×
11.03.2019
219.016.de56

Результат интеллектуальной деятельности: ГАЗОРАЗРЯДНЫЙ ИМПУЛЬСНЫЙ ИСТОЧНИК СВЕТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к светотехнике. Техническим результатом является уменьшение размеров тела свечения источника света, уменьшение длительности светового импульса и повышение яркости света. Устройство содержит наполненную рабочим газом газоразрядную камеру, образованную двумя стенками, по крайней мере одна из которых выполнена из оптически прозрачного материала. Стенки установлены с зазором одна относительно другой, причем ширина зазора выбрана в интервале 0,05-0,2 мм. Между стенками разрядной камеры на противоположных концах разрядного промежутка размещены катод и анод, электрически связанные с импульсным источником питания, а также канал вывода светового излучения, причем последний образован стенкой газоразрядной камеры из оптически прозрачного материала, служащей окном для вывода излучения. На наружной поверхности стенки из оптически прозрачного материала установлена апертурная диафрагма, размещенная в пределах проекции на эту поверхность зоны предполагаемого разряда. Преимущественным расположением апертурной диафрагмы является ее размещение в окрестности анода. 1 з.п.ф-лы, 1 ил.

Изобретение относится к газоразрядным осветительным лампам, а именно к газоразрядным импульсным источникам света, и может быть использовано при высокоскоростной фотографии и фотограмметрических измерениях.

Известен открытый разряд в воздухе, исторически явившийся первым вариантом подсветки при осуществлении скоростного фотографирования (Импульсные источники света, под ред. И.С.Маршака, М., "Энергия", 1978, с. 9, [1]). Устройство, реализующее этот принцип, представляет собой пару электродов (анод и катод), электрически связанных с импульсным источником питания и образующих разрядный промежуток, не ограниченный стенками. Однако для реализуемого в подобных устройствах светового импульса характерна быстро уменьшающаяся яркость светового потока при значительных габаритах тела свечения, что обусловлено неограниченным расширением канала разряда и быстрым падением температуры плазмы в последнем. Подобные свойства накладывают ограничения на получение качественного изображения по методикам фотографирования, для которых требуются высокая яркость источника света при "точечных" габаритах тела свечения.

Для увеличения яркости (и повышения плотности энергии) распространение разряда ограничивают в радиальном направлении - реализуют схему капиллярного разряда (К. Фольрат. Искровые источники света и высокочастотная кинематография. Сб. "Физика быстропротекающих процессов" под ред. Н.А. Златина, М., "Мир", 1971, т. 1, стр. 137, 152, [2], фиг.51а). В таком устройстве электроды (анод и катод) размещены в ограниченном, изолированном (оптически непрозрачном) разрядном промежутке капиллярного типа. Вызванный ионизацией при разряде рабочего газа в разрядном промежутке между электродами световой импульс выводят через открытый торец искрового разрядника, вдоль оптической оси, совпадающей с геометрической осью капилляра. При этом, однако, увеличивается длительность свечения (низкая теплопроводность стенок и само их наличие препятствует быстрому охлаждению расширяющейся плазмы). Использование подобного источника света возможно только для получения фотографического изображения объектов, перемещающихся с малыми скоростями, так как, несмотря на малую площадь тела свечения (условие "точечное" выполнено), велика длительность светового импульса, что влечет за собой появление "смаза" на фотографическом изображении.

В силу этого для ряда приложений используют промежуточную (между открытым и капиллярным разрядами) схему, выбранную нами за прототип, реализуемую с помощью импульсных ламп (например, на основе искровых разрядников, представленных в [2] , фиг.51г). Искровой разрядник представляет собой наполненную рабочим газом газоразрядную камеру. Камера образована двумя стенками, по крайней мере одна из которых выполнена из оптически прозрачного материала (стеклянная пластина). Эти стенки установлены с зазором друг относительно друга, ограничивая разрядный промежуток. На противоположных концах разрядного промежутка размещены электроды: катод и анод. Электроды электрически соединены с импульсным источником питания. Образующийся в результате разряда световой импульс выводится через открытый зазор, причем оптическая ось располагается параллельно стенкам камеры.

Подобные источники света не устраняют полностью недостатков, указанных выше, а именно: сохраняются значительные габариты тела свечения (не выполняется условие "точечности" - канал разряда ограничен только в двух направлениях), большая длительность светового импульса (не происходит быстрое охлаждение расширяющейся плазмы), нет значительного увеличения яркости источника света (поверхность тела свечения составляют как области высокотемпературной плазмы с высокой яркостью светового потока, так и области относительно "холодной" плазмы с низкой яркостью - следовательно, не происходит увеличения суммарной яркости источника как отношения интенсивности светового потока к площади излучателя). Использование апертурных диафрагм для повышения "точечности" в такой схеме неэффективно ввиду большой дистанции между отверстием диафрагмы и телом свечения, такая диафрагма практически полностью перекроет световой поток. Как следствие - при использовании такого источника света не происходит существенного повышения качества фотографического изображения.

Качество изображений, получаемых при проведении аэробаллистических высокоскоростных испытаний, определяет точность и эффективность обработки снимков и, в конечном итоге, достоверность аэродинамических характеристик. Это делает актуальной задачу повышения качества этих изображений.

Технический результат предлагаемого изобретения состоит в уменьшении размеров тела свечения источника света с одновременным созданием условий для уменьшения длительности светового импульса и повышении яркости света, за счет обеспечения оптимального расширения канала разряда и диафрагмирования области высокотемпературной плазмы в определенной области разрядного промежутка.

Данный технический результат достижим за счет того, что в отличие от известного газоразрядного импульсного источника света, включающего наполненную рабочим газом газоразрядную камеру, образованную двумя стенками, по крайней мере одна из которых выполнена из оптически прозрачного материала, установленными с зазором друг относительно друга, между которыми на противоположных концах разрядного промежутка размещены катод и анод, электрически связанные с импульсным источником питания, а также содержащие канал для вывода излучения, в предлагаемом источнике ширина зазора между стенками выбрана от 0,05 до 0,2 мм (такой зазор, с одной стороны, поддерживает относительно высокую температуру плазмы, не давая каналу разряда расширяться в двух плоскостях, а с другой стороны, обеспечивает относительно короткое время существования канала за счет расширения в направлении свободных плоскостей), канал вывода светового излучения образован стенкой газоразрядной камеры из оптически прозрачного материала, служащей окном для вывода излучения (что обеспечивает использование оптимальной, короткоживущей проекции тела свечения), и на ее наружной поверхности установлена апертурная диафрагма (повышающая "точечность" тела свечения), размещенная в пределах проекции на эту поверхность зоны предполагаемого разряда. Кроме того, для получения оптимального результата с точки зрения яркости и длительности светового импульса апертурная диафрагма может быть размещена в окрестности анода, в зоне максимальной яркости предполагаемого разряда, в которой, в свою очередь, свечение канала разряда прежде всего перестает существовать.

Выбор зазора между стенками в заявленном диапазоне (от 0,05 мм до 0,2 мм) способствует созданию в разрядном промежутке при возникновении канала разряда, оптимальных условий для существования тела свечения при неизменных параметрах разрядного контура. В этом случае сохраняется наибольшая температура плазмы и яркость тела свечения (вследствие постоянного объема канала нет падения его температуры) на время работы источника света (в [2] подобный эффект не отмечен и величина зазора не определена).

Использование стенки газоразрядной камеры из оптически прозрачного материала в качестве окна канала вывода светового излучения (расположение оптической оси устройства перпендикулярно плоскости стенки) позволяет уменьшить длительность светового импульса. Это происходит потому, что при использовании данной проекции тела свечения (зоны, занимаемой каналом разряда) наблюдается светящийся слой с быстро уменьшающейся оптической толщиной, когда она станет меньше порогового значения - поток излучения прекратит существовать. В [2] используется проекция тела свечения, при которой по мере остывания наружных слоев канала разряда мы будем наблюдать следующие за ними более глубинные слои и т.д., вследствие чего поток излучения существует большее время.

Существуют методики [I], по которым можно заранее определить зону, которую будет занимать предполагаемый разряд, исходя из особенностей постановки (материал и форма электродов, рабочий газ, величина зазора между стенками и т.д.). Устанавливая на наружную поверхность стенки из оптически прозрачного материала, служащей окном для вывода светового излучения, апертурную диафрагму, размещенную в пределах проекции на эту поверхность зоны предполагаемого разряда, характеризующегося в заявленной постановке максимальной яркостью и минимальной длительностью, возможно уменьшить габариты тела свечения (повысить "точечность"), что в сочетании с вышеназванным признаком, характеризующим зазор между стенками, позволит создать условия для достижения малой длительности и высокой яркости этого источника. В порядке усиления результата п. 1 формулы размещение апертурной диафрагмы в окрестности анода (в зоне максимальной температуры плазмы в разрядном промежутке с малым временем существования) не уменьшит яркости источника света (по сравнению с произвольным размещением диафрагмы в пределах проекции на наружную поверхность стенки газоразрядной камеры зоны предполагаемого разряда, см. п.1 формулы) и одновременно, ввиду того, что в анодной области канал разряда погасает (теряет оптическую толщину), быстрее всего уменьшить длительность светового импульса.

На чертеже схематично изображено заявляемое устройство.

Устройство включает:
- анод (1) и катод (4), расположенные в газоразрядной камере, образованной стенками (2) из светопрозрачного материала (оргстекло), причем одна из стенок служит окном для вывода светового излучения,
импульсный источник питания (5), электрически связанный с анодом (1) и катодом (4),
- апертурную диафрагму (3), размещенную на наружной поверхности стенки (2) из оптически прозрачного материала в пределах проекции на эту поверхность зоны предполагаемого разряда, в окрестности анода (1).

Стрелкой на чертеже изображено направление вывода светового излучения.

Устройство работает следующим образом. Импульсный источник питания (5) подводит к электродам - аноду (1) и катоду (4) импульс электрического тока (напряжение U=30 кВ, энергия Е=100 Дж, длительность tиэт=1 мкс). Происходит пробой разрядного промежутка между электродами (1) и (4) в газоразрядной камере, образованной стенками (2) с формированием канала разряда. Канал разряда существует некоторое время (tкр=3-4 мкс), ограниченный стенками (2), излучая световой поток с поверхности. В окружающее пространство выходит световой поток, излучаемый высокотемпературной зоной предполагаемого разряда (канала разряда), характеризующейся определенным распределением яркости, максимальной в данном случае (107 сб) в окрестности анода (1). В пределах проекции этой зоны (предварительно рассчитанной) на поверхность стенки - окна (в окрестности анода) и установлена диафрагма (3), обеспечивающая ограничение по габаритам (диаметр d<l мм) максимально яркой области зоны канала разряда. Реализуемый световой импульс имеет полуширину по длительности t0,5= 0,5-0,7 мкс (для указанных параметров источника питания (5)).

Обязательным для данного устройства является выполнение ширины зазора между стенками газоразрядной камеры в интервале 0,05-0,2 мм, что обеспечивает создание в разрядном промежутке при возникновении канала разряда оптимальных условий для существования тела свечения. Точное расположение в окрестности анода (1) области канала разряда, обладающей максимальной яркостью, возможно определить по данным о искровых разрядах в газах (см. [I], а также: Дж. Мик, Дж. Крэгс. Электрический пробой в газах, М., ИИЛ, 1960).

Работа устройства позволяет реализовать импульс света при малом теле свечения ("точечности") с яркостью, в ≈1,5-2 раза превышающую яркость, достигаемую в [2] (≈107 сб), и длительностью, по крайней мере, в 2 раза меньшей, чем в [2] (t0,5=0,5-0,7 мкс).

Газоразрядный импульсный источник света с указанными параметрами позволит применять фотографические методы регистрации в процессах, для которых ранее это было невозможно ввиду большой скорости объектов съемки.

1.Газоразрядныйимпульсныйисточниксвета,включающийнаполненнуюрабочимгазомгазоразряднуюкамеру,образованнуюдвумястенками,покрайнеймере,однаизкоторыхвыполненаизоптическипрозрачногоматериала,установленнымисзазоромоднаотносительнодругой,междукоторыминапротивоположныхконцахразрядногопромежуткаразмещеныкатодианод,электрическисвязанныесимпульснымисточникомпитания,атакжеканалвыводасветовогоизлучения,отличающийсятем,чтошириназазорамеждустенкамивыбранавинтервале0,05÷0,2мм,каналвыводасветовогоизлученияобразованстенкойгазоразряднойкамерыизоптическипрозрачногоматериала,служащейокномдлявыводаизлучения,нанаружнойповерхностистенкиизоптическипрозрачногоматериалаустановленаапертурнаядиафрагма,размещеннаявпределахпроекциинаэтуповерхностьзоныпредполагаемогоразряда.12.Газоразрядныйимпульсныйисточниксветапоп.1,отличающийсятем,чтоапертурнаядиафрагмаразмещенавокрестностианода.2
Источник поступления информации: Роспатент

Показаны записи 21-30 из 45.
18.05.2019
№219.017.554b

Способ формирования объемного разряда в импульсно-периодическом газовом лазере и устройство для его реализации

Изобретение относится к квантовой электронике, в частности к импульсно-периодическим лазерам с поперечным разрядом, в том числе замкнутого цикла. Предложен способ формирования объемного разряда в импульсно-периодическом газовом лазере замкнутого цикла, включающий подачу импульса высокого...
Тип: Изобретение
Номер охранного документа: 02236074
Дата охранного документа: 10.09.2004
18.05.2019
№219.017.557c

Способ испытания материалов на разрыв в условиях сложно-напряженного динамического нагружения

Изобретение относится к области испытания материалов на разрыв. Способ испытания материала на разрыв в условиях сложно-напряженного динамического нагружения заключается в воздействии на образец испытываемого материала ударной волной, создаваемой контактным взрывом заряда ВВ, размещенного в виде...
Тип: Изобретение
Номер охранного документа: 02221233
Дата охранного документа: 10.01.2004
18.05.2019
№219.017.5585

Способ компактирования порошкового материала

Изобретение относится к способам компактирования порошковых материалов, к получению монолитных и прочных объектов путем воздействия динамического импульса на порошковые материалы. В предложенном способе, включающем взрывное сжатие порошкового материала, помещенного в контейнер, скользящей...
Тип: Изобретение
Номер охранного документа: 02224621
Дата охранного документа: 27.02.2004
18.05.2019
№219.017.55a0

Способ определения характеристик сорбции газов материалами

Способ применим в области исследования физических и химических свойств материалов и может быть использован для определения одновременно коэффициента растворимости и начальной концентрации газов материалами. Сущность изобретения: образец материала, содержащий растворенный газ, растворимость и...
Тип: Изобретение
Номер охранного документа: 02226267
Дата охранного документа: 27.03.2004
18.05.2019
№219.017.5c09

Способ регистрации механической величины и регистратор для осуществления способа

Изобретение относится к неразрушающему контролю объектов. Согласно способу измеряют величину в частотном диапазоне от f до fпосредством первичного преобразователя, сигнал с которого преобразуют в цифровой вид с частотой дискретизации f и подают в оперативное запоминающее устройство. При этом...
Тип: Изобретение
Номер охранного документа: 02189565
Дата охранного документа: 20.09.2002
18.05.2019
№219.017.5c12

Источник питания нелинейной нагрузки

Изобретение относится к электротехнике, к преобразовательной технике и может быть использовано в источниках питания с импульсной формой выходного напряжения, работающих на нелинейную нагрузку: излучатели газовых лазеров, плазмохимические реакторы и т.п. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 02199814
Дата охранного документа: 27.02.2003
29.05.2019
№219.017.6aa6

Инерционный включатель

Изобретение предназначено для измерения действующих линейных ускорений в системах автоматики летательных аппаратов и систем безопасности автомобилей. Инерционный включатель содержит корпус, установленное на оси инерционное тело, удерживаемое магнитной системой, контакты и поворотный привод...
Тип: Изобретение
Номер охранного документа: 02193800
Дата охранного документа: 27.11.2002
09.06.2019
№219.017.7fe8

Запорный клапан

Запорный клапан предназначен для перекрытия потока газа в выходной канал при импульсной подаче давления во входной канал. Запорный клапан содержит корпус с проточной частью. Корпус имеет входной и выходной каналы. Запорный клапан также снабжен седлом в форме усеченного конуса, к поверхности...
Тип: Изобретение
Номер охранного документа: 02179679
Дата охранного документа: 20.02.2002
09.06.2019
№219.017.8006

Способ обращения с теплоносителями и техническими растворами ядерных энергетических установок научных центров

Изобретение относится к технологии переработки жидких радиоактивных отходов (ЖРО) методами концентрирования, сорбционной доочистки и цементирования. Технический результат: уменьшение объема захораниваемых отвержденных отходов, повышение их водостойкости и снижение зарастания рабочих...
Тип: Изобретение
Номер охранного документа: 02168221
Дата охранного документа: 27.05.2001
09.06.2019
№219.017.802a

Кумулятивный заряд и способ его изготовления

Область применения: взрывные работы и различные отрасли промышленности, использующие взрывные технологии, например в прострелочно-взрывной аппаратуре при взрывных работах в нефтегазодобывающей промышленности. Сущность изобретения: в корпусе размещен заряд взрывчатого вещества (ВВ), между...
Тип: Изобретение
Номер охранного документа: 02187778
Дата охранного документа: 20.08.2002
Показаны записи 1-3 из 3.
09.05.2019
№219.017.50c4

Способ синхронизации регистраторов с движением модели, находящейся в свободном полете

Изобретение относится к автоматизации измерений на аэродинамических установках. До полета рассчитывают траектории движения модели в зависимости от предлагаемых значений ее начальных скоростей, а также подтраектории движения модели и моменты срабатывания корректирующего датчика в зависимости от...
Тип: Изобретение
Номер охранного документа: 02173450
Дата охранного документа: 10.09.2001
18.05.2019
№219.017.5520

Импульсный источник света

Изобретение относится к области источников света на основе ударного сжатия рабочего вещества. Устройство содержит заряд взрывчатого вещества, рабочий газ, камеру с замкнутой полостью, прозрачную преграду. В устройстве для увеличения яркости свечения рабочего газа концентрируют кинетическую...
Тип: Изобретение
Номер охранного документа: 0002253795
Дата охранного документа: 10.06.2005
19.06.2019
№219.017.8c6a

Способ получения импульса света и устройство для его осуществления

Изобретение относится к импульсным источникам света и газодинамике. Способ заключается в том, что в плазменном генераторе драйвер используется как для разгона плоского лайнера, сжимающего в осесимметричной камере рабочий газ, получаемый из твердотельного источника, помещенного на внутренней...
Тип: Изобретение
Номер охранного документа: 02195745
Дата охранного документа: 27.12.2002
+ добавить свой РИД