×
15.03.2019
219.016.e09b

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ГЕОГРАФИЧЕСКИХ КООРДИНАТ ИЗОБРАЖЕНИЙ ОБЪЕКТОВ НА ПОВЕРХНОСТИ ПЛАНЕТЫ ПРИ СЪЕМКЕ С ПИЛОТИРУЕМОГО КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к космической технике. Целью изобретения является съемка Земли и других планет с помощью ручных фото- и видеокамер экипажами пилотируемых космических аппаратов (КА). Задачей изобретения является определение координат при съемке камерой, не имеющей жесткой связи с конструкцией КА и свободно перемещающейся в условиях невесомости. Суть изобретения в измерении угловых скоростей поворотов камеры в процессе съемки с помощью блока датчиков, устанавливаемых на камере, и расчете пространственного положения камеры относительно базового положения. Рассматривается вариант расчета базового положения по известным координатам одного из изображений и известному положению центра масс аппарата и вариант расчета базового положения по известному положению центра масс и известной ориентации аппарата. 2 н.п. ф-лы, 1 ил.

Изобретение относится к космической технике и может найти применение при съемках Земли и других планет с помощью фото- и видеокамер экипажами пилотируемых космических аппаратов (КА).

Изображения земной поверхности (в будущем и других планет), полученные экипажами пилотируемых КА с помощью ручных съемочных камер, содержат полезную информацию о состоянии природных ресурсов, сооружений, последствиях стихийных бедствий и т.п. Необходимым условием использования этой информации является определение географических координат зафиксированных на изображении объектов, позволяющее рассчитать их местоположение, протяженность, площадь и т.п.

В литературе описан способ определения координат (см. например, Злобин В.К., Еремеев В.В. Обработка аэрокосмических изображений. Изд. ФИЗМАТ ЛИТ. 2006), при котором съемочная камера жестко закреплена и ее пространственное положение относительно конструкции КА известно.

Для определения координат получаемых изображений фиксируется время съемки. С помощью модели движения КА рассчитывают положение центра масс КА и ориентацию КА (т.е. пространственное положение конструкции КА) в момент съемки в некоторой инерциальной системе координат. Известное пространственное положение оптической оси объектива (ООО) камеры в системе координат, связанной с конструкцией КА, пересчитывают для этой системы координат. После чего при известной геометрии объектива определяют пространственное положение множества лучей, проходящих через выбранные точки изображения и точку фокуса объектива. Искомые координаты точек изображения рассчитывают как координаты точек пересечения этих лучей с поверхностью планеты, например, как эллипсоида вращения.

Жестко закрепленная камера не позволяет космонавту выбирать объект съемки, находящийся вне поля зрения камеры, и ухудшает качество изображений из-за влияния вибраций корпуса КА через жесткую связь, в особенности при большом времени экспозиции.

Наиболее близким аналогом съемки ручной камерой следует считать съемку камерой, установленной на поворотной платформе, позволяющей менять пространственное положение ООО камеры относительно конструкции КА на известные или заданные углы. В этом случае при известном положении центра масс КА и известной ориентации КА в зафиксированный момент съемки определение координат изображений сводится к предыдущему случаю жестко закрепленной камеры с учетом углов поворота платформы при определении пространственного положения ООО камеры.

Недостатками способа являются:

- необходимость точного определения и выдерживания ориентации КА (эта сложность характерна для пилотируемых КА);

- ограничение свободы действий космонавта при нацеливании на объект съемки, в особенности при съемках не в надир;

- высокая стоимость и масса платформы с приводами и системой управления.

Задачей настоящего изобретения является способ, обеспечивающий определение координат при съемке камерой, не имеющей постоянной жесткой связи с конструкцией КА и свободно перемещающейся в условиях невесомости. Сохраняется свобода действий космонавта при нацеливании на объект. Положение центра масс КА в момент съемки должно быть известно. Ориентация КА не обязательно должна быть известна.

Технический результат достигается тем, что в способе определения географических координат изображений объектов на поверхности планеты при съемке с пилотируемого космического аппарата, основанном на фиксации момента съемки и определении пространственного положения съемочной камеры с учетом известного положения центра масс КА, по первому варианту определяют базовое пространственное положение свободно перемещаемой съемочной камеры по значениям положения центра масс КА и известным географическим координатам точек на одном из полученных в результате съемок изображений, одновременно в процессе съемки проводят измерения угловых скоростей поворотов съемочной камеры в инерциальной системе координат, по которым рассчитывают текущее пространственное положение съемочной камеры относительно базового положения.

В способе определения географических координат изображений объектов на поверхности планеты при съемке с пилотируемого космического аппарата, основанном на фиксации момента съемки и определении пространственного положения съемочной камеры с учетом известного положения центра масс КА, по второму варианту определяют базовое пространственное положение свободно перемещаемой съемочной камеры по значениям положения центра масс КА, известной ориентации КА в фиксированный момент времени и известному пространственному положению съемочной камеры относительно конструкции КА в этот момент, одновременно в процессе съемки проводят измерения угловых скоростей поворотов съемочной камеры в инерциальной системе координат, по которым рассчитывают текущее пространственное положение съемочной камеры относительно базового положения.

Сущность изобретения поясняется чертежом.

Для измерений угловых скоростей поворотов камеры в процессе съемки на фото- видеокамеру (1) или на ее объектив жестко крепится блок датчиков угловых скоростей (2) вместе с устройством (3), обеспечивающим фиксацию моментов съемки. Датчиков в блоке должно быть не менее трех для измерений в трех взаимно перпендикулярных плоскостях. Для удобства работы может быть предусмотрено устройство фиксации начала отсчета (6). Вся информация поступает в устройство приема (4), связанное с устройством обработки (5). Устройство обработки (5) получает от устройства приема (4) сигналы, пропорциональные угловым скоростям поворотов съемочной камеры (7), сигналы моментов съемки (8) и сигналы начала отсчета (9).

В качестве устройства приема и обработки может быть использован, например, портативный компьютер, соединенный с датчиками через стандартный интерфейс. В качестве устройства фиксации моментов съемки может быть использован в простейшем случае двухпроводный кабель, соединяющий «сухие» контакты разъема внешней фотовспышки камеры с тем же приемным устройством через стандартный интерфейс. В этом случае момент получения изображения определяется фактом замыкания «сухих» контактов разъема внешней фотовспышки при спуске затвора камеры. Устройство начала отсчета может быть реализовано, например, в виде кнопки (двух замыкающихся контактов), также соединенное с приемным устройством через стандартный интерфейс.

Если ориентация КА неизвестна (первый вариант), процесс съемки начинается с произвольного положения съемочной камеры (1) и устройство фиксации начала отсчета (6) не используется. При этом координаты хотя бы одного из изображений данной серии съемок (базового изображения) должны быть определены, например найдены на карте без использования данных от датчиков (2).

Если ориентация КА известна (второй вариант), процесс съемки может начинаться с временного перевода съемочной камеры в базовое положение, т.е. некоторое произвольное, но всегда одинаковое относительно конструкции КА положение (например, камера прижата к полу и поручню около иллюминатора). Фиксация момента, когда камера находится в базовом положении, производится или вручную с помощью устройства фиксации начала отсчета (6), или фиктивной съемкой (изображение неважно), момент которого обнаружит приемное устройство (4).

Определение координат изображений всегда проводится относительно предварительно рассчитанного базового изображения или базового положения с использованием данных от блока датчиков.

Если используется базовое изображение, пространственное положение ООО камеры в момент получения этого изображения определяется положением центра масс КА и координатами центральной точки изображения, определяемой, например, по карте.

Если используется базовое положение, пространственное положение ООО камеры определяется известным пространственным положением относительно конструкции КА как в способе-прототипе. Само базовое положение может быть однократно определено по базовому изображению, так как его можно рассматривать как изображение, полученное в момент начала измерений (при нулевых показаниях датчиков).

Исходными данными в случае съемки с базовым изображением являются:

- время базового изображения T1;

- географические координаты центра и одной из крайних точек базового изображения;

- орбитальные данные КА в момент T1;

- значения углов, рассчитанных по данным от датчиков в момент съемки T1. Например, это могут быть углы Крылова, которые в случае использования дискретных датчиков, выдающих импульсы со скоростью пропорциональной угловой скорости, определяются путем многократного умножения на матрицы элементарных разворотов (соответствующих одному импульсу) в порядке поступления импульсов.

По имеющимся орбитальным данным определяется RKA(T1) - радиус-вектор до центра масс КА в инерциальной системе координат X0Y0Z0 с началом в центре Земли и двумя осями в экваториальной плоскости для момента времени снимка T1.

Определяются два радиуса-вектора Rцентр, Rкрай в той же системе координат X0Y0Z0 от центра Земли до точек земной поверхности с заданными географическими координатами (координаты центра и одной из крайних точек базового изображения). Географические координаты преобразуются в геодезические. В качестве второй точки выбирается, например, центр левого края изображения.

Вычисляются единичные векторы (результат нормируется), определяющие положение съемочной камеры в момент снимка T1.

R11=Rцентр-RKA(T1)

R12=Rкрай-RKA(T1),

где

R11 - вектор от КА в момент T1 до центра снимка;

R12 - вектор от КА в момент T1 до края снимка.

Находятся синус и косинус угла между ними

cosα=R11*R12

sinα=sqrt(1-cosα*cosα)

Из рассчитанных углов составляется матрица разворота М0 (углы считаются углами Крылова).

Вычисляются единичные векторы

r110*R01

r12=M0*R02,

где

R01 - единичный вектор оси объектива в момент обнуления измерений Т0 (вектор 0, 1, 0).

R02 - единичный вектор крайней точки (вектор 0, cos α, sin α).

r11, r12 - это те же векторы R11, R12, но в другой системе координат - инерциальной системе координат X1Y1Z1, совпадающей со строительными осями съемочной камеры в момент фиксации начала измерений Т0.

Имея координаты одних и тех же векторов в двух системах координат с помощью ортов составляется матрица M1 преобразования из системы координат X1Y1Z1 в X0Y0Z0.

Исходными данными при определении координат остальных изображений относительно базового изображения являются:

- время очередной съемки Т2;

- орбитальные данные КА в момент Т2;

- рассчитанные углы в момент съемки Т2.

Из рассчитанных углов составляется матрица разворота М2 (углы считаются углами Крылова).

Определяется единичный вектор ООО камеры в момент Т2 в инерциальной системе координат X0Y0Z0

r=M1*M2*R01

По имеющимся орбитальным данным определяется RKA2) - радиус-вектор до центра масс КА в инерциальной системе координат X0Y0Z0 для момента времени снимка Т2.

Определяется радиус-вектор до центральной точки снимка

rцентр=RKA(T2)-r

С учетом модели планеты как эллипсоида вращения определяются географические координаты центра снимка, т.е. определяются полярные координаты

радиуса-вектора rцентр.

При определении пространственного положения ООО камеры с использованием базового положения исходными данными являются:

- время фиксации начала измерений Т0;

- орбитальные данные КА в момент Т0;

- ориентация КА в момент Т0 как матрица М3 разворотов из инерциальной системы координат в систему, связанную с осями КА.

Расчет базового положения проводится однократно как расчет съемки, выполненной в момент Т0 при нулевых углах Крылова (при нулевых показаниях датчиков) по приведенным ранее формулам.

Определяются единичные векторы из КА до центра изображения и до одной из крайних точек изображения

R21=M1*M2*R01

R22=M1*M2*R02

Определяются единичные векторы-константы для данного базового положения, определяющие положение камеры относительно конструкции КА

K13*R21

К2=M3*R22

При определении координат остальных изображений относительно базового положения исходными данными являются:

- единичные векторы-константы К0, K1, рассчитанные выше;

- время фиксации начала измерений Т2;

- время съемки Т3;

- орбитальные данные КА в момент Т3;

- рассчитанные углы в момент съемки Т3;

- ориентация КА в момент Т2 как матрица М4 разворотов из инерциальной системы координат в систему, связанную с осями КА.

Рассчитываются единичные векторы V1, V2 начального положения камеры в инерциальной системе координат Х0Y0Z0 для момента времени Т2

V1=M4*K1

V242

Зная координаты этих же векторов как R01R02 (0, 1, 0 и 0, cos α, sin α) в системе координат X2Y2Z2, совпадающей со строительными осями съемочной камеры, в момент Т2 с помощью направляющих ортов составляется матрица M5 преобразования из системы координат X2Y2Z2 в X0Y0Z0.

Из измеренных углов составляется матрица разворота М6 (углы считаются углами Крылова).

Вычисляется вектор R03 положения ООО в момент времени снимка Т3 и в системе координат X2Y2Z

R036*R01

Вычисляется единичный вектор R04 положения ООО в момент времени Т3 в инерциальной системе X0Y0Z0

R04=M1*R03

По имеющимся орбитальным данным определяется RKA3) - радиус-вектор до центра масс КА в инерциальной системе координат X0Y0Z0 для момента времени съемки Т3.

Определяется радус-вектор до центральной точки изображения

rцентр=RKA3)-R04

С учетом модели планеты как эллипсоида вращения определяются географические координаты центра изображения, т.е. определяются полярные координаты радиуса-вектора rцентр.

Источник поступления информации: Роспатент

Показаны записи 261-270 из 370.
25.08.2017
№217.015.d195

Дренажное устройство

Изобретение относится к космической технике и может быть использовано при внештатной посадке многоразового спускаемого аппарата на воду. Дренажное устройство состоит из дренажной системы, которая выполнена в виде емкости, в нижней части которой выполнено посадочное отверстие с уплотнительной...
Тип: Изобретение
Номер охранного документа: 0002621930
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d2ff

Способ определения выходной мощности солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ), имеющих положительную выходную мощность своей тыльной поверхности. Способ включает измерение высоты (Н) околокруговой орбиты КА и угол (ε) между направлением на Солнце и геоцентрическим...
Тип: Изобретение
Номер охранного документа: 0002621816
Дата охранного документа: 07.06.2017
25.08.2017
№217.015.d358

Герметизированное устройство

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники. Заявлено герметизированное устройство, содержащее корпус, с торца которого имеется расточка, сообщенная с внутренней полостью...
Тип: Изобретение
Номер охранного документа: 0002621472
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d35e

Способ управления космическим аппаратом дистанционного зондирования земли

Изобретение относится к управлению полетом специализированных космических аппаратов (КА). Способ включает построение инерциальной солнечной ориентации КА системой силовых гироскопов, измерение векторов их кинетических моментов, поддержание данной ориентации с одновременной разгрузкой...
Тип: Изобретение
Номер охранного документа: 0002621933
Дата охранного документа: 08.06.2017
26.08.2017
№217.015.d394

Космический модуль

Изобретение относится к космической технике, а именно к малым космическим модулям (КМ). КМ содержит силовой корпус блочного типа в виде скрепленных ребер правильной призмы с торцевыми панелями, имеющими вырезы для корпуса оптико-электронного модуля (ОЭМ) и для крепления блока реактивной...
Тип: Изобретение
Номер охранного документа: 0002621783
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.dda6

Электропривод

Изобретение относится к машиностроению, а более конкретно к электроприводам. Электропривод содержит корпус с расточкой, подшипниковый щит, кронштейн с электродвигателем с шестерней и цилиндрический зубчатый редуктор. Кронштейн выполнен в виде двух фланцев, соединенных друг с другом аксиальными...
Тип: Изобретение
Номер охранного документа: 0002624886
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dda9

Средство и способ защиты искусственных объектов от воздействия факторов космического пространства

Группа изобретений относится к области защиты сооружаемых на Луне объектов от радиации, экстремальных температур и микрометеороидов. Средство защиты содержит оболочку, заполненную реголитом и изготовленную из материала на основе стекловолокна с пределами рабочих температур от -200°C до +550°C и...
Тип: Изобретение
Номер охранного документа: 0002624893
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddb4

Система фиксации космонавта при передвижении по внешней поверхности космического объекта (варианты) и способ её эксплуатации (варианты)

Группа изобретений относится к космической технике, а именно к средствам обеспечения безопасной деятельности на внешней поверхности космического объекта (КО), например орбитальной станции (ОС). Система фиксации космонавта при передвижении по внешней поверхности КО включает поручни, жестко...
Тип: Изобретение
Номер охранного документа: 0002624895
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dde2

Система фиксации космонавта при передвижении по внешней поверхности космического объекта и способ её эксплуатации

Группа изобретений относится к страховочным средствам внекорабельной деятельности космонавта, а также может быть использована в других видах монтажных работ. Система фиксации включает в себя поручни, закрепленные на внешней поверхности космического объекта, и закрепленную на скафандре...
Тип: Изобретение
Номер охранного документа: 0002624891
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddfd

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение, измерение напряжения (U) и тока (I) от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ, и определение...
Тип: Изобретение
Номер охранного документа: 0002624885
Дата охранного документа: 07.07.2017
Показаны записи 31-35 из 35.
24.01.2020
№220.017.f98f

Способ привязки выполненных с космического аппарата снимков земной поверхности

Изобретение относится, главным образом, к спутникам для наблюдения Земли. Привязка включает измерение параметров орбиты спутника, ортотрансформирование снимка и определение по нему точки, из которой выполнялась съемка. Через заданное время после первого снимка выполняют второй снимок...
Тип: Изобретение
Номер охранного документа: 0002711775
Дата охранного документа: 22.01.2020
04.02.2020
№220.017.fd29

Способ привязки выполненных с орбитального космического аппарата снимков подстилающей поверхности

Изобретение относится к аэрокосмической технике. Способ привязки выполненных с орбитального космического аппарата (КА) снимков подстилающей поверхности включает ортотрансформирование снимка и определение по нему точки, из которой выполнялась съемка. Дополнительно в течение заданного интервала...
Тип: Изобретение
Номер охранного документа: 0002712781
Дата охранного документа: 31.01.2020
01.07.2020
№220.018.2d0f

Система управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к бортовому оборудованию космического корабля (КК). Система управления содержит блок определения плотности атмосферы на высоте орбиты КК, блок определения положения центра масс и ориентации КК, блок определения границ области расположения объекта наблюдения относительно...
Тип: Изобретение
Номер охранного документа: 0002725012
Дата охранного документа: 29.06.2020
20.04.2023
№223.018.4ace

Способ мониторинга воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора

Изобретение относится к медицине, а именно к способу мониторинга воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора. При исполнении способа измеряют биомеханические параметры двигательной активности оператора, включая углы в суставах....
Тип: Изобретение
Номер охранного документа: 0002777476
Дата охранного документа: 04.08.2022
20.04.2023
№223.018.4ad8

Способ определения воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора

Изобретение относится к медицине, а именно к способу определения воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора. При исполнении способа измеряют в наземных условиях биомеханические параметры двигательной активности оператора, включая...
Тип: Изобретение
Номер охранного документа: 0002777477
Дата охранного документа: 04.08.2022
+ добавить свой РИД