерод. При получении безуглеродистых сплавов проводят обезуглероживающее рафинирование расплава. Способом без обезуглероживающего рафинирования расплава могут быть получены сплавы как содержащие углерод, так не содержащие (в случае использования безуглеродистых шихтовых материалов).

Проведение вакуумной высокотемпературной обработки расплава при давлении 10-2-10-4 мм рт.ст. и температуре 1600-1750°С в течение не менее 3 минут обеспечивает глубокую очистку расплава от примесей кислорода и азота, поскольку во время нее происходит ускорение диффузионных процессов в расплаве, а за счет пониженного давления осуществляется его дегазация.

Установлено, что высокотемпературная обработка, введение в качестве рафинирующих добавок в расплав одного или более щелочноземельных металлов в количестве не более 0,025% каждого от массы расплава в следующей последовательности: барий, кальций, магний с выдержкой не менее 2 минут после введения каждого металла, с последующим введением одного или нескольких редкоземельных металлов в заданных количествах позволяет обеспечить минимизацию остаточного содержания щелочноземельных металлов и глубокую очистку расплава от примесей серы, кислорода и азота.

Введение в расплав в качестве рафинирующих добавок одного или более щелочноземельных металлов в количестве не более 0,025% каждого от массы расплава в следующей последовательности: барий, кальций, магний с выдержкой не менее 2 минут после введения каждого металла, способствует удалению из расплава серы и кислорода. Последовательность их введения обусловлена значением давления упругости насыщенного пара, а, следовательно, склонности к испарению в вакууме каждого из данных щелочноземельных металлов. Наименее склонен к испарению в вакууме барий, поэтому его вводят первым, за счет чего увеличивается время его нахождения в расплаве. Наиболее склонен к испарению магний, поэтому его вводят в последнюю очередь - после кальция. Соблюдение данного порядка введения рафинирующих добавок, либо введение одной из добавок обеспечивает:

- эффективное раскисление расплава и удаление из него серы,

- получение низкого остаточного содержания легкоплавких щелочноземельных металлов в готовом сплаве, что оказывает положительное влияние на его жаропрочность,

- высокую стабильность усвоения РЗМ за счет предварительного рафинирования расплава от примесей серы, кислорода и азота, включающего вакуумную высокотемпературную обработку расплава и последовательное введение щелочноземельных металлов, что позволяет регламентировать количество вводимых РЗМ в пределах 0,01-0,3% от массы расплава, но не более 0,1% каждого. Это, в свою очередь, позволяет избежать возможного переизбытка РЗМ в получаемых сплавах, приводящего к снижению длительной прочности.

Проведение обезуглероживающего рафинирования в атмосфере инертного газа при давлении 10-400 мм рт.ст. позволяет обеспечивать снижение примеси углерода в расплаве за счет его окисления и удаления в газообразном виде. Давление инертного газа в камере печи в указанном диапазоне улучшает усвоение кислородосодержащей обезуглероживающей присадки (например, закиси никеля NiO) и более полного прохождения процесса обезуглероживания.

Примеры осуществления изобретения.

Примеры 1-5.

Предлагаемым способом осуществляли выплавку литейного безуглеродистого монокристаллического жаропрочного сплава на основе никеля системы Ni-Cr-Co-W-Ti-Al-Nb-Mo. Всего было выполнено 5 плавок. Плавки проводили в вакуумной индукционной печи. Масса шихты в тигле составляла 20 кг. В тигель загружали углеродсодержащие шихтовые материалы: никель, кобальт, вольфрам, молибден. На 1-й плавке использовали только свежие шихтовые материалы, на 2-й плавке использовали отходы безуглеродистого жаропрочного сплава на основе никеля в количестве 10% от массы плавки, на 3-й - 50%, на 4-й - 70%, на 5-й плавке - 100% отходов углеродсодержащего жаропрочного сплава, т.е. без применения свежих шихтовых материалов.

После расплавления шихты в вакууме на всех плавках провели обезуглероживающее рафинирование расплава при давлении:

на 1-й плавке - 10 мм рт.ст.;

на 2-й плавке - 100 мм рт.ст.;

на 3-й плавке - 200 мм рт.ст.;

на 4-й плавке - 300 мм рт.ст;

на 5-й плавке - 400 мм рт.ст.

Далее последовательно ввели отходы выплавляемого сплава (на 2-й, 3-й и 4-й плавках) и активные легирующие элементы - хром, ниобий, титан, алюминий (на 1-й, 2-й, 3-й и 4-й плавках).

Высокотемпературную обработку на 1-й и 2-й плавках проводили до введения активных легирующих элементов, на 3-й и 4-й - после введения активных легирующих элементов, на 5-ой плавке - после проведения обезуглероживающего рафинирования, по следующему режиму:

на 1-й плавке при давлении (1-5)×10-2 мм рт.ст. и температуре 1600-1630°С в течение 15 минут;

на 2-й плавке при давлении (5-9)×10-3 мм рт.ст. и температуре 1630-1660°С в течение 10 минут;

на 3-й плавке при давлении (1-5)×10-3 мм рт.ст. и температуре 1660-1690°С в течение 7 минут;

на 4-й плавке при давлении (5-9)×10-4 мм рт.ст. и температуре 1690-1720°С в течение 5 минут;

на 5-й плавке при давлении (1-5)×10-4 мм рт.ст. и температуре 1720-1750°С в течение 3 минут.

Далее на 1-й, 2-й и 3-й плавках в расплав ввели последовательно барий в виде лигатуры алюминий-барий, кальций и магний в виде лигатур с никелем:

на 1-й плавке - по 0,005% от массы расплава каждого с выдержкой 2 мин;

на 2-й - по 0,010% от массы расплава каждого с выдержкой 2,5 мин;

на 3-й - по 0,015% от массы расплава каждого с выдержкой 3 мин.

На 4-й плавке в расплав ввели последовательно барий в виде лигатуры алюминий-барий и кальций в виде лигатуры с никелем - по 0,020% от массы расплава каждого с выдержкой 3,5 мин;

На 5-й плавке в расплав ввели барий в виде лигатуры алюминий-барий в количестве 0,025% от массы расплава с выдержкой 4 мин.

Затем в расплав ввели редкоземельные металлы в виде лигатур с никелем:

на 1-й плавке - 0,05% церия, 0,05% иттрия, 0,05% лантана, 0,05% празеодима, 0,05% неодима, 0,05% скандия;

на 2-й - 0,100% церия, 0,025% иттрия, 0,025% эрбия, 0,025% самария, 0,025% гадолиния;

на 3-й - 0,025% церия, 0,025% иттрия, 0,025% диспрозия, 0,025% празеодима;

на 4-й - 0,015% церия, 0,015% иттрия, 0,020% лантана;

на 5-й - 0,01% церия.

После этого приступили к разливке расплава в стальную трубу через керамическую воронку с установленным пенокерамическим фильтром.

Содержание серы определяли на газоанализаторе CS-600 фирмы «Leco» по ГОСТ 24018.8, содержание кислорода и азота на газоанализаторе ТСН600 фирмы «Leco» по ГОСТ 17745, содержания РЗМ - масс-спектрометрическим методом на установке iCAPQ фирмы «Thermo Fisher Scientific)) в соответствии с МИ 1.2.054-2013.

Из полученных сплавов были отлиты заготовки с монокристаллической структурой с кристаллографической ориентацией 001, из которых изготовили образцы для испытаний на длительную прочность на машине ZST2/3-ВИЭТ фирмы «Schenck» в соответствии с ГОСТ 10145.

Количество вводимых в расплав компонентов и свойства полученных отливок приведены в таблице 1.

Из таблицы 1 видно, что в сплаве, выплавленном способом-прототипом, содержание примесей кислорода и азота выше, чем в сплаве, выплавленном предложенным способом.

В отливках, полученных предложенным способом, остаточное содержание щелочноземельных и редкоземельных металлов ниже, а длительная прочность увеличилась в среднем на 53,3% на базе 100 ч и 47,3% на базе 1000 ч. Выход годного по монокристальности для выплавляемого монокристаллического жаропрочного сплава в среднем выше на 9,2%.

Примеры 6-10.

Предлагаемым способом осуществляли выплавку литейного жаропрочного сплава на основе никеля системы Ni-Cr-Co-W-Ti-Al-Nb-Mo-C. Всего было выполнено 5 плавок. Плавки проводили в вакуумной индукционной печи. Масса шихты в тигле составляла 20 кг. В тигель загружали углеродсодержащие шихтовые материалы: никель, кобальт, вольфрам, молибден. На 1-й плавке использовали только свежие шихтовые материалы, на 2-й плавке использовали отходы в количестве 10% от массы плавки, на 3-й - 50%, на 4-й - 70%, на 5-й - 100%, т.е. без применения свежих шихтовых материалов.

Высокотемпературную обработку на 1-й и 2-й плавках проводили до введения активных легирующих элементов, на 3-й и 4-й - после введения активных легирующих элементов, на 5-й плавке - после расплавления в вакууме шихтовых материалов, по следующему режиму:

на 1-й плавке при давлении (1-5)×10-2 мм рт.ст. и температуре 1600-1630°С в течение 15 минут;

на 2-й плавке при давлении (5-9)×10-3 мм рт.ст. и температуре 1630-1660°С в течение 10 минут;

на 3-й плавке при давлении (1-5)×10-3 мм рт.ст. и температуре 1660-1690°С в течение 7 минут;

на 4-й плавке при давлении (5-9)×10-4 мм рт.ст. и температуре 1690-1720°С в течение 5 минут;

на 5-й плавке при давлении (1-5)×10-4 мм рт.ст. и температуре 1720-1750°С в течение 3 минут.

Далее на 1-й, 2-й и 3-й плавках в расплав ввели последовательно барий в виде лигатуры алюминий-барий, кальций и магний в виде лигатур с никелем:

на 1-й плавке - по 0,005% от массы расплава каждого с выдержкой 2 мин;

на 2-й - по 0,010% от массы расплава каждого с выдержкой 2,5 мин;

на 3-й - по 0,015% от массы расплава каждого с выдержкой 3 мин.

На 4-й плавке в расплав ввели последовательно барий в виде лигатуры алюминий-барий и кальций в виде лигатуры с никелем - по 0,020% от массы расплава каждого с выдержкой 3,5 мин;

На 5-й плавке в расплав ввели барий в виде лигатуры алюминий-барий в количестве 0,025% от массы расплава с выдержкой 4 мин.

Затем в расплав ввели редкоземельные металлы в виде лигатур с никелем:

на 1-й плавке - 0,05% церия, 0,05% иттрия, 0,05% лантана, 0,05% празеодима, 0,05% неодима, 0,05% скандия;

на 2-й - 0,100% церия, 0,025% иттрия, 0,025% эрбия, 0,025% самария, 0,025% гадолиния;

на 3-й - 0,025% церия, 0,025% иттрия, 0,025% диспрозия, 0,025% празеодима;

на 4-й - 0,015% церия, 0,015% иттрия, 0,020% лантана;

на 5-й - 0,01% церия.

После этого приступили к разливке расплава в стальную трубу через керамическую воронку с установленным пенокерамическим фильтром.

Содержание серы определяли на газоанализаторе CS-600 фирмы «Leco» по ГОСТ 24018.8, содержание кислорода и азота на газоанализаторе ТСН600 фирмы «Leco» по ГОСТ 17745, содержания РЗМ масс-спектрометрическим методом на установке iCAPQ фирмы «Thermo Fisher Scientific)) в соответствии с МИ 1.2.054-2013.

Количество вводимых в расплав щелочноземельных и редкоземельных металлов и свойства полученных отливок приведены в таблице 2.

Из таблицы 2 видно, что в металле, выплавленном способом-прототипом, содержание примесей кислорода и азота выше, чем в металле, выплавленном предложенным способом.

Из полученных сплавов были отлиты заготовки с равноосной структурой, из которых изготовили образцы для испытаний на длительную прочность на машине ZST2/3-ВИЭТ фирмы «Schenck» в соответствии с ГОСТ 10145. В отливках, полученных предложенным способом, остаточное содержание щелочноземельных и редкоземельных металлов ниже, а длительная прочность увеличилась в среднем на 49,3% на базе 100 ч и 47,0 % на базе 1000 ч. по сравнению со сплавом, выплавленном способом-прототипом.

Таким образом, предложенные способы обеспечивают получение жаропрочных сплавов на основе никеля как безуглеродистых, так и содержащих углерод со сниженным содержанием кислорода, азота и щелочноземельных металлов, и также обеспечивают, с одной стороны, сниженное относительно прототипа содержание редкоземельных металлов и в то же время достаточное для повышения длительной прочности. В случае производства литейных жаропрочных монокристаллических сплавов на основе никеля предложенные способы позволяют повысить также выход годного.

Источник поступления информации: Роспатент

Показаны записи 301-310 из 354.
18.05.2019
№219.017.544d

Огнестойкая термопластичная композиция и изделие, выполненное из нее

Изобретение относится к огнестойкой термопластичной композиции на основе поликарбоната. Композиция содержит, мас.ч.: поликарбонат 81-92, модифицированный полибутилентерефталат 7-15, декабромдифенилоксид, модифицированный терефталевой кислотой 1-4. Также изобретение относится к изделию....
Тип: Изобретение
Номер охранного документа: 0002283327
Дата охранного документа: 10.09.2006
18.05.2019
№219.017.55ed

Способ получения защитного покрытия на изделии из бериллия и его сплавов

Изобретение относится к области машиностроения и к технике производства изделий из цветных сплавов, в частности к защитным покрытиям от газовой коррозии в процессах длительной эксплуатации и при технологических нагревах в процессе получения высококачественных деталей и полуфабрикатов из...
Тип: Изобретение
Номер охранного документа: 0002344098
Дата охранного документа: 20.01.2009
18.05.2019
№219.017.5683

Полиимидное связующее для армированных пластиков, препрег на его основе и изделие, выполненное из него

Изобретение относится к области получения полиимидов, а именно к области получения полиимидного связующего для армированных пластиков. Полиимидное связующее представляет собой продукт взаимодействия диангидрида бензофенон-3,3′-4,4′-тетракарбоновой кислоты и м-фенилендиамина и модифицирующую...
Тип: Изобретение
Номер охранного документа: 0002394857
Дата охранного документа: 20.07.2010
18.05.2019
№219.017.56b8

Способ получения пористо-волокнистого металлического материала

Изобретение относится к способам получения пористых материалов из металлических волокон, а именно к способам получения волокнистых металлических материалов с высокой пористостью (до 95%) из жаростойких сплавов для звукопоглощающих конструкций горячего тракта газотурбинного двигателя на рабочие...
Тип: Изобретение
Номер охранного документа: 0002311262
Дата охранного документа: 27.11.2007
18.05.2019
№219.017.576d

Устройство для получения отливок из жаропрочных сплавов с монокристаллической структурой

Изобретение относится к области литейного производства. Устройство содержит керамическую форму, в основании которой выполнены затравочная полость с размещенной в ней монокристаллической затравкой, полость кристалловода и коническая стартовая полость, соединенная с полостью формы, образующей...
Тип: Изобретение
Номер охранного документа: 0002353471
Дата охранного документа: 27.04.2009
18.05.2019
№219.017.5814

Полимерная композиция для покрытий

Изобретение относится к полимерным композициям, применяемым в качестве радиопрозрачных атмосферостойких покрытий холодного отверждения по лакокрасочным покрытиям и полимерным композиционным материалам. Композиция включает следующее соотношение компонентов, в мас.ч.: 9,8-23,5 сополимера...
Тип: Изобретение
Номер охранного документа: 0002333925
Дата охранного документа: 20.09.2008
18.05.2019
№219.017.5826

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к созданию титановых сплавов, предназначенных для изготовления деталей и узлов авиакосмической и ракетной техники: баллонов, шпангоутов, лонжеронов, стрингеров, нервюр, деталей крепления и др. Сплав имеет следующий химический состав, мас.%: алюминий 4,3-6,8; ванадий...
Тип: Изобретение
Номер охранного документа: 0002304178
Дата охранного документа: 10.08.2007
18.05.2019
№219.017.5828

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой. Изделиями могут быть сопловые лопатки, проставки соплового аппарата, крупногабаритные створки и другие детали ГТД...
Тип: Изобретение
Номер охранного документа: 0002304179
Дата охранного документа: 10.08.2007
18.05.2019
№219.017.5849

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как рабочие и сопловые лопатки газотурбинных двигателей, используемых в авиационной промышленности. Сплав...
Тип: Изобретение
Номер охранного документа: 0002308499
Дата охранного документа: 20.10.2007
18.05.2019
№219.017.584a

Сплав на основе титана и изделие, выполненное из этого сплава

Изобретение относится к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала при изготовлении обшивки, лонжеронов, шпангоутов, фюзеляжа, крыльев, агрегатов и двигателей самолетов, работающих при повышенных температурах. Сплав на основе титана...
Тип: Изобретение
Номер охранного документа: 0002308497
Дата охранного документа: 20.10.2007
Показаны записи 301-310 из 324.
10.07.2019
№219.017.ab12

Сплав на основе магния и изделие, выполненное из него

Изобретение относится к области машиностроения и авиастроения, где могут быть применены высокопрочные и жаропрочные свариваемые магниевые сплавы с малой анизотропией механических свойств в качестве легкого свариваемого конструкционного материала, например, для изготовления несущих деталей,...
Тип: Изобретение
Номер охранного документа: 0002293784
Дата охранного документа: 20.02.2007
10.07.2019
№219.017.ab21

Защитное покрытие

Изобретение относится к области производства защитных покрытий, которые могут быть использованы при эксплуатации неорганических волокнистых композиционных материалов конструкционного и технологического назначения, в изделиях авиационно-космической и машиностроительной промышленности....
Тип: Изобретение
Номер охранного документа: 0002290371
Дата охранного документа: 27.12.2006
10.07.2019
№219.017.ac1f

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к металлургии, а именно к литейным сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой, таким как сопловые лопатки, проставки соплового аппарата, крупногабаритные створки и другие...
Тип: Изобретение
Номер охранного документа: 0002349662
Дата охранного документа: 20.03.2009
10.07.2019
№219.017.ac9c

Способ изготовления составного керамического стержня для литья полых изделий

Изобретение относится к литейному производству, в частности для изготовления газотурбинных лопаток, элементов камеры сгорания и других изделий ГТД и ГТУ. Из керамической массы путем прессования изготавливают основной стержень и производят его высокотемпературный отжиг. На наружной поверхности...
Тип: Изобретение
Номер охранного документа: 0002319574
Дата охранного документа: 20.03.2008
10.07.2019
№219.017.ad62

Способ получения изделий из монокристаллических жаропрочных никелевых сплавов

Изобретение относится к металлургии, а именно к получению изделий из многокомпонентных монокристаллических жаропрочных сплавов на никелевой основе, преимущественно лопаток и других деталей ГТД и ГТУ в авиационной и энергетической промышленности. Отливки получают литьем методом направленной...
Тип: Изобретение
Номер охранного документа: 0002353701
Дата охранного документа: 27.04.2009
11.07.2019
№219.017.b2a9

Способ получения полуфабрикатов из высокопрочных никелевых сплавов

Изобретение относится к области металлургии. Способ получения полуфабрикатов из высокопрочного никелевого сплава системы Ni-Fe-Co включает выплавку слитка в вакуумно-дуговой печи, деформацию слитка, предварительную горячую прокатку и окончательную холодную прокатку. После выплавки слитка...
Тип: Изобретение
Номер охранного документа: 0002694098
Дата охранного документа: 09.07.2019
12.08.2019
№219.017.be7c

Способ производства литейных жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на основе никеля для изготовления лопаток и других деталей горячего тракта газотурбинных двигателей и установок. Способ производства литейных жаропрочных сплавов на основе никеля включает...
Тип: Изобретение
Номер охранного документа: 0002696999
Дата охранного документа: 08.08.2019
12.08.2019
№219.017.bf1f

Способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к производству безуглеродистых литейных жаропрочных сплавов на основе никеля, и может быть использовано при производстве заготовок для литья изделий, преимущественно монокристаллических рабочих лопаток газотурбинных двигателей. Способ...
Тип: Изобретение
Номер охранного документа: 0002696625
Дата охранного документа: 06.08.2019
02.10.2019
№219.017.cea0

Керамический композиционный материал и изделие, выполненное из него

Группа изобретений относится к области керамических композиционных материалов, предназначенных для изготовления теплонагруженных узлов и деталей с рабочей температурой до 1500°С в атмосфере воздуха и продуктах сгорания топлива. Предложен керамический композиционный материал, содержащий, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002700428
Дата охранного документа: 17.09.2019
05.10.2019
№219.017.d2bc

3d-принтер для печати изделий, состоящих из различных по электрофизическим свойствам материалов

Изобретение относится к радиотехнике, в частности к конструкции 3D-принтеров на основе метода SLS. Цель изобретения - расширение диапазона печатаемых изделий за счет применения нескольких типов частиц порошкообразного материала с различными электрофизическими свойствами для поэтапного...
Тип: Изобретение
Номер охранного документа: 0002702019
Дата охранного документа: 03.10.2019
+ добавить свой РИД