×
11.03.2019
219.016.db0a

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ФЕРРОМАГНИТНОЙ ЖИДКОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области коллоидной химии и может быть использовано для получения магнитной жидкости, применяемой в датчиках угла наклона, ускорений и т.д. Способ включает осаждение высокодисперсного магнетита, обработку осадка магнетита в течение 15 минут 50%-ным водным раствором уксусной кислоты при температуре 80±2°С и со скоростью перемешивания суспензии не менее 1500 об/мин, стабилизацию магнетита поверхностно-активным веществом при нагревании и перемешивании, контроль полноты удаления солей железа и избыточного содержания поверхностно-активного вещества, растворение стабилизированного магнетита в базисной жидкости, которое проводят в вакууме при нагревании и со скоростью перемешивания не менее 1500 об/мин. В качестве поверхностно-активного вещества применяют нагретую до температуры водно-уксусной суспензии магнетита олеиновую кислоту, при этом магнетит после его стабилизации и после каждого цикла промывки подвергают магнитной сепарации, а в качестве базисной жидкости используют топливо для реактивных двигателей с добавкой этилцеллозольва. Изобретение обеспечивает низкую вязкость магнитной жидкости во всем диапазоне рабочих температур с высокой намагниченностью насыщения, а также стабильность этих свойств со временем.

Изобретение относится к области коллоидной химии и может быть использовано для получения магнитной жидкости, применяемой в датчиках угла наклона, ускорений и т.д.

Предлагаемый способ получения магнитной жидкости, в первую очередь, направлен на использование ее в датчиках угла наклона. В этом случае к магнитной жидкости предъявляются очень жесткие требования: стабильность свойств, низкая вязкость, в том числе при отрицательных температурах, и высокая намагниченность насыщения. Согласно требованиям технических условий динамическая вязкость магнитной жидкости должна быть не более 0,01 Па·с при температуре 20°С и не более 0,07 Па·с при температуре -60°С. Такие значения вязкости магнитной жидкости необходимы для резкого снижения времени переходного процесса в датчиках угла наклона и, как следствие, для увеличения скорости срабатывания системы выставления линии горизонта специальных устройств.

Известен способ получения магнитной жидкости, включающий осаждение высокодисперсного магнетита из водного раствора солей двух- и трехвалентного железа водным раствором аммиака, многократную промывку полученного осадка дистиллированной водой, обработку отфугованного магнетита водным раствором уксусной кислоты при нагревании и перемешивании, стабилизацию его поверхностно-активным веществом, растворенным в уксусной кислоте, декантацию маточника после термостатирования и коагуляции, промывку стабилизированного магнетита водой и полярным растворителем с контролем полноты удаления солей железа и избыточного содержания поверхностно-активного вещества, растворение стабилизированного и очищенного магнетита в базисной жидкости при нагревании и перемешивании. Стабилизацию магнетита осуществляют олеиновой кислотой, растворенной в уксусной кислоте, в качестве полярного растворителя используют ацетон. Базисной жидкостью служит керосин (см. патент RU №2113027, МПК Н01F 1/28, С01G 49/08, опубл. 10.06.1998 г., №16).

Недостатки прототипа

По данному способу удается получить магнитные жидкости с относительно низкой вязкостью, а именно: при температуре 20°С (0,24-0,42) Па·с, при температуре -60°С (1,2-1,6) Па·с. Тем не менее данные значения динамической вязкости не удовлетворяют требованию ТУ к вязкости магнитной жидкости, используемой в датчиках угла наклона для выставления линии горизонта специальных устройств.

Увеличенное время контакта магнетита с уксусной кислотой повышенной концентрации может привести к разрушению магнитного ядра частиц магнетита, что, в конечном итоге, приведет к потере магнетитом магнитных свойств.

В качестве базисной жидкости при производстве магнитной жидкости используют керосин, вязкость которого резко возрастает с понижением температуры, а механизма, замедляющего процесс повышения вязкости жидкости-носителя при изготовлении магнитной жидкости по способу-прототипу, нет.

Стабилизацию магнетита осуществляют олеиновой кислотой, растворенной в уксусной кислоте в диапазоне температур 300-370К (27-97°С). Нижний предел температуры явно недостаточный, чтобы придать активность молекулам олеиновой кислоты, поэтому процесс адсорбции поверхностно-активного вещества на частицах магнетита замедляется, и осветление маточного раствора происходит не в полной мере, что приводит к снижению свойств магнитной жидкости.

Стабилизированный магнетит на заключительной стадии растворяют в базисной жидкости - керосине. При этом по способу-прототипу не предусмотрен механизм удаления остатков воды и ацетона из приготовленной магнитной жидкости. Наличие остатков воды снижает морозоустойчивость магнитной жидкости, а присутствие ацетона может привести к нарушению ее агрегативной устойчивости.

Предлагаемым изобретением решается задача: снижение материальных затрат при производстве магнитной жидкости и увеличение выхода годного продукта.

Технический результат, получаемый при осуществлении изобретения, заключается в надежном обеспечении низкой вязкости во всем диапазоне рабочих температур с высокой намагниченностью насыщения магнитной жидкости, а также стабильности этих свойств со временем.

Указанный технический результат достигается тем, что в способе получения ферромагнитной жидкости, включающем осаждение высокодисперсного магнетита, обработку осадка магнетита водным раствором уксусной кислоты при нагревании и перемешивании, стабилизацию магнетита поверхностно-активным веществом при нагревании и перемешивании, контроль полноты удаления солей железа и избыточного содержания поверхностно-активного вещества, растворение стабилизированного магнетита в базисной жидкости, новым является то, что осадок магнетита обрабатывают в течение 15 минут 50%-ным водным раствором уксусной кислоты при температуре 80±2°С и со скоростью перемешивания суспензии не менее 1500 об/мин, в качестве поверхностно-активного вещества применяют нагретую до температуры водно-уксусной суспензии магнетита олеиновую кислоту, при этом магнетит после его стабилизации и после каждого цикла промывки подвергают магнитной сепарации, а растворение стабилизированного магнетита в базисной жидкости проводят в вакууме при нагревании и со скоростью перемешивания не менее 1500 об/мин, при этом в качестве базисной жидкости используют топливо для реактивных двигателей с добавкой этилцеллозольва.

На основании вышеизложенного можно сделать вывод о том, что предлагаемое техническое решение обладает «новизной» и «изобретательским уровнем».

Сущность способа заключается в следующем.

Полученный осаждением из солей железа водным раствором аммиака коллоидный магнетит промывают водой до электропроводности промывных вод, равной электропроводности дистиллята. Водный осадок отфугованного магнетита обрабатывают 15 минут 50%-ным раствором уксусной кислоты. Для обеспечения качества модификации магнетита и надежности его очистки от гидроокисей железа и мелких частиц аморфных немагнитных соединений, которые повышают вязкость магнитной жидкости, процесс обработки магнетита раствором уксусной кислоты производят при температуре 80±2°С со скоростью перемешивания суспензии не менее 1500 об/мин.

Далее осуществляют стабилизацию магнетита олеиновой кислотой, причем олеиновую кислоту предварительно нагревают до 80±2°С, а стабилизацию проводят в термостате, обеспечивая температуру смеси водноуксусной суспензии магнетита и олеиновой кислоты 80±2°С и скорость перемешивания не менее 1500 об/мин. Нагрев олеиновой кислоты до 80±2°С обеспечивает подвижность молекул, а высокая скорость перемешивания создает оптимальные условия адсорбции олеиновой кислоты на частицах магнетита. Процесс стабилизации магнетита протекает эффективно, маточный раствор надежно осветляется.

Стабилизированный магнетит подвергают магнитной сепарации после его стабилизации и после каждого цикла промывки стабилизированного магнетита дистиллированной водой и ацетоном. Магнитную сепарацию стабилизированного магнетита проводят с целью сокращения времени цикла, предотвращения уноса мельчайших частиц магнетита с маточным раствором и растворителем.

Далее стабилизированный магнетит промывают для удаления избытков олеиновой кислоты и контролируют полноту удаления солей железа и избыточное содержание олеиновой кислоты.

Стабилизированный магнетит с целью резкого снижения вязкости магнитной жидкости во всем диапазоне рабочих температур +20°С - -60°С растворяют в базисной жидкости, в качестве которой используется топливо для реактивных двигателей с добавкой этилцеллозольва, причем процесс растворения производят в вакууме при нагревании и перемешивании со скоростью не менее 1500 об/мин. Вакуум создает условия для полного удаления из магнитной жидкости остатков воды и ацетона за счет их интенсивного испарения с последующим выбросом в атмосферу.

Пример реализации способа

256 г FeCl3·6Н2O растворяют в двух литрах дистиллированной воды, 133 г FeSO4·7H2O растворяют в двух литрах дистиллированной воды. К смеси солей железа приливают 6% водный раствор аммиака до рН 11. При этом выпадает осадок коллоидного магнетита. Осадок многократно промывают дистиллированной водой до электропроводности промывных вод, равной электропроводности дистиллята. Осадок магнетита отфуговывают, добавляют 300 мл 50% водного раствора уксусной кислоты при температуре 80±2°С. Массу термостатируют при температуре 80±2°С и перемешивают со скоростью не менее 1500 об/мин в течение 15 мин, после чего добавляют 30 г олеиновой кислоты, нагретой до 80±2°С. Всю массу термостатируют при температуре 80±2°С и перемешивают со скоростью не менее 1500 об/мин в течение 30 мин.

После завершения процесса стабилизации и осветления маточника стабилизированный магнетит сепарируется в магнитном поле. Далее маточный раствор сливают, не снимая воздействия магнитного поля. Стабилизированный магнетит многократно промывают «горячим» дистиллятом до электропроводности промывных вод, равной электропроводности дистиллята. Затем стабилизированный магнетит многократно промывают ацетоном до удаления избытка олеиновой кислоты, причем каждый цикл промывки водой и полярным растворителем сопровождают магнитной сепарацией магнетита, при этом воздействие магнитного поля на магнетит не снимают в момент удаления воды и ацетона.

Затем стабилизированный магнетит растворяют в базисной жидкости (топливо для реактивных двигателей с добавкой этилцеллозольва). Процесс проводят в вакууме при нагревании и перемешивании со скоростью не менее 1500 об/мин.

Предложенный способ изготовления магнитной жидкости надежно обеспечивает жесткие требования технических условий на магнитную жидкость по показателям вязкости и намагниченности насыщения, которые необходимы для выставления линии горизонта специальных устройств с высокой точностью и быстродействием. Качество магнитной жидкости, изготовленной по предлагаемому способу, позволяет использовать ее во многих областях науки и техники.

Способ получения ферромагнитной жидкости, включающий осаждение высокодисперсного магнетита, обработку осадка магнетита водным раствором уксусной кислоты при нагревании и перемешивании, стабилизацию магнетита поверхностно-активным веществом при нагревании и перемешивании, контроль полноты удаления солей железа и избыточного содержания поверхностно-активного вещества, растворение стабилизированного магнетита в базисной жидкости, отличающийся тем, что осадок магнетита обрабатывают в течение 15 минут 50%-ным водным раствором уксусной кислоты при температуре 80±2°С и со скоростью перемешивания суспензии не менее 1500 об/мин, в качестве поверхностно-активного вещества применяют нагретую до температуры водно-уксусной суспензии магнетита олеиновую кислоту, при этом магнетит после его стабилизации и после каждого цикла промывки подвергают магнитной сепарации, а растворение стабилизированного магнетита в базисной жидкости проводят в вакууме при нагревании и со скоростью перемешивания не менее 1500 об/мин, при этом в качестве базисной жидкости используют топливо для реактивных двигателей с добавкой этилцеллозольва.
Источник поступления информации: Роспатент

Показаны записи 241-250 из 311.
01.03.2019
№219.016.d0e2

Замочный механизм огнестрельного оружия

Изобретение относится к оружейной технике и может быть использовано в нарезных винтовках с курковым ударным механизмом. Замочный механизм огнестрельного оружия, имеющего ствол и ствольную коробку, содержит затвор, затворную раму, подпружиненный выбрасыватель, рукоятку перезаряжания. В затворе...
Тип: Изобретение
Номер охранного документа: 02170900
Дата охранного документа: 20.07.2001
01.03.2019
№219.016.d0e3

Устройство предохранителя стрелкового оружия

Изобретение относится к автоматическому оружию и может быть использовано в стрелковом оружии для повышения надежности предохранительных устройств. На спусковом крючке выполнен выступ 1, а ограничительная плоскость - на тяге затворной рамы, имеющей возможность поворота в момент, когда канал...
Тип: Изобретение
Номер охранного документа: 02170902
Дата охранного документа: 20.07.2001
08.03.2019
№219.016.d382

Баллистическое оружие

Изобретение относится к стрелковому оружию, в частности к баллистическому оружию. Баллистическое оружие имеет ствол с двумя опорами. Задняя опора установлена с натягом. Установлен затвор, содержащий предохранительный, ударный, спусковой и извлекающий механизмы. Технический результат – повышение...
Тип: Изобретение
Номер охранного документа: 0002681438
Дата охранного документа: 06.03.2019
08.03.2019
№219.016.d430

Коробка для пулеметных лент

Изобретение относится к области вооружения, а именно к автоматическому стрелковому оружию, и может быть использовано для повышения удобства снаряжения коробки патронными лентами. Технический результат, полученный при осуществлении изобретения, заключается в увеличении плотности укладки...
Тип: Изобретение
Номер охранного документа: 0002681151
Дата охранного документа: 04.03.2019
11.03.2019
№219.016.d82b

Храповый механизм свободного хода

Изобретение относится к машиностроению, в частности к храповым механизмам. Храповый механизм свободного хода содержит храповое колесо и обойму. В обойме на осях установлены тела заклинивания в виде пластин. На пластинах закреплены гильзы с вставленными в них сухарями, разжимаемыми...
Тип: Изобретение
Номер охранного документа: 0002398144
Дата охранного документа: 27.08.2010
11.03.2019
№219.016.d9c1

Универсальное климатическое устройство

Изобретение предназначено для использования в теплотехнике. Универсальное климатическое устройство состоит из источника (2) сжатого воздуха, теплообменника (4) типа воздух-воздух, вихревой трубы (6) с выходами (12, 13, 7) холодного и горячего воздуха, системы трубопроводов, вентилей,...
Тип: Изобретение
Номер охранного документа: 0002372212
Дата охранного документа: 10.11.2009
11.03.2019
№219.016.da81

Электроспусковой механизм

Изобретение относится к электроспусковым механизмам оружия, а именно к конструкциям, где требуется фиксация подвижных частей. Электроспусковой механизм содержит корпус электромагнита 1 с катушкой 2, якорь 3, подпружиненный плунжером 4 с тягой 5, корпус электроспуска 6 с шепталом 7, закрепленным...
Тип: Изобретение
Номер охранного документа: 0002367874
Дата охранного документа: 20.09.2009
11.03.2019
№219.016.da99

Высокоскоростной вихревой нагреватель

Изобретение относится к теплотехнике и может быть использовано для тепло- и горячего водоснабжения объектов бытового и промышленного назначения. Высокоскоростной вихревой нагреватель состоит из металлического кожуха 1, внутри которого размещена вихревая труба 2. В вихревой трубе 2 на входном ее...
Тип: Изобретение
Номер охранного документа: 0002366869
Дата охранного документа: 10.09.2009
11.03.2019
№219.016.da9d

Гидрокавитационный механический теплогенератор

Изобретение предназначено для использования в теплотехнике. Гидрокавитационный механический теплогенератор состоит из неподвижной цилиндрической теплообменной обоймы 1, внутри которой с возможностью вращения размещен корпус 2, жестко закрепленный на полувалах 3, 4. Полувалы 3, 4 установлены в...
Тип: Изобретение
Номер охранного документа: 0002366870
Дата охранного документа: 10.09.2009
11.03.2019
№219.016.db9e

Механизм дистанционного взведения оружия

Изобретение относится к механизму дистанционного взведения огнестрельного оружия. Механизм содержит корпус, электродвигатель, винт, ходовую гайку с приводным элементом. Приводной элемент расположен шарнирно на ходовой гайке и связывает ходовую гайку и тягу взведения оружия. Ось шарнира...
Тип: Изобретение
Номер охранного документа: 0002422746
Дата охранного документа: 27.06.2011
Показаны записи 51-57 из 57.
09.05.2019
№219.017.4a7e

Шахтная электрическая печь сопротивления

Изобретение относится к области электротермического оборудования, а именно к шахтным электрическим печам сопротивления периодического действия для термообработки деталей в контролируемой атмосфере. Для повышения производительности печи, расширения области ее применения и повышения удобства...
Тип: Изобретение
Номер охранного документа: 0002278170
Дата охранного документа: 20.06.2006
09.05.2019
№219.017.4f46

Электрическое распределительное устройство

Изобретение относится к электротехнике и может быть использовано в наземных подвижных комплексах вооружений, в частности в мобильных комплексах топопривязки, в качестве электрического распределительного устройства при подключении бортового и выносного оборудования. Технический результат состоит...
Тип: Изобретение
Номер охранного документа: 0002451375
Дата охранного документа: 20.05.2012
09.05.2019
№219.017.50ae

Комплект монтажных частей

Изобретение относится к стрелковому оружию и радиоэлектронной аппаратуре. Комплект монтажных частей для сопряжения радиолокационной станции с пулеметом включает механизм уровня для контроля наведения пулемета в вертикальной плоскости, инструмент для монтажа и регулирования данного комплекта и...
Тип: Изобретение
Номер охранного документа: 0002468324
Дата охранного документа: 27.11.2012
29.05.2019
№219.017.6682

Способ получения упрочненных стальных изделий точных геометрических размеров и шахтная печь сопротивления для его реализации

Изобретение относится к области термической обработки изделий из нержавеющих сталей мартенситного класса. Для защиты поверхности изделий от окисления, повышения производительности печи приспособление с изделиями размещают в емкости для охлаждения, продувают емкость инертным газом при избыточном...
Тип: Изобретение
Номер охранного документа: 0002375471
Дата охранного документа: 10.12.2009
29.05.2019
№219.017.6702

Способ термической безокислительной обработки изделий из сталей и сплавов и шахтная печь сопротивления для его реализации

Группа изобретений относится к области машиностроения и предназначена для безокислительного отжига изделий, отпуска деталей из специальных нержавеющих сталей для вакуумной термической обработки стальных длинномерных труб. Для повышения качества обработки изделий и производительности печи...
Тип: Изобретение
Номер охранного документа: 0002367689
Дата охранного документа: 20.09.2009
29.05.2019
№219.017.67f3

Расходный материал для фиксации на местности точек специальных топогеодезических сетей

Изобретение относится к средствам создания на земной поверхности специальных топогеодезических сетей и может быть использовано в подвижных пунктах навигации и топогеодезической привязки на базе шасси специальных транспортных средств. Техническим результатом изобретения является создание...
Тип: Изобретение
Номер охранного документа: 0002422771
Дата охранного документа: 27.06.2011
29.05.2019
№219.017.6859

Способ безокислительной термической обработки деталей и сборочных единиц

Изобретение относится к области машиностроения и может быть использовано для реализации процессов термической обработки деталей, к поверхности которых предъявляются особые требования. Способ безокислительной термической обработки, реализуемый при высоком отпуске деталей и сборочных единиц,...
Тип: Изобретение
Номер охранного документа: 0002456350
Дата охранного документа: 20.07.2012
+ добавить свой РИД