×
20.03.2019
219.016.e2e7

Результат интеллектуальной деятельности: СПОСОБ УПРОЧНЕНИЯ ЛОПАТОК МОНОКОЛЕСА ИЗ ТИТАНОВОГО СПЛАВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу упрочнения лопаток моноколеса из титанового сплава. Способ включает ионно-имплантационную обработку материала поверхностного слоя лопаток энергией от 20 кэВ до 35 кэВ и дозой от 1,6⋅10 см до 2,0⋅10 см с последующим нанесением ионно-плазменного многослойного покрытия с заданным количеством пар слоев. Слои титана с ванадием наносят толщиной от 0,15 мкм до 0,25 мкм, слои соединений титана с ванадием и азотом - толщиной от 1,2 мкм до 2,3 мкм при общей толщине многослойного покрытия от 7,0 мкм до 11,0 мкм. Перед ионно-имплантационной обработкой проводят электролитно-плазменное полирование при напряжении от 280 В до 300 В, в водном растворе с содержанием от 5 до 8 вес. % гидроксиламина солянокислого и KF от 0,7 до 0,8 вес. % При нанесении покрытия моноколесо вращают одновременно относительно его продольной и поперечной осей с одновременным приданием моноколесу колебательных движений относительно его поперечной оси. Нанесение титана и ванадия на лопатки производят одновременно с электродугового испарителя для титана и расположенного напротив него электродугового испарителя для ванадия. В результате получают моноколесо с защитой пера лопаток от эрозионного разрушения при одновременном повышении их выносливости и циклической долговечности. 4 з.п. ф-лы.

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защиты пера лопаток моноколеса компрессора ГТД из титановых сплавов от эрозионного разрушенияпри одновременном повышении их выносливости и циклической долговечности.

Известен способ полирования металлических поверхностей, включающий анодную обработку в электролите [Патент РБ №1132, МПК C25F 3/16, 1996, БИ №3], а также способ электрохимического полирования [Патент США №5028304, МПК В23Н 3/08, C25F 3/16, C25F 5/00, опубл. 02.07.91.]

Известные способы электрохимического полирования не позволяют производить качественное полирование поверхности детелей из титановых сплавов.

Известен также способ электролитно-плазменного полирования деталей из титановых сплавов [Патент РФ №2373306, МПК C25F 3/16. Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов. Бюл. №32, 2009], включающий погружение детали в электролит, содержащий окислитель, фторсодержащее соединение и воду, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала.

Однако известный способ [Патент РФ №2373306, МПК C25F 3/16] является многостадийным, что приводит с одной стороны к возрастанию сложности процесса обработки деталей, снижению качества и надежности процесса обработки из-за необходимости обеспечения большего количества параметров процесса и их соотношений, а также к повышению его трудоемкости.

Известен способ ионно-плазменного нанесения защитных покрытий на детали турбомашин (патент США №9,765,635. МПК F01D 5/14. Erosion and corrosion resistant protective coatings for turbomachinery. Опубл. 2017 г). Покрытие образуется путем конденсации материала при ионной бомбардировке из металло-газообразного плазменного потока. Причем кинетическая энергия ионов осажденных металлов превышает 5 эВ.

Известен также способ вакуумного ионно-плазменного нанесения покрытий на подложку в среде инертного газа, включающий создание разности электрических потенциалов между подложкой и катодом и очистку поверхности подложки потоком ионов, снижение разности потенциалов и нанесение покрытия, проведение отжига покрытия путем повышения разности потенциалов, причем ионный поток и поток испаряемого материала, идущий от катода к подложке, экранируют, очистку проводят ионами инертного газа, после очистки экраны отводят и покрытие наносят в несколько этапов до получения требуемой толщины (Патент РФ 2192501, С23С 14/34, опубл. 10.11.2002).

Известен также способ нанесения ионно-плазменных покрытий на лопатки турбин, включающий последовательное осаждение в вакууме первого слоя из титана толщиной от 0,5 до 5,0 мкм, затем нанесение второго слоя нитрида титана толщиной 6 мкм (Патент РФ 2165475, МПК С23С 14/16, 30/00, С22С 19/05, 21/04, опубл. 20.04.2001).

Известен также способ нанесения ионно-плазменных покрытий на лопатки турбин, из титановых сплавов (патент РФ №2234556 МПК С23С 14/06, 2004.08.20), включающий последовательное упрочнение поверхности изделия путем ионной имплантации азота и проведение стабилизирующего отжига, и проведение, после ионной имплантации ионно-плазменное нанесение покрытия нитрида титана при токе разряда от 90 до 110 А, напряжении разряда от 50 до 60 В и давлении азота от 10-1 до 4⋅10-1 Па, при этом ионную имплантацию, нанесение покрытия и стабилизирующий отжиг осуществляют в одном вакуумном объеме.

Основным недостатком этих способов является недостаточно высокая эрозионной стойкости поверхности лопатки. Кроме того, при увеличении толщины покрытия (или каждого из слоев покрытия) происходит снижение адгезионной и усталостной прочности деталей с покрытиями, что ухудшает их ресурс и надежность.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ нанесения эрозионностойких покрытий на лопатки блиска газотурбинного двигателя из титановых сплавов, включающий упрочняющую обработку пера лопатки с последующим нанесением ионно-плазменного многослойного покрытия в виде заданного количества пар слоев в виде слоя титана с металлом и слоя соединений титана с металлом и азотом (Патент РФ 2226227, МПК С23С 14/48, опубл. 27.03.2004).

Основным недостатком аналогов и прототипа является невозможность их использования для ионно-импалнтационной обработки и нанесения покрытий на лопатки моноколеса в результате образования «мертвых» зон, возникающих из-за затенения лопатками моноколеса друг друга, особенно в случае моноколес с широкохордными лопатками, что не обеспечивает для лопаток моноколес защиту от эрозии при одновременном повышении их выносливости и циклической прочности.

Техническим результатом заявляемого способа являетсяповышение стойкости лопатокмоноколеса компрессора ГТД к эрозионному разрушению при одновременном обеспечении их высокой выносливости и циклической прочностиза счет полирования поверхности пера лопатки, равномерной его ионно-имплантационной обработки иравномерного нанесения на них эрозионностойкого покрытия.

Технический результат достигается за счет того, что в способеупрочнениялопаток моноколеса из титанового сплава, включающем упрочняющую и ионно-имплантационную обработку материала поверхностного слоя лопаток с последующим нанесением ионно-плазменного многослойного покрытия с заданным количеством пар слоев в виде слоя титана с металлом и слоя соединений титана с металлом и азотом, в отличие от прототипа, перед ионно-имплантационной обработкой проводят электролитно-плазменное полирование поверхности блиска путем приложения к нему электрического потенциала от 280 В до 300 В, причем в качестве электролита используют водный раствор с содержанием от 5 до 8 вес. % гидроксиламина солянокислого и содержанием KF от 0,7 до 0,8 вес. %, а при нанесении покрытия на лопатки, моноколесо вращают одновременно относительно его продольной и поперечной осей с одновременным приданием моноколесу колебательных движений относительно его поперечной осис отклонением по обе стороны от вертикали на угол 45°, причем ионно-имплантационную обработку лопаток моноколеса проводят ионами азота при энергии от 20 кэВ до 35 кэВ, дозой от 1,6⋅1017 см-2 до 2,0⋅1017 см-2, а в качестве металла в слоях титана с металлом и в слоях соединений титана с металлом и азотом используют ванадий, причем нанесение титана и ванадия на лопатки моноколеса производят одновременно с электродугового испарителя для титана и расположенного напротив него электродугового испарителя для ванадия, причем слой титана с ванадием наносят толщиной от 0,15 мкм до 0,25 мкм, а слой соединений титана с ванадием и азотом наносят толщиной от 1,2 мкм до 2,3 мкм при общей толщине многослойного покрытия от 7,0 мкм до 11,0 мкм, а при нанесении покрытия используют соотношение титана к ванадию, вес. %: V от 35 до 45, остальное - Ti.

Кроме того возможно также осуществлять нанесение слоев соединений титана с ванадием осуществляют в режиме ассистирования ионами аргона, а полирование ведут при температуре от 70°С до 90°С, при величине тока от 0,4 А/см2 до 0,7 А/см2 в течение от 2,0 до 4,5 минут.

Для оценки эрозионной стойкости лопаток блиска были проведены следующие испытания. На образцы из титановых сплавов марок ВТ6, ВТ8, ВТ8 м, ВТ41, ВТ18у, ВТ31, ВТ9, ВТ22, ВТ25у были нанесены покрытия как по способу-прототипу (патент РФ 2226227, МПК С23С 14/48, опубл. 27.03.2004), согласно приведенным в способе-прототипе условиям и режимам нанесения, так и покрытия по предлагаемому способу.

Режимы нанесения покрытия по предлагаемому способу.

Нанесение слоев соединений титана с ванадием осуществляли: с двух, одновременно работающих, протяженных электродуговых испарителей одного для ванадия, другого для титана. Расположение испарителей - периферийное, на цилиндрической стенке камеры установки, напротив друг друга, в зоне расположения лопаток моноколеса. Размеры испарителей 300×800 мм. Моноколесо, при ионно-имплантационной обработке и нанесения покрытия вращалосьодновременно вокруг собственной продольной оси и поперечной оси, совпадающей с продольной, вертикально расположенной осью цилиндрической камеры установки, с одновременным совершением колебательных движений. Скорость вращения блиска относительно собственной оси составляла от 6 до 12 об/мин. Колебательные движения составляли по 45°по обе стороны от вертикали. Нанесение слоев соединений титана с ванадием осуществляли в режиме ассистирования ионами аргона, а слоев соединений титана с ванадием и азотом осуществляют в режиме ассистирования ионами азота. Ионно-имплантационную обработку проводили ионами азота. Для ионно-имплантационной обработки использовали протяженный генератор газовой плазмы, выполненный с возможностью обеспечения работы с азотом и имеющим размеры выходной апертуры 100×6 00 мм. Перед электролитно-плазменным полированием, как один из вариантов способа применялась обработка лопаток микрошариками.

Электролитно-плазменное полирование:

Электрический потенциал: 270 В - Н.Р., 280 В - У.Р., 290 В - У.Р., 300 В - У.Р., 320 В -Н.Р.

Электролит: водный раствор с содержанием от 5 до 8 вес. % гидроксиламина солянокислогои содержанием KF от 0,7 до 0,8 вес. %.

Температура электролита: от 70°С до 90°С.

Величина электрического тока: от 0,4 А/см2 до 0,7 А/см2.

Время: 2,0-4,5 минут.

Шероховатость исходной полируемой поверхности не более Ra 0,78…0,82 мкм.

Толщина слоя титана с ванадием: 0,1 мкм - неудовлеворительный результат (Н.Р.); 0,15 мкм - удовлетворительный результат (У.Р.); 0,25 мкм (У.Р.); 0,35 мкм (Н.Р.).

Толщина слоя соединений титана с ванадия и азотом: 0,9 мкм (Н.Р.); 1,2 мкм (У.Р.); 1,5 мкм (У.Р.); 2,3 мкм (У.Р.); 2,6 мкм (Н.Р.).

Общая толщина покрытия: 5,5 мкм (Н.Р.); 7,0 мкм (У.Р.); 9,0 мкм (У.Р.); 11,0 мкм (У.Р.); 13,0 мкм (Н.Р.).

Толщина покрытия, нанесенного по предлагаемому способу составляла от 7,0 мкм до 11,0 мкм, покрытия-прототипа от 0 мкм (в затененных зонах) до 11,0 мкм.

Соотношение титана к ванадию, вес. %: V, остальное - Ti,: содержание V, вес. %: 30% - (Н.Р.); 35% - (У.Р.); 40% - (У.Р.); 45% - (У.Р.); 50% -(Н.Р.).

Ионно-имплантационная обработка азотом:

энергия - 18 кэВ (Н.Р.); 20 кэВ (У.Р.); 22 кэВ (У.Р.); 23 кэВ (У.Р.); 25 кэВ (У.Р.); 35 кэВ (У.Р.); 40 кэВ (Н.Р.);

доза - 1,4⋅1017 см-2 (Н.Р.); 1,6⋅1017 см-2 (У.Р.); 1,8⋅1017 см-2 (У.Р.); 2,0⋅1017 см-2 (У.Р.); 2.4⋅1017 см-2 (Н.Р.);

Эрозионная стойкость поверхности образцов исследовалась по методике ЦИАМ (Технический отчет ЦИАМ Экспериментальное исследование износостойкости вакуумных ионно-плазменных покрытий в запыленном потоке воздуха 10790, 1987. - 37 с.) на пескоструйной установке 12Г-53 струйно-эжекторного типа. Для обдува использовался молотый кварцевый песок с плотностью р=2650 кг/м3, твердость HV=12000 МПа. Обдув производился при скорости воздушно-абразивного потока 195-210 м/с, температура потока 265-311 К, давление в приемной камере 0,115-0,122 МПа, время воздействия - 120 с, концентрация абразива в потоке до 2-3 г/м3. Результаты испытания показали, что эрозионная стойкость покрытий, полученных по предлагаемому способу, увеличилась по сравнению с покрытием-прототипом приблизительно в 5…6 раз.

Кроме того, были проведены испытания на выносливость и циклическую долговечность образцов - лопаток, вырезанных из моноколеса после его ионно-плазменной обработки и нанесения покрытий. Испытывались образцы из следующих марок титановых сплавов (ВТ6, ВТ8, ВТ8 м, ВТ41, ВТ18у, ВТ31, ВТ9, ВТ22, ВТ25у) на воздухе. В результате эксперимента установлено следующее: условный предел выносливости (-1) образцов в исходном состоянии (без покрытия) составляет 430-440 МПа, у образцов, упрочненных по способу-прототипу - 430-445 МПа, а по предлагаемому способу - 470-485 МПа.

Таким образом, проведенные сравнительные испытания показали, что применение в способе нанесения защитных покрытий на лопатки моноколеса из титановых сплавов следующих приемов: ионно-имплантационную обработку материала поверхностного слоя лопаток моноколеса с последующим нанесением ионно-плазменного многослойного покрытия с заданным количеством пар слоев в виде слоя титана с металлом и слоя соединений титана с металлом и азотом; перед ионно-имплантационной обработкой проводят электролитно-плазменное полирование поверхности блиска путем приложения к нему электрического потенциала от 280 В до 300 В, причем в качестве электролита используют водный раствор с содержанием от 5 до 8 вес. % гидроксиламина солянокислого и содержанием KF от 0,7 до 0,8 вес. %; при нанесении покрытия на лопатки производят вращение моноколеса одновременно относительно его продольной и поперечной осей с одновременным приданием моноколесу колебательных движений относительно его поперечной оси, обеспечивающих ионно-имплантационную обработку всей поверхности лопаток и нанесение покрытия на всю поверхность лопаток моноколеса; ионно-имплантационную обработку лопаток моноколеса ионами азота при энергии от 20 кэВ до 35 кэВ, дозой от 1,6⋅1017 см-2 до 2,0⋅1017 см-2; использование в качестве металла в слоях титана с металлом и в слоях соединений титана с металлом и азотом ванадия; нанесение титана и ванадия на лопатки моноколеса одновременно с электродугового испарителя для титана и расположенного напротив него электродугового испарителя для ванадия; нанесение слоя титана с ванадием толщиной от 0,15 мкм до 0,25 мкм; нанесение слоя соединений титана с ванадием и азотом толщиной от 1,2 мкм до 2,3 мкм; обеспечение общей толщины многослойного покрытия от 7,0 мкм до 11,0 мкм, позволяют достичь технического результата заявляемого изобретения - повысить стойкость лопаток моноколеса компрессора ГТД к эрозионному разрушению при одновременном обеспечении их высокой выносливости и циклической прочности за счет равномерной ионно-имплантационной обработки поверхности поверхности лопатки и равномерного нанесения на них эрозионностойкого покрытия.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 146.
09.06.2018
№218.016.5ffc

Импульсный генератор для намагничивающей установки (варианты)

Изобретение относится к электротехнике и может быть использовано в сильноточной импульсной технике в качестве источника импульсного питания для намагничивающих установок. Технический результат состоит в обеспечении стабильной работы и минимального нагрева его активных элементов, а также в...
Тип: Изобретение
Номер охранного документа: 0002656883
Дата охранного документа: 07.06.2018
09.06.2018
№218.016.600d

Магнитопровод трансформатора (варианты)

Изобретение относится к электротехнике, к магнитопроводам трансформаторов. Технический результат состоит в повышении кпд, достижении оптимального соотношения объемов магнитных материалов в магнитопроводе и их эффективное распределение в конструкции. По первому варианту магнитные материалы...
Тип: Изобретение
Номер охранного документа: 0002656861
Дата охранного документа: 07.06.2018
09.06.2018
№218.016.6026

Способ управления положением ротора электрической машины на бесконтактных подшипниках (варианты) и электрическая машина для его реализации

Изобретение относится к области энергомашиностроения и может быть использовано в электромеханических преобразователях энергии на бесконтактных подшипниках. Технический результат - повышение точности управления и надежности электрической машины с ротором на бесконтактных подшипниках, возможность...
Тип: Изобретение
Номер охранного документа: 0002656871
Дата охранного документа: 07.06.2018
09.06.2018
№218.016.6033

Ротор для высокоскоростных электромеханических преобразователей энергии с высококоэрцитивными постоянными магнитами

Использование: изобретение относится к области электротехники и может быть использовано в высокоскоростных электрических машинах. Технический результат: повышение надежности ротора, снижение добавочных потерь. Ротор электромеханического преобразователя энергии с постоянными магнитами содержит...
Тип: Изобретение
Номер охранного документа: 0002656863
Дата охранного документа: 07.06.2018
09.06.2018
№218.016.604d

Сверхвысокооборотный микрогенератор

Изобретение относится к электротехнике и может быть использовано для обеспечения электроэнергией автономных объектов. Технический результат состоит в снижении физической заметности объектов, оснащенных данными сверхвысокооборотными микрогенераторами, благодаря снижению уровня шума, повышению...
Тип: Изобретение
Номер охранного документа: 0002656869
Дата охранного документа: 07.06.2018
11.06.2018
№218.016.60af

Магнитная система ротора синхронного двигателя с инкорпорированными магнитами (варианты)

Изобретение относится к электротехнике и может быть использовано в электромашиностроении при производстве электродвигателей. Техническим результатом является повышение мощности, механического момента, к.п.д. при снижении массогабаритных показателей. Магнитная система ротора с...
Тип: Изобретение
Номер охранного документа: 0002657003
Дата охранного документа: 08.06.2018
11.06.2018
№218.016.616a

Способ фильтрации капельной фазы при осаждении из плазмы вакуумно-дугового разряда

Изобретение относится к области нанесения покрытий из плазмы вакуумно-дугового разряда и может быть использовано для получения фильтрованной плазмы. Способ фильтрации капельной фазы из плазмы вакуумно-дугового разряда при осаждении многослойного покрытия системы Ti-Al на поверхность детали...
Тип: Изобретение
Номер охранного документа: 0002657273
Дата охранного документа: 09.06.2018
29.06.2018
№218.016.689e

Беспазовый магнитопровод статора электромеханических преобразователей энергии из аморфного железа с минимальным влиянием вихревых токов (варианты)

Изобретение относится к электротехнике и может быть использовано в электромеханических преобразователях энергии автономных объектов. Техническим результатом является повышение надежности, энергоэффективности и минимизация тепловыделений электромеханических преобразователей энергии, повышение...
Тип: Изобретение
Номер охранного документа: 0002659091
Дата охранного документа: 28.06.2018
03.07.2018
№218.016.69c2

Способ изготовления раскатных колец с регулярной микроструктурой

Изобретение относится к способам раскатки заготовки в виде кольца. Раскатку заготовки осуществляют роликовыми инструментами. Вначале роликовым инструментом формируют регулярный микрорельеф поверхности за счет микрорельефа на его рабочей поверхности, а затем выглаживают поверхность микрорельефа...
Тип: Изобретение
Номер охранного документа: 0002659501
Дата охранного документа: 02.07.2018
08.07.2018
№218.016.6d92

Способ получения форм для литья охлаждаемых лопаток

Изобретение относится к литейному производству и может быть использовано для получения охлаждаемых лопаток ГТД. Способ изготовления оболочковой формы для литья по выплавляемым моделям охлаждаемых лопаток из жаропрочных сплавов включает изготовление обожженного керамического стержня, имеющего...
Тип: Изобретение
Номер охранного документа: 0002660554
Дата охранного документа: 06.07.2018
Показаны записи 31-40 из 141.
27.11.2015
№216.013.946b

Способ изготовления полой металлической лопатки турбомашины

Изобретение может быть использовано при изготовлении полых, например, авиационных вентиляторных лопаток. На поверхность участков, не подвергаемых соединению при диффузионной сварке, наносят антиадгезионное покрытие. После диффузионной сварки пакета, собранного из заготовок корыта, спинки и...
Тип: Изобретение
Номер охранного документа: 0002569614
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9655

Способ контроля формы и положения профиля рабочих лопаток моноколеса

Использование: изобретение относится к способам измерения, а именно к способам измерения профиля сечений, и может быть использовано для контроля профиля и положения рабочих лопаток моноколеса. Сущность изобретения: форму и положение профиля рабочих лопаток моноколеса контролируют в заданном...
Тип: Изобретение
Номер охранного документа: 0002570105
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a0a3

Способ сбора нефти из-под ледяного покрова водоема

Способ сбора нефти или нефтепродукта из-под ледяного покрова водоема включает локализацию пятна нефти или нефтепродукта и последующее удаление нефти или нефтепродукта откачкой в нефтеприемник, в области локализации пятна нефти или нефтепродукта в ледяном покрове бурят скважину, погружают через...
Тип: Изобретение
Номер охранного документа: 0002572765
Дата охранного документа: 20.01.2016
27.05.2016
№216.015.429d

Способ защиты от эрозии и солевой коррозии лопаток турбомашин из легированных сталей

Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом турбостроении для защиты пера лопатки компрессора от эрозии и солевой коррозии при температурах эксплуатации до 800 °C. Способ включает подготовку поверхности пера лопатки под...
Тип: Изобретение
Номер охранного документа: 0002585580
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.440d

Способ защиты лопаток турбомашин из легированных сталей от эрозии и солевой коррозии

Изобретение относится к области машиностроения и металлургии и может использоваться в авиационном и энергетическом турбостроении для защиты пера лопаток компрессора от эрозии и солевой коррозии при температурах эксплуатации до 800°C. Подготавливают поверхности пера лопатки под нанесение...
Тип: Изобретение
Номер охранного документа: 0002585599
Дата охранного документа: 27.05.2016
13.01.2017
№217.015.7002

Способ электроэрозионной обработки отверстий малого диаметра

Изобретение относится к электроэрозионной обработке и может быть использовано для электроэрозионной прошивки прецизионных отверстий малого диаметра широкой номенклатуры деталей, например лопаток газотурбинного двигателя. Способ включает электроэрозионную обработку деталей, при которой...
Тип: Изобретение
Номер охранного документа: 0002596567
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.8047

Колпачковая тарелка

Изобретение относится к конструкциям массообменных тарелок для систем газ (пар) - жидкость, предназначенных для процессов абсорбции, ректификации и может найти применение в химической, нефтехимической и других смежных отраслях промышленности. Колпачковая тарелка состоит из основания в форме...
Тип: Изобретение
Номер охранного документа: 0002602113
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.808c

Контактный элемент колпачковой тарелки

Изобретение относится к конструкциям массообменных тарелок для систем газ (пар) - жидкость, предназначенных для процессов абсорбции, ректификации, и может найти применение в химической, нефтехимической и других смежных отраслях промышленности. Контактный элемент колпачковой тарелки включает...
Тип: Изобретение
Номер охранного документа: 0002602115
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8292

Способ восстановительного ремонта трубопровода и устройство для его осуществления

Группа изобретений относится к трубопроводному транспорту и предназначена для проведения ремонтных работ без остановки эксплуатации трубопровода. На наружную поверхность восстанавливаемого участка трубопровода после очистки поверхности и разделки трещин устанавливают муфту с образованием...
Тип: Изобретение
Номер охранного документа: 0002601782
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8c15

Способ и устройство для сбора нефти и нефтепродукта из-под ледяного покрова водоема

Изобретение относится к области охраны окружающей среды и может быть использовано при разливе нефти (нефтепродуктов) под ледяным покровом преимущественно арктических водоемов. Предложен способ сбора нефти или нефтепродукта из-под ледяного покрова водоема, включающий локализацию пятна нефти или...
Тип: Изобретение
Номер охранного документа: 0002604931
Дата охранного документа: 20.12.2016
+ добавить свой РИД