×
08.03.2019
219.016.d5d0

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ЗАРЯДА СМЕСЕВОГО ТВЕРДОГО РАКЕТНОГО ТОПЛИВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам изготовления заряда смесевого твердого ракетного топлива (СТРТ) в смесителях непрерывного действия. Способ изготовления заряда СТРТ включает дозирование порошкообразных и жидковязких компонентов, просеивание и транспортирование шнеком порошкообразных компонентов с заданной частотой вращения шнека, смешение компонентов в трех смесителях непрерывного действия при дистанционном контроле загрузки, который осуществляется посредством настройки сепаратора, исходя из предельно допустимой мощности привода сепаратора. Изобретение направлено на разработку безопасного способа смешения компонентов СТРТ, с повышенной точностью дозирования компонентов СТРТ, с обеспечением качественного смешения по химическому составу и с обеспечением сглаживания пульсаций потоков на входе в смеситель. 2 з.п.ф-лы, 2 ил., 1 табл.

Предлагаемый способ относится к процессам приготовления топливной массы и формования заряда смесевого твердого ракетного топлива (СТРТ) с применением смесителей непрерывного действия, а также к процессам приготовления смеси компонентов взрывчатых составов, содержащих аналогично пластмассам отвержденные полимеры и наполнители.

Способ может быть использован во многих отраслях, связанных с изготовлением продукции из смеси жидковязких и порошкообразных компонентов.

Для достижения этих целей применяются связанные между собой в единый поток процессы дозирования, транспортирования, фильтрования на линиях подачи компонентов, смешения и формования изделий.

Типовые технологические схемы и применяемое оборудование при производстве пластмасс описано в технической литературе: З.Г. Гибарев "Механическое оборудование заводов пластических масс", издательство "Машиностроение", Москва, 1967г. и Е.В. Кузнецов, И.П. Прохорова, Д.А. Файзуллина "Альбом технологических схем производства полимеров и пластических масс на их основе", издательство "Химия", Москва, 1975г.

Известно устройство патент РФ 2132837 кл. С 06 В 21/00 для смешения компонентов взрывчатых составов и формования изделий на них. Это устройство, применяемое для выполнения вышеуказанных операций, взято в качестве прототипа. Согласно этому устройству подача компонентов в виде полуфабрикатов осуществляется с помощью дозаторов. Далее полуфабрикаты проходят через фильтрующие элементы, расположенные на линиях подачи, смешиваются в смесителях непрерывного действия, имеющих напорные транспортные устройства (шнеки), и подаются на формование изделия при дистанционном контроле зазора между шнеком и корпусом.

Устройство по указанному изобретению предложено для повышения безопасности в процессе смешения компонента взрывчатых составов и формования изделий из них. Однако содержит не все признаки для его достижения, в том числе за счет формирования качественной смеси.

Подача полуфабрикатов в смеситель-приставку в предложенном устройстве должна осуществляться непрерывными потоками в строго заданном соотношении, что является основным условием получения качественной смеси по химическому составу в непрерывном технологическом процессе. Однако при дозировании особенно мелкодисперсного плохо сыпучего окислителя незначительное случайное превышение скорости подачи его над способностью просейки приводит к увеличению его количества на сите сепаратора.

В производстве смесевого твердого ракетного топлива в линии дозирования окислителя в качестве фильтрующего устройства используется сепаратор (фиг. 1), который состоит из корпуса 1, крышки 2 и привода. Привод состоит из электродвигателя 5 и редуктора 6, установленных на раме 9. В корпус вварена решетка 3, на которую опирается перфорированное полотно (сито) 4. На сите свободно уложена эластичная протирочная крестовина 7. Две резиновые тяги 8 соединяют раму 9 привода с корпусом 1, что предотвращает вращение корпуса вокруг вертикальной оси. Корпус 1, крышка 2 с ситом 4 совершают круговое поступательное движение. В результате такого движения крестовина, преодолевая трение о сито и сопротивление окислителя, вращается на сите и осуществляет протирку порошкообразного окислителя с добавками через отверстия сига.

При накоплении определенного количества порошкообразного окислителя с добавками на сите происходит уменьшение частоты вращения крестовины сепаратора, падение производительности его и как следствие большое накопление материала. В результате наступает остановка вращения крестовины, прекращение просейки и нарушение соотношения загружаемых полуфабрикатов и химического состава топливной массы.

Технической задачей настоящего изобретения является разработка способа безопасного смешения компонентов смесевого твердого ракетного топлива (СТРТ) с обеспечением качества по химическому составу за счет разделения подаваемых на смешение компонентов на три потока, повышения точности дозирования порошкообразного окислителя с добавками путем исключения возможности накопления его на сите сепаратора, обеспечения заданного соотношения и сглаживания пульсаций потоков на входе в смеситель, смешения потоков компонентов в каскаде смесителей непрерывного действия.

Технический результат достигается тем, что при функционировании технологического процесса на базе известного устройства дополнительно вводятся следующие операции.

Компоненты СТРТ на смешивание подают тремя потоками: порошкообразного окислителя с добавками (ПОД), жидковязких компонентов - смеси связующего (СС) и смеси отвердителя (СО).

ПОД из накопителя 1 (фиг.2) шлюзовым затвором 2 подают в порционный весовой дозатор 3, дозируют порциями 4-14 кг с интервалом 20-60 с. Сглаживают пульсации потока, для чего непрерывно просеивают через сепаратор 4 производительностью до 0,65 кг/с и транспортируют шнеком 5 с заданной частотой вращения в смеситель-приставку 6. По соответствующим автономным линиям синхронно подаче ПОД и заданному соотношению компонентов СТРТ в смеситель-приставку порциями дозируют СС и СО. Смесь связующего подают из емкости 7 через фильтр 8, дозируют дозатором 9. Смесь отвердителя подают из емкости 10 через фильтр 13 и дозируют дозатором 11. Потоки компонентов непрерывно смешивают и усредняют в каскаде из трех последовательно установленных смесителей непрерывного действия с регулируемой загрузкой и шнековой выгрузкой: сначала проводят смачивание ПОД с жидковязкими компонентами в смесителе-приставке 6 с загрузкой 20-100 кг, затем проводят предварительное смешение и усреднение в предварительном смесителе 12а с загрузкой 600-750 кг и окончательное смешение под вакуумом в вакуумном смесителе 12б с загрузкой 150-350 кг при дистанционном контроле загрузки и формуют заряд из СТРТ.

В предлагаемом способе дозирование порошкообразного окислителя с добавками осуществляют порциями весовым дозатором. Преимуществом порционного дозирования является то, что для них решена задача дистанционного контроля массы тары и остатка массы материала после подачи каждой порции и корректировка подачи с учетом этого остатка. Выполнение этой задачи для дозаторов непрерывного действия является практически невозможным. Однако при порционном дозировании для обеспечения качества смешивания в смесителях непрерывного действия возникает задача распределения каждой порции порошкообразного материала внутри цикла дозирования (сглаживание пульсаций потока), т.е. преобразование периодически подаваемых порций порошка в непрерывный и в достаточной степени равномерный поток.

Для чего для улова посторонних включений ПОД пропускают через сепаратор. Для исключения забивки сепаратора при просейке плохо сыпучих ПОД и по этой причине нарушения химсостава необходима настройка сепаратора. В процессе настройки системы дозирования ПОД в смеситель перед пуском технологической линии на непрерывную работу сначала включают сепаратор, затем шнек, весовой дозатор и при их непрерывной работе пропускают через сепаратор 2-4 дозы ПОД. После подачи 2-4 доз дозатор отключают. Продолжают работать с сепаратором в течение 1-3 мин до стабилизации потребляемой мощности на приводе, которую принимают за мощность на холостом ходу Мс (установившаяся мощность). Задают величину предельно допустимой мощности Мп по формуле (1):
Мпс+К (1),
где Мп - величина предельно допустимой мощности привода сепаратора, кВт;
Мс - величина минимально установившейся мощности привода сепаратора после пропускания через него 2-4 доз порошкообразного окислителя с добавками и работы его в течение 1-3 мин на холостом ходу, кВт;
К - поправочный коэффициент по мощности, учитывающий допустимое количество порошкообразного окислителя с добавками на сите сепаратора в режиме непрерывного дозирования.

В процессе эксплуатации установки в непрерывном режиме, в случае постепенного накопления на сите сепаратора ПОД потребляемая мощность достигает величины предельно допустимой мощности Мп.

В этом случае производят отключение всех дозаторов полуфабрикатов, сепаратор продолжает работать (при работающих транспортном шнеке и смесителях), проводя просейку накопленного на сите ПОД до достижения величины мощности Мс. После этого включают систему дозирования м продолжают работу по изготовлению смеси компонентов СТРТ.

Порошкообразный окислитель с добавками, обработанный жироподобным поверхностно-активным веществом против слеживания, обладает сильным смазывающим эффектом. Указанное приводит к уменьшению коэффициента внешнего трения в местах контакта крестовины с поверхностью сита и к резкому изменению потребляемой мощности приводом сепаратора. Поэтому в предлагаемом способе для определения предельно допустимой мощности Мп сначала пропускают через сепаратор 2-4 дозы порошкообразного окислителя с добавками, затем при отключенном дозаторе продолжают работу сепаратора на холостом ходу до стабилизации потребляемой мощности, которую принимают за Мс. Величина установившейся мощности после выполнения указанных операций является отправной точкой при определении количества ПОД на сите по показаниям мощности на приводе сепаратора. Благодаря этому по величине мощности удается достаточно точно оценить в любой момент времени количество ПОД в сепараторе и предотвратить накопление путем периодического опорожнения аппарата в раздельном режиме, обеспечить сглаживание пульсаций потока, и тем самым исключить нарушение соотношения полуфабрикатов, вводимых в смеситель. Поправочный коэффициент К по мощности для сепаратора выбранной конструкции составляет в пределах 0,03-0,07, что характеризует предельное количество ПОД на сите сепаратора, выше которого происходит резкое снижение скорости вращения крестовины, производительности просейки, приводящее к нарушению химического состава. Величину К в указанных пределах устанавливают в зависимости от сыпучести ПОД.

Наличие определенной зависимости между мощностью на приводе сепаратора и количеством ПОД в нем дает возможность осуществлять непрерывный дистанционный контроль и управление за процессом подачи и просейки ПОД, позволяет предотвратить возникновение аварийных ситуаций, что очень важно при переработке чувствительных к механическим воздействиям композиций СТРТ.

Основную функцию в сглаживании пульсаций потока в предлагаемом способе выполняет шнек. Следовательно, основным требованием к шнеку, питающему смеситель непрерывного действия, является: доставка каждой дозы к смесителю без потерь и распределение дозы по длине шнека в целях создания равномерного потока его на входе в смеситель (сглаживание пульсаций потока). Обычно потери ПОД и нарушение его дозировки происходят на начальном этапе работы, когда при транспортировании нескольких первых порций часть ПОД остается в застойных зонах шнека - в зазоре между винтом и корпусом. Для исключения влияния этого фактора проводят предварительно операцию заполнения застойных зон шнека (вывода шнекового транспортера на рабочий режим), после выполнения которой будет обеспечена доставка каждой порции (дозы) к смесителю без потерь. Для вывода шнекового транспортера на режим перетранспортируют 10-20 доз (в зависимости от длины шнека и особенностей ПОД), минуя смеситель, выработкой в отдельный контейнер.

Для обеспечения непрерывной и равномерной подачи ПОД в смеситель-приставку необходимо поддерживать постоянную частоту вращения шнека n, которую определяют предварительно или при выводе шнека на режим по формуле (2):

где Lр - длина распределения каждой порции ПОД в шнеке, м; она определяется экспериментально и представляет собой длину, на которую распределяется порция ПОД в результате передачи ее шнеком;
Sb - шаг шнека-винта, м;
τц - время цикла дозирования, с.

При порционном дозировании полуфабрикатов несмотря на применение на линии подачи полуфабрикатов сглаживающих устройств (фильтрующих элементов - сепаратора, транспортного шнека) полностью исключить пульсацию потока на входе в смеситель-приставку не удается. Поэтому для обеспечения требований по химическому составу смешивают и усредняют потоки компонентов последовательно в трех смесителях непрерывного действия с регулируемой загрузкой и шнековой выгрузкой. Сначала проводят смачивание ПОД с жидковязкими компонентами в смесителе-приставке с загрузкой 20-100 кг, затем предварительное смешение и усреднение в предварительном смесителе с загрузкой 600-750 кг и окончательное смешение под вакуумом в вакуумном смесителе с загрузкой 150-350 кг с дистанционным контролем загрузки.

Наиболее ответственной операцией является перемешивание составляющих компонентов СТРТ. На смесителях необходимо обеспечить не только распределение компонентов, но и выработанность массы СТРТ. Это достигают за счет определенных сдвиговых усилий, возникающих при воздействии на массу перемешивающих мешалок и транспортных шнеков. Вследствие этого для создания безопасных условий на стадиях предварительного и окончательного перемешивания в предварительном и вакуумном смесителях целесообразно подавать в них предварительно перемешанную массу, т.к. особую опасность представляет попадание в зоны мешалок и транспортных шнеков несмоченного со связующими ПОД.

Применение операции предварительного смачивания и перемешивания ПОД со связующими при более мягких условиях с загрузкой 20-100 кг позволяет обеспечить безопасность на данной операции и на последующих стадиях смешивания и транспортирования массы с одновременным повышением производительности.

Как показали испытания смесителя-приставки при загрузках 20-100 кг и производительности 800 кг/ч, при прохождении 1/4 части камеры смешения достигается удовлетворительное распределение ПОД в связующем.

Верхний предел по загрузке предварительного и вакуумного смесителей обусловлен тем, что при больших загрузках перемешиваемая масса будет находиться вне зоны действия мешалок без обновления и перемешивания, что приводит к ухудшению качества состава. Нижний предел по загрузке в указанных смесителях устанавливают во избежание проскока недостаточно перемешанной массы. Кроме того, сохранение загрузки массы не ниже нижнего предела в вакуумном смесителе предложено для поддержания остаточного давления на определенном уровне не выше 15 мм рт. ст., при непрерывном отсосе воздушных и газовых включений из массы в процессе перемешивания.

Контроль загрузки по верхнему и нижнему пределам дистанционный. Примеры конкретного исполнения при настройке на рабочий режим пары порционный дозатор - сепаратор приведены в таблице. Данные приведены по составу СТРТ, в котором номинальное содержание окислителя составляло 64,82% при допустимых отклонениях ±0,5% и контролировалось аналитическим методом.

Порошкообразный окислитель с добавками обработан жироподобным поверхностным веществом. Дозировка ПОД порционная, по 5 кг с циклом дозирования 20 с.

В таблице приведены следующие обозначения:
Мх - мощность холостого хода на приводе сепаратора до пропускания через него порошкообразного окислителя с добавками, кВт;
n - количество доз ПОД, пропущенных через сепаратор перед выбором допустимой мощности, кВт;
τ - время протряски сепаратора на холостом ходу после пропускания нескольких доз ПОД, мин;
Q - количество накапливаемого на сите сепаратора порошкообразного окислителя с добавками, при достижении которого производится отключение системы дозирования полуфабрикатов и продолжается просеивание в раздельном режиме работы сепаратора, кг;
Х - содержание окислителя в СТРТ, отобранном из смесителя, %.

Из анализа данных таблицы видно, что выбранные режимы выполнения способа (примеры 1-3) исключают накопление на сите сепаратора большого количества порошкообразного окислителя с добавками в процессе изготовления зарядов из СТРТ непрерывным способом, обеспечивает точность ввода полуфабрикатов в смеситель и качество изделий по химсоставу.

Выход параметров за рамки предлагаемых приводит к нарушению номинального содержания окислителя: из-за недостаточного количества доз, пропускаемых через сепаратор в процессе определения предельно допустимой мощности (пример 4);
из-за недостаточного времени работы сепаратора на холостом ходу после пропускания 2-4 доз порошкообразного окислителя с добавками (пример 6);
из-за завышенной величины поправочного коэффициента по мощности, допускающей больше допустимого в сепараторе количества порошкообразного окислителя с добавками, приводящей к недодозировке его (пример 9).

Увеличение количества доз порошкообразного окислителя с добавками, пропускаемого через сепаратор при настройке его перед пуском установки, до 5 и более (пример 5) повышает расход порошкообразного окислителя с добавками и трудозатраты. Увеличение времени работы сепаратора на холостом ходу после пропускания через него 2-4 доз порошкообразного окислителя с добавками до 4 и более минут (пример 7) является нецелесообразным, т.к. приводит к преждевременному износу полиуретановой крестовины сепаратора.

Назначение поправочного коэффициента по мощности сепаратора менее 0,03 (пример 8) уменьшает единовременно допустимое количество порошкообразного окислителя с добавками в сепараторе, что приводит к частым остановкам системы дозирования и снижению производительности процесса.

1.Способизготовлениязарядасмесевоготвердогоракетноготоплива(СТРТ),включающийдозированиепорошкообразныхижидковязкихкомпонентов,просеиваниеитранспортированиешнекомпорошкообразныхкомпонентов,смешениекомпонентоввсмесителяхнепрерывногодействия-смесителе-приставке,предварительномсмесителе,вакуумномсмесителе,иформованиезарядаподдавлением,отличающийсятем,чтодозированиепорошкообразныхижидковязкихкомпонентовосуществляюттремяпотоками-потокомпорошкообразногоокислителясдобавками,потокомсмесисвязующегоипотокомсмесиотвердителя,порошкообразныйокислительсдобавкамидозируютпорциямивесовымдозатором,просеиваютчерезсепараторитранспортируютшнекомспостояннойчастотойвращенияшнека,приэтомпредварительнозастойныезонышнеказаполняют,транспортируяпорошкообразныйокислительсдобавкамивотдельныйконтейнер,послечегосмесьсвязующегоисмесьотвердителядозируютпорциямисинхронноподачепорошкообразногоокислителясдобавкамивзаданномсоотношениикомпонентов,непрерывносмешиваютпридистанционномконтролезагрузки,которыйосуществляетсяпосредствомнастройкисепаратора,длячегопредварительнодозируютипросеивают2-4порциипорошкообразногоокислителясдобавками,затемпрекращаютдозированиеприработающемсепараторе,замеряютминимальноустановившуюсямощностьприводасепаратораизадаютвеличинупредельнодопустимоймощности,исходяизформулыМ=М+К,гдеМ-величинапредельнодопустимоймощностинаприводесепаратора,кВт,М-величинаминимальноустановившейсямощностиприводасепараторапослепросеиваниянесколькихпорцийпорошкообразногоокислителясдобавками,кВт,К-поправочныйкоэффициентпомощности,дозированиекомпонентовосуществляютнепрерывнододостижениявеличиныпредельнодопустимоймощностиприводасепаратора,послечегодозированиекомпонентовпрекращают,остатокпорошкообразногоокислителясдобавкамипросеиваютиприснижениимощностиприводасепараторадовеличиныминимальноустановившейсямощностидозированиекомпонентоввозобновляют.12.Способпоп.1,отличающийсятем,чточастотувращенияшнекаnопределяютисходяизформулыгдеLp-длинараспределениякаждойпорциипорошкообразногоокислителясдобавкамившнеке,м;Sb-шагшнек-винта,м;τ-времяцикладозирования,с.23.Способпоп.1,отличающийсятем,чтозагрузкувсмесителе-приставкерегулируютвпределах20-100кг,впредварительномсмесителе-600-750кг,ввакуумномсмесителе-150-350кг.3
Источник поступления информации: Роспатент

Показаны записи 61-70 из 157.
20.03.2019
№219.016.e771

Твердотопливный заряд для ракетного двигателя

Изобретение относится к области ракетной техники и может быть использовано при проектировании, отработке и изготовлении зарядов ракетного двигателя твердого ракетного топлива. Твердотопливный заряд для ракетного двигателя выполнен в виде шашки твердого ракетного топлива, с центральным сквозным...
Тип: Изобретение
Номер охранного документа: 0002415288
Дата охранного документа: 27.03.2011
20.03.2019
№219.016.e86d

Устройство для изготовления тонкосводных баллиститных пороховых трубок

Изобретение относится к области изготовления тонкосводных баллиститных пороховых трубок по прессовой технологии, используемых для артиллерийских зарядов. Техническим результатом заявленного устройства является обеспечение изготовления тонкосводных пороховых трубок с малым коэффициентом...
Тип: Изобретение
Номер охранного документа: 0002451599
Дата охранного документа: 27.05.2012
20.03.2019
№219.016.e86f

Способ изготовления заряда смесевого твердого ракетного топлива

При изготовлении заряда смесевого твердого ракетного топлива производят нагнетание смесевого ракетного твердого топлива в пресс-форму через массопровод. В качестве пресс-формы используют корпус ракетного двигателя, внутренняя полость которого сообщена с атмосферой через стравливающие отверстия....
Тип: Изобретение
Номер охранного документа: 0002451817
Дата охранного документа: 27.05.2012
20.03.2019
№219.016.e935

Двухрежимная двигательная установка

Двухрежимная двигательная установка содержит переднюю крышку, заднее днище, последовательно расположенные заряды твердого топлива стартового и маршевого двигателя, а также центральную перегородку. Передняя крышка выполнена с воспламенителем стартового двигателя, а заднее днище - с расположенным...
Тип: Изобретение
Номер охранного документа: 0002445492
Дата охранного документа: 20.03.2012
21.03.2019
№219.016.ebf6

Способ очистки смесительного оборудования от вязко-текучих взрывчатых составов

Изобретение относится к производству изделий из взрывчатых составов и может быть использовано при очистке смесительного оборудования от остатков вязкотекучих взрывчатых составов. Способ заключается в выгрузке взрывчатого состава из смесителя до нагрузок холостого хода на приводе мешалок и...
Тип: Изобретение
Номер охранного документа: 02229949
Дата охранного документа: 10.06.2004
21.03.2019
№219.016.ec1b

Способ приготовления смесевого ракетного твердого топлива

Изобретение относится к области приготовления смесевого ракетного твердого топлива. Способ осуществляют в смесительной установке, состоящей из предварительного, верхнего и нижнего смесителей. Первоначально дозируют избыток жидковязких компонентов в предварительный смеситель, включают...
Тип: Изобретение
Номер охранного документа: 0002407728
Дата охранного документа: 27.12.2010
29.03.2019
№219.016.f1de

Лабораторная бисерная мельница

Изобретение относится к технике измельчения твердых материалов. Лабораторная бисерная мельница содержит размольный контейнер с рубашкой охлаждения, крышку, ротор с дисками, привод вращения ротора. Размольный контейнер с рубашкой охлаждения установлен соосно ротору на чашеобразный поддон, жестко...
Тип: Изобретение
Номер охранного документа: 0002389555
Дата охранного документа: 20.05.2010
29.03.2019
№219.016.f2e9

Устройство для получения изделия из взрывчатого состава

Изобретение относится к устройству для получения изделия из взрывчатого состава. Устройство включает вертикальный планетарный смеситель для смешения компонентов взрывчатого состава со смесительной головкой и комплектом сменных чаш с тележками, поршневое гидравлическое устройство для выгрузки...
Тип: Изобретение
Номер охранного документа: 0002372315
Дата охранного документа: 10.11.2009
29.03.2019
№219.016.f609

Способ изготовления тонкосводных пороховых трубок

Изобретение относится к области изготовления тонкосводных трубчатых баллиститных порохов по прессовой технологии с коэффициентом упругости ≤0,15, используемых для артиллерийских зарядов. Способ включает загрузку в стакан вертикального гидравлического пресса разогретого порохового блока,...
Тип: Изобретение
Номер охранного документа: 0002451002
Дата охранного документа: 20.05.2012
29.03.2019
№219.016.f60a

Экструдер для переработки баллиститных порохов и топлив

Изобретение относится к оборудованию, предназначенному для переработки баллиститных порохов и топлив и изготовления зарядов из них, и может быть эффективно использовано на фазе гомогенизации пороховой массы и прессования зарядов. Изобретение представляет собой экструдер, рабочий орган которого...
Тип: Изобретение
Номер охранного документа: 0002451003
Дата охранного документа: 20.05.2012
Показаны записи 61-70 из 75.
09.06.2019
№219.017.7805

Баллиститный артиллерийский порох

Изобретение относится к изготовлению порохов. Преложен баллиститный артиллерийский порох, зерна которого имеют пористую структуру, включающий сенсибилизатор - коллоксилин и пироксилин или циклотетраметилентетранитрамин, стабилизатор химической стойкости - централит, антистатическую добавку -...
Тип: Изобретение
Номер охранного документа: 0002253645
Дата охранного документа: 10.06.2005
09.06.2019
№219.017.78a5

Способ получения сферического пороха

Изобретение относится к области производства сферических порохов и может быть использовано для снаряжения патронов к стрелковому оружию. Способ получения сферического пороха включает обработку в реакторе возвратно-технологических отходов сферического пороха или устаревшего сферического пороха...
Тип: Изобретение
Номер охранного документа: 02223252
Дата охранного документа: 10.02.2004
09.06.2019
№219.017.78a8

Способ изготовления зарядов из смесевого твёрдого ракетного топлива

Изобретение относится к области изготовления зарядов из смесевого твердого ракетного топлива (СТРТ), а именно, к технологии приготовления топливной массы и формования зарядов. Предложен способ изготовления заряда СТРТ, включающий дозирование жидковязких, порошкообразных компонентов и...
Тип: Изобретение
Номер охранного документа: 02226520
Дата охранного документа: 10.04.2004
09.06.2019
№219.017.78cc

Заряд ракетного твердого топлива

Заряд ракетного твердого топлива содержит корпус, топливный заряд, жестко скрепленный с корпусом, и защитно-крепящий слой, выполняющий функции теплозащитного покрытия и крепящего слоя. В состав защитно-крепящего слоя, имеющего толщину 0,1•10-2,5•10 наружного диаметра заряда и представляющего...
Тип: Изобретение
Номер охранного документа: 02216641
Дата охранного документа: 20.11.2003
09.06.2019
№219.017.78d8

Заряд твердого ракетного топлива

Изобретение относится к области ракетной техники, а именно к конструкции зарядов твердого ракетного топлива для ракетных двигателей. Заряд твердого ракетного топлива выполнен в виде шашки и содержит армирующий элемент, представляющий собой ячеистую несущую конструкцию в виде пересекающихся...
Тип: Изобретение
Номер охранного документа: 02213719
Дата охранного документа: 10.10.2003
09.06.2019
№219.017.78e8

Заряд ракетного твёрдого топлива

Заряд ракетного твердого топлива может быть использован в двигателях управляемых реактивных снарядов. Корпус заряда выполнен коническим, с увеличивающимся к заднему торцу диаметром, с цилиндрическим участком у заднего торца. Канал заряда выполнен с цилиндроконическим поднутрением у переднего...
Тип: Изобретение
Номер охранного документа: 02212556
Дата охранного документа: 20.09.2003
09.06.2019
№219.017.7fe3

Твердое ракетное топливо баллиститного типа

Предлагаемое изобретение относится к классу твердых ракетных топлив баллиститного типа для использования в системах различного назначения, например в газогенераторах (ГГ), пороховых аккумуляторах давления (ПАД), противотанковых управляемых ракетных системах (ПТУРс) и др., для которых требуются...
Тип: Изобретение
Номер охранного документа: 02172730
Дата охранного документа: 27.08.2001
19.06.2019
№219.017.8c1c

Быстроотверждающийся крепящий состав для скрепления топливных элементов с дном камеры ракетного двигателя

Изобретение относится к получению состава для скрепления пучка топливных элементов твердого топлива с элементами стартового двигателя ручных противотанковых управляемых гранат и относится к ракетной технике. Состав содержит гидроксилсодержащий полибутадиеновый каучук с содержанием гидроксильных...
Тип: Изобретение
Номер охранного документа: 02167903
Дата охранного документа: 27.05.2001
06.07.2019
№219.017.a7a5

Способ получения окисленного графита

Изобретение предназначено для химической промышленности и может быть использовано при получении теплоизоляционного наполнителя огнезащитных композиций, конструкционных материалов, катализаторов и сорбентов. В реактор с мешалкой загружают 2-28% раствор серного ангидрида в серной кислоте,...
Тип: Изобретение
Номер охранного документа: 02206501
Дата охранного документа: 20.06.2003
06.07.2019
№219.017.a7d8

Бронирующий состав для термопластичного покрытия вкладного заряда баллиститного твёрдого топлива

Изобретение относится к области ракетной техники, а именно к вкладным зарядам баллиститного твердого топлива, в частности к области создания бронирующих составов. Задачей изобретения является создание бронесостава, обладающего низкими миграционными свойствами химически не связанных компонентов,...
Тип: Изобретение
Номер охранного документа: 02217458
Дата охранного документа: 27.11.2003
+ добавить свой РИД