×
11.03.2019
219.016.d7ff

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ ВОДЫ ОТ ОРГАНИЧЕСКИХ ВЕЩЕСТВ

Вид РИД

Изобретение

№ охранного документа
0002348585
Дата охранного документа
10.03.2009
Аннотация: Изобретение относится к способам обработки воды и может быть использовано для очистки оборотных и сточных вод от органических загрязнителей различного происхождения, например синтетических поверхностно-активных веществ, нефтепродуктов, фенолов. Способ включает окисление пероксидом водорода, облучение УФ-лучами и применение катализатора на основе растворимых солей титана. Пероксид водорода используют в количестве 10-20 мг/л, растворимую соль титана добавляют из расчета 0,1-0,2 мг Ti на литр очищаемой воды. Аэрацию проводят при расходе воздуха 0,5-1 л/л, а последующее УФ-облучение состоит из волн длиной 253,7 нм и 185,6 нм. Способ обеспечивает упрощение процесса очистки, снижение энергозатрат, повышение степени очистки. 1 з.п. ф-лы, 2 табл.

Изобретение относится к технологии очистки водных растворов и может быть использовано для очистки оборотных и сточных вод от синтетических поверхностно-активных веществ (СПАВ), нефтепродуктов, фенолов и др.

Известен способ очистки сточных вод от органических веществ путем их обработки потоком озона в барботажной колонне, использование в качестве окислителя пероксида водорода и обработку УФ-излучением при плотности мощности излучения не ниже 100 кВт/м2 (RU 2031851 С1, 1995.03.27). Этот способ энергоемкий, требующий сложного оборудования.

Известен способ очистки воды, включающий озонирование, элекрокоагуляцию, обессоливание, повторное озонирование и УФ-облучение (RU 2096342 С1, 1997.11.20). Этот метод очень сложный и энергоемкий.

Известен способ очистки сточных вод от органических примесей, заключающийся в обработке их пероксидом водорода в количестве 100 -200 мг/л в присутствии катализатора - титаната бария при его содержании от 0,01 до 1% от массы воды, обработкой озоном около 50 мг/л и УФ-излучением (US 5330661, C02F 1/32, 1994). Этот способ экономически неэффективен, т.к. требует большого количества реагентов (до 200 мг Н2О2 и 50 мг О3 на 1 л сточной воды) и применение до 10 г/л дорогого титаната бария.

Наиболее близким к предлагаемому по технической сущности назначению и достигаемому результату является известный способ RU 2213706 С1, 2003.10.10, состоящий в том, что воду пропускают со скоростью 0,6-1 м3/ч через реакторы с импульсными ксеноновыми лампами, вырабатывающими УФ-излучение длиной волны 200-400 нм при частоте 1-1,3 Гц и плотностью потока 2-5 кВт/м2, после чего в воду вводят пероксид водорода в количестве 50-100 мг/л и пропускают через второй реактор, содержащий гетерогенный катализатор, который получают путем смешения порошка рутила (TiO2) с размерами частиц не более 0,5 мм и металлического серебра с размерами частиц не более 0,05 мм при их массовом соотношении, соответственно равном (700-1000):

1. Недостатком этого метода является его высокая энергоемкость, высокий расход пероксида водорода и применение дорогого гетерогенного катализатора.

Целью заявляемого изобретения является разработка эффективного, экологически безопасного, простого и недорогого способа очистки водных растворов от органических загрязнителей.

Поставленная цель достигается тем, что очищаемую воду обрабатывают пероксидом водорода в количестве 10-20 мг/л, затем добавляют растворимую соль титана из расчета 0,1-0,2 мг Ti на литр воды, проводят ее аэрацию, используя эжектор при расходе воздуха 0,5-1 л на литр воды, после чего облучают УФ-лучами, используя бактерицидные лампы типа ДБК-36, имеющие как излучение с длиной волны 253,7 нм, так и с длиной волны 185,6 нм при плотности потока 0,3-0,6 кВт/м2.

Введение в раствор, содержащий пероксид водорода, микроколичеств растворимых соединений титана приводит к образованию опалесцирующей взвеси микрочастиц гидроксопероксида титана, который является активным катализатором окисления органических веществ.

Использование ультрафиолетовых ламп с излучением, имеющим длину волны 185,6 нм, позволяет получать озон непосредственно в объеме очищаемой воды из кислорода воздуха, введенного туда с использованием эжектора.

Одновременная обработка загрязненного органическими веществами раствора пероксидом водорода, ультрафиолетовым излучением, озоном, образующимся в объеме раствора, и в присутствии активного катализатора на основе гидроксопероксида титана приводит к полному окислению органических веществ.

Предлагаемые параметры способа и концентрации реагентов являются оптимальными для данной технологии очистки воды.

Важно отметить, что микрочастицы катализатора на основе гидроксопероксида титана способствуют разложению избытка пероксида водорода после окончания обработки воды ультрафиолетовым излучением.

Ниже приведены примеры осуществления заявляемого способа.

Пример №1. Испытания проводили на модельном растворе фенола в водопроводной воде при исходной концентрации фенола 2 мг/л. Контроль концентрации фенола до и после обработки осуществляли газожидкостной хроматографией.

В 180 л исходного раствора вводили 10 мг/л пероксида водорода, затем сульфат титанила из расчета 0,1 мг Ti на литр раствора и перекачивали его насосом через эжектор, а потом через реактор, в котором были размещены лампы типа ДБК-36. Эжектор был отрегулирован на подачу 0,5 л воздуха на 1 л прокачиваемой воды.

В таблице 1 представлены результаты проведенных исследований в различных режимах.

Таблица 1
РежимыКонцентрация Н2О2, мг/лКонцентрация Ti, мг/лРасход воздуха,
л/л раствора
Конечная концентрация фенола, мг/лСтепень чистки, Сисхкон
1---1,1501,74
250,050,30,405
3100,10,50,0012000
4200,21,00,0012000
530-2,00,1910,5
6300,3-0,1118,2
7100,52,00,1711,8

Из представленных данных видно, что лучшие результаты очистки воды от фенола можно получить при соблюдении величины параметров в заявленном способе (режимы 3 и 4). При отсутствии одного из параметров (режимы 1, 5 и 6) степень очистки снижается. Следует также отметить, что увеличение концентрации Ti (режим 7) приводит к образованию в растворе взвеси, которая снижает эффективность действия УФ-облучения.

Более подробно влияние длины волны ультрафиолетового излучателя на степень разрушения различных органических веществ в водных растворах приведено в примере 2.

Пример №2. Исследование проводили на водных растворах бензола, додецилсульфата натрия (АПАВ) и карбофоса в условиях примера 1. В качестве источника ультрафиолетового излучения использовали в одном варианте лампы типа ДБК-36 (имеют излучение длин волн с максимумом при 253,7 нм и при 185,6 нм), в другом варианте - лампы типа TUV (имеют излучение только с пиком 253,7 нм). Мощность обоих типов ламп 40 Вт.

Результаты экспериментов приведены в таблице 2.

Таблица 2
ВеществоИсходная концентрация, мг/лКонечная концентрация, мг/лСтепень очистки
TUVДБК-36TUVДБК-36
Бензол54,30,260,02208,82715
Додецилсульфат9,20,840,0110,9920
натрия
Карбофос37,10,220,07168,6530

Как видно из приведенных в таблице 2 данных, разрушение исследованных органических веществ значительно эффективней при использовании УФ-ламп ДБК-36, поскольку имеющееся у них излучение с максимумом 185,6 нм превращает кислород воздуха, растворенный в воде, в озон, который является мощным окислителем.

Как видно из приведенных в таблице примеров, заявляемый способ позволяет проводить очистку водных растворов от различных типов органических загрязнителей независимо от их исходной концентрации. Диапазон концентраций выбранных реагентов и условий УФ-облучения является оптимальным.

Предлагаемый способ очистки воды от органических веществ является высокоэффективным, экологически безопасным, недорогим и не требующим сложного оборудования.

1.Способочисткиводыоторганическихвеществ,включающийееобработкупероксидомводорода,ультрафиолетовымизлучениемприиспользованиикатализаторанаосновесоединенийтитана,отличающийсятем,чтовисходнуюводупоследовательновводят10-20мг/лпероксидаводородаирастворсолититанаизрасчета0,1-0,2мгTiналитрводы,затемпроводятееаэрациюприрасходевоздуха0,5-1,0лвоздуханалитрводыипоследующееУФ-облучение,состоящееизволндлиной253,7нми185,6нм.12.Способпоп.1,отличающийсятем,чтоаэрациюводыпроводятприпомощиэжектораилибарботирующегоустройства.2
Источник поступления информации: Роспатент

Показаны записи 11-14 из 14.
16.11.2018
№218.016.9e16

Способ определения содержания радионуклидов в растворах и устройство для его осуществления (варианты)

Группа изобретений относится к радиоаналитической химии и может быть использовано для контроля содержания радионуклидов в пресной и морской воде, в моче людей, пострадавших от радиационных инцидентов, и в пробах различных технологических растворов. Способ определения содержания радионуклидов в...
Тип: Изобретение
Номер охранного документа: 0002672473
Дата охранного документа: 15.11.2018
19.12.2018
№218.016.a882

Способ переработки жидких радиоактивных отходов

Изобретение относится к технологии переработки жидких радиоактивных отходов (ЖРО). Способ очистки жидких радиоактивных отходов включает фильтрацию, окисление жидких радиоактивных отходов с получением окисленного потока, его фильтрацию, микрофильтрацию и очистку от радионуклидов путем подачи...
Тип: Изобретение
Номер охранного документа: 0002675251
Дата охранного документа: 18.12.2018
26.12.2018
№218.016.ab47

Способ переработки жидких радиоактивных отходов

Изобретение относится к технологии переработки жидких радиоактивных отходов (ЖРО). Способ очистки жидких радиоактивных отходов включает фильтрацию, окисление жидких радиоактивных отходов с получением окисленного потока, его фильтрацию, микрофильтрацию и очистку от радионуклидов путем подачи...
Тип: Изобретение
Номер охранного документа: 0002675787
Дата охранного документа: 25.12.2018
10.08.2019
№219.017.bdda

Экранирующая система защиты от излучений

Изобретение относится к устройствам для обеспечения радиационной безопасности. Экранирующая система защиты от излучений состоит из полых модулей, соединенных друг с другом и образующих экран. Каждый из модулей имеет, по меньшей мере, одно отверстие для заполнения модуля наполнителем. Каждый из...
Тип: Изобретение
Номер охранного документа: 0002696980
Дата охранного документа: 08.08.2019
Показаны записи 11-20 из 20.
26.08.2017
№217.015.da7f

Способ очистки воды от радона и дочерних продуктов распада радона, устройство для его осуществления

Группа изобретений относится к водоподготовке и может быть использована в системах снабжения питьевой водой населенных пунктов, санаториев, домов отдыха, коттеджей, индивидуальных домовладений, располагающих подземными радоновыми водами с выходами их на поверхность. Способ очистки воды от...
Тип: Изобретение
Номер охранного документа: 0002623777
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.e216

Фармакологическая композиция на основе соединений железа

Изобретение относится к медицине и ветеринарии и представляет собой фармакологическую композицию, содержащую сульфат железа(II), предназначенную для лечения железодефицитной анемии, отличающуюся тем, что она дополнительно содержит гексацианоферрат железа, гексацианоферрат железа-калия, сульфат...
Тип: Изобретение
Номер охранного документа: 0002625739
Дата охранного документа: 18.07.2017
19.01.2018
№218.016.06e0

Способ переработки жидких радиоактивных отходов

Изобретение относится к технологии обращения с жидкими радиоактивными отходами ядерного топливно-энергетического цикла и может быть использовано в процессе переработки жидких радиоактивных отходов (ЖРО). Способ переработки жидких радиоактивных отходов включает отделение от жидкой фазы шламов,...
Тип: Изобретение
Номер охранного документа: 0002631244
Дата охранного документа: 20.09.2017
19.01.2018
№218.016.0986

Способ дезактивации радиоактивных ионообменных смол

Изобретение относится к области переработки радиоактивных отходов, а именно к дезактивации отработанных ионообменных смол (ИОС). Способ дезактивации радиоактивных ионообменных смол включает обработку отработанных радиоактивных ИОС дезактивирующим раствором и очистку дезактивирующего раствора от...
Тип: Изобретение
Номер охранного документа: 0002631942
Дата охранного документа: 29.09.2017
16.11.2018
№218.016.9e16

Способ определения содержания радионуклидов в растворах и устройство для его осуществления (варианты)

Группа изобретений относится к радиоаналитической химии и может быть использовано для контроля содержания радионуклидов в пресной и морской воде, в моче людей, пострадавших от радиационных инцидентов, и в пробах различных технологических растворов. Способ определения содержания радионуклидов в...
Тип: Изобретение
Номер охранного документа: 0002672473
Дата охранного документа: 15.11.2018
19.12.2018
№218.016.a882

Способ переработки жидких радиоактивных отходов

Изобретение относится к технологии переработки жидких радиоактивных отходов (ЖРО). Способ очистки жидких радиоактивных отходов включает фильтрацию, окисление жидких радиоактивных отходов с получением окисленного потока, его фильтрацию, микрофильтрацию и очистку от радионуклидов путем подачи...
Тип: Изобретение
Номер охранного документа: 0002675251
Дата охранного документа: 18.12.2018
26.12.2018
№218.016.ab47

Способ переработки жидких радиоактивных отходов

Изобретение относится к технологии переработки жидких радиоактивных отходов (ЖРО). Способ очистки жидких радиоактивных отходов включает фильтрацию, окисление жидких радиоактивных отходов с получением окисленного потока, его фильтрацию, микрофильтрацию и очистку от радионуклидов путем подачи...
Тип: Изобретение
Номер охранного документа: 0002675787
Дата охранного документа: 25.12.2018
10.08.2019
№219.017.bdda

Экранирующая система защиты от излучений

Изобретение относится к устройствам для обеспечения радиационной безопасности. Экранирующая система защиты от излучений состоит из полых модулей, соединенных друг с другом и образующих экран. Каждый из модулей имеет, по меньшей мере, одно отверстие для заполнения модуля наполнителем. Каждый из...
Тип: Изобретение
Номер охранного документа: 0002696980
Дата охранного документа: 08.08.2019
15.11.2019
№219.017.e1de

Способ переработки жидких радиоактивных отходов, содержащих, в том числе, изотопы трития

Изобретение относится к технологии переработки жидких радиоактивных отходов (ЖРО). Способ переработки ЖРО, содержащих, в том числе, изотопы трития, включающий удаление из жидких радиоактивных отходов радиоактивных веществ с получением низкоактивного раствора, кондиционирование удаленных...
Тип: Изобретение
Номер охранного документа: 0002706019
Дата охранного документа: 13.11.2019
15.05.2023
№223.018.5b37

Фармакологическая композиция для лечения железодефицитной анемии

Изобретение относится к области фармацевтики, а именно фармакологической композиции для лечения железодефицитной анемии (ЖДА), содержащей сульфат железа(II), отличающейся тем, что она дополнительно содержит гексацианоферрат железа-калия-натрия, сульфат калия и микроцеллюлозу при следующем...
Тип: Изобретение
Номер охранного документа: 0002763135
Дата охранного документа: 27.12.2021
+ добавить свой РИД