×
08.03.2019
219.016.d397

Результат интеллектуальной деятельности: Установка для исследования процессов тепломассопереноса

Вид РИД

Изобретение

Аннотация: Изобретение относится к ракетной технике и предназначено для исследования процессов тепломассопереноса в конструкциях ракетных двигателей твердого топлива (РДТТ). Установка для исследования процессов тепломассопереноса содержит газогенератор на твердом топливе, газовод с цилиндрическим каналом с местным сопротивлением, термодатчики и сопло. Наружная поверхность газовода с цилиндрическим каналом выполнена с одной или несколькими гранями, причем толщина стенки газовода с цилиндрическим каналом в области граней составляет (0,4…0,8) δ, где δ - толщина стенки газовода с цилиндрическим каналом на участке без граней, , где Р - давление в газоводе с цилиндрическим каналом, D - диаметр газовода с цилиндрическим каналом, К - коэффициент запаса, σ - предел прочности материала стенки газовода при средней температуре по толщине стенки в сечении газовода с цилиндрическим каналом с максимальным нагревом при испытаниях, а термодатчики размещены в продольной плоскости, проходящей через ось газовода с цилиндрическим каналом и сечение грани с минимальной толщиной стенки. Технический результат - повышение точности определения параметров тепломассопереноса. 1 ил.

Изобретение относится к ракетной технике и предназначено для исследования процессов тепломассопереноса в конструкциях ракетных двигателей твердого топлива (РДТТ).

Известны установки, предназначенные для этих целей, например, установка для испытаний теплозащитных покрытий, содержащая газогенератор на твердом топливе, исследуемый элемент конструкции и средства измерения (см., например, книга Ю.В. Полежаева, А.А. Шишкова Газодинамические испытания тепловой защиты. М.: ПромедЭК, 1992 г., с. 133, принятая за аналог).

Однако, данная конструкция модельной установки, в которой исследуемый элемент размещен перпендикулярно струе продуктов сгорания, не позволяет проводить моделирование теплопереноса для наиболее важного случая взаимодействия потока продуктов сгорания со стенкой элементов конструкции РДТТ - для случая продольного обтекания стенки потоком.

Наиболее близкой по технической сущности и достигаемому результату к заявленному изобретению является установка для исследования процессов тепломассопереноса в узлах РДТТ при продольном обтекании стенки исследуемого элемента конструкции (см. книгу под ред. Коротеева А.С. Газодинамические и теплофизические процессы в ракетных двигателях твердого топлива. М.: Машиностроение, 2004, с. 341), содержащая газогенератор на твердом топливе, средства измерения (термодатчики), исследуемый элемент (газовод с цилиндрическим каналом с теплозащитным покрытием) и сопло, принятая за прототип.

Принятая за прототип установка функционирует следующим образом. При работе газогенератора продукты сгорания из газогенератора движутся по цилиндрическому каналу газовода и истекают через сопло. Размещенные на газоводе термодатчики регистрируют температуру в отдельных сечениях газовода. Путем статистической обработки результатов измерений определяются исследуемые параметры тепломассопереноса. Данная конструкция установок используется и для исследования закономерностей тепломассопереноса в проточных частях РДТТ, в которых установлены местные сопротивления, например, в виде диафрагм различной конфигурации. При проведении данных работ используются термодатчики с рабочим спаем на наружной поверхности газовода, так как использование термодатчиков с рабочим спаем на внутренней поверхности газовода нецелесообразно из-за недопустимо большой погрешности измерений, обусловленной налипанием частиц конденсированной фазы в продуктах сгорания на рабочий спай.

Однако, использование данной конструкции установки и схемы размещения термодатчиков приводит к большим погрешностям при идентификации параметров процесса тепломассопереноса, например, при определении размеров зоны локальной интенсификации теплообмена за местным сопротивлением в виде диафрагмы, при значительных значениях градиентов коэффициентов конвективной теплоотдачи от продуктов сгорания к стенке газовода, а, следовательно, и значительных продольных градиентах температуры стенки. Это объясняется искажением температурных полей в области термодатчиков аксиальным перетоком тепла, что является существенным недостатком.

В отличие от прототипа в предлагаемой установке наружная поверхность газовода с цилиндрическим каналом выполнена с одной или несколькими гранями, причем толщина стенки газовода с цилиндрическим каналом в области граней составляет (0,4…0,8) δ, где δ - толщина стенки газовода с цилиндрическим каналом на участке без граней, , где Р - давление в газоводе с цилиндрическим каналом, D - диаметр газовода с цилиндрическим каналом, К - коэффициент запаса, σ - предел прочности материала стенки газовода с цилиндрическим каналом при средней температуре по толщине стенки в сечении газовода с цилиндрическим каналом с максимальным нагревом при испытаниях, а термодатчики размещены в продольной плоскости, проходящей через ось газовода с цилиндрическим каналом и сечение грани с минимальной толщиной стенки.

Задачей предлагаемого изобретения является повышение точности определения параметров тепломассопереноса.

Указанный технический результат при осуществлении изобретения достигается тем, что в известной установке для исследования процессов тепломассопереноса, содержащей газогенератор на твердом топливе, газовод с цилиндрическим каналом с местным сопротивлением, термодатчики и сопло, особенность заключается в том, что в ней наружная поверхность газовода с цилиндрическим каналом выполнена с одной или несколькими гранями, причем толщина стенки газовода с цилиндрическим каналом в области граней составляет (0,4…0,8) δ, где δ - толщина стенки газовода с цилиндрическим каналом на участке без граней, , где Р - давление в газоводе с цилиндрическим каналом, D - диаметр газовода с цилиндрическим каналом, К - коэффициент запаса, σ - предел прочности материала стенки газовода с цилиндрическим каналом при средней температуре по толщине стенки в сечении газовода с цилиндрическим каналом с максимальным нагревом при испытаниях, а термодатчики размещены в продольной плоскости, проходящей через ось газовода с цилиндрическим каналом и сечение грани с минимальной толщиной стенки.

Новая совокупность конструктивных элементов, а также наличие связей между ними позволяют, в частности, за счет:

- выполнения наружной поверхности газовода с цилиндрическим каналом с одной или несколькими гранями, причем толщина стенки газовода с цилиндрическим каналом в области граней составляет (0,4…0,8) δ, где δ - толщина стенки газовода с цилиндрическим каналом на участке без граней, , где Р - давление в газоводе с цилиндрическим каналом, D - диаметр газовода с цилиндрическим каналом, К - коэффициент запаса, σ - предел прочности материала стенки газовода с цилиндрическим каналом при средней температуре по толщине стенки в сечении газовода с цилиндрическим каналом с максимальным нагревом при испытаниях, резко повысить в исследуемых сечениях газовода с цилиндрическим каналом уровень радиальных тепловых потоков по сравнению с аксиальным тепловым потоком, что позволяет практически исключить влияние аксиального теплового потока на температуру, регистрируемую термодатчиками и повысить за счет этого точность идентификации параметров, например, границ зоны локальной интенсификации теплообмена. Рациональная толщина стенки газовода с цилиндрическим каналом в области граней, в месте размещения термодатчиков, рассчитывается для конкретного варианта установки в зависимости от времени работы газогенератора, типа топлива, конструктивных параметров установки. Для типовых схем газоводов с цилиндрическим каналом, параметров топлив газогенераторов, толщина стенки в области граней составляет (0,4…0,8) δ, где δ - толщина стенки газовода с цилиндрическим каналом на участке без граней, рассчитываемая по формуле , где Р - давление в газоводе с цилиндрическим каналом, D - диаметр газовода с цилиндрическим каналом, К - коэффициент запаса, σ - предел прочности материала стенки газовода с цилиндрическим каналом при средней температуре по толщине стенки в сечении газовода с цилиндрическим каналом с максимальным нагревом при испытаниях. При уменьшении толщины стенки газовода с цилиндрическим каналом в области граней менее 0,4δ температура в этой зоне может превысить допустимое значение, что приводит к разрушению газовода с цилиндрическим каналом. При увеличении толщины стенки свыше 0,8δ увеличивается погрешность измерения параметров тепломассопереноса.

- размещения термодатчиков в продольной плоскости, проходящей через ось газовода с цилиндрическим каналом и сечение грани с минимальной толщиной стенки обеспечить высокую точность измерений, так как в этой области аксиальным тепловым потоком практически можно пренебречь по сравнению с радиальным потоком, что обеспечивает снижение погрешности измерений.

Сущность изобретения поясняется Фиг., на которой изображена предлагаемая установка с частичным вырезом.

Предлагаемая установка для исследования процессов тепломассопереноса содержит газогенератор 1, соединенный с газоводом 2 с цилиндрическим каналом, в котором установлено местное сопротивление 3. На наружной поверхности газовода 2 с цилиндрическим каналом размещены термодатчики 4, газовод 2 с цилиндрическим каналом соединен с соплом 5. Наружная поверхность газовода 2 с цилиндрическим каналом выполнена с одной или несколькими гранями 6, причем толщина стенки газовода 2 с цилиндрическим каналом в области граней 6 составляет (0,4…0,8) δ, где δ - толщина стенки газовода 2 с цилиндрическим каналом на участке без граней 6, , где Р - давление в газоводе 2 с цилиндрическим каналом, D - диаметр газовода 2 с цилиндрическим каналом, К - коэффициент запаса, σ - предел прочности материала стенки газовода 2 с цилиндрическим каналом при средней температуре по толщине стенки в сечении газовода 2 с цилиндрическим каналом с максимальным нагревом при испытаниях, а термодатчики 4 размещены в продольной плоскости, проходящей через ось газовода 2 с цилиндрическим каналом и сечение грани 6 с минимальной толщиной стенки.

Предложенная установка для исследования процессов тепломассопереноса работает следующим образом. После начала работы газогенератора 1 продукты сгорания втекают в газовод 2 с цилиндрическим каналом и через местные сопротивления 3 продолжают движение по газоводу 2 с цилиндрическим каналом и истекают через сопло 5. При движении продукты сгорания за местным сопротивлением 3 образуют рециркуляционную зону, в которой интенсивность теплообмена в несколько раз выше, чем при стабилизированном течении. За счет выполнения наружной поверхности газовода 2 с цилиндрическим каналом с одной или несколькими гранями 6, причем толщина стенки газовода 2 с цилиндрическим каналом в области граней 6 составляет (0,4…0,8) δ, где δ - толщина стенки газовода 2 с цилиндрическим каналом на участке без граней, , где Р - давление в газоводе 2 с цилиндрическим каналом, D - диаметр газовода 2 с цилиндрическим каналом, К - коэффициент запаса, σ - предел прочности материала стенки газовода 2 с цилиндрическим каналом при средней температуре по толщине стенки в сечении газовода 2 с цилиндрическим каналом с максимальным нагревом при испытаниях, а термодатчики 4 размещены в продольной плоскости, проходящей через ось газовода 2 с цилиндрическим каналом и сечение грани 6 с минимальной толщиной стенки, обеспечивается снижение погрешности определения параметров тепломассопереноса, в частности, определение границ рециркуляционных зон.

Выполнение установки для исследования процессов тепломассопереноса позволило повысить точность определения параметров теплопереноса на наиболее теплонапряженном участке газового тракта РДТТ.

Изобретение может быть использовано при создании установок для полунатурного моделирования процессов в РДТТ, в том числе для ракет систем залпового огня.

Указанный положительный эффект подтвержден использованием установки, изготовленной в соответствии с предлагаемым изобретением. В настоящее время на установке проводятся работы по определению параметров теплопереноса для разрабатываемых инновационных РДТТ.

Установка для исследования процессов тепломассопереноса, содержащая газогенератор на твердом топливе, газовод с цилиндрическим каналом с местным сопротивлением, термодатчики и сопло, отличающаяся тем, что наружная поверхность газовода с цилиндрическим каналом выполнена с одной или несколькими гранями, причем толщина стенки газовода с цилиндрическим каналом в области граней составляет (0,4…0,8) δ, где δ - толщина стенки газовода с цилиндрическим каналом на участке без граней, , где Р - давление в газоводе с цилиндрическим каналом, D - диаметр газовода с цилиндрическим каналом, K - коэффициент запаса, σ - предел прочности материала стенки газовода с цилиндрическим каналом при средней температуре по толщине стенки в сечении газовода с цилиндрическим каналом с максимальным нагревом при испытаниях, а термодатчики размещены в продольной плоскости, проходящей через ось газовода с цилиндрическим каналом и сечение грани с минимальной толщиной стенки.
Установка для исследования процессов тепломассопереноса
Установка для исследования процессов тепломассопереноса
Установка для исследования процессов тепломассопереноса
Установка для исследования процессов тепломассопереноса
Источник поступления информации: Роспатент

Показаны записи 131-140 из 158.
31.07.2020
№220.018.39d0

Щековая дробилка

Изобретение относится к горнорудной, химической, металлургической и других областях промышленности. Предложена щековая дробилка, содержащая корпус с боковыми стенками, камеру дробления, включающую подвижную щеку, станину и две боковые стенки, рабочий орган, расположенный в вертикальных...
Тип: Изобретение
Номер охранного документа: 0002728415
Дата охранного документа: 29.07.2020
12.04.2023
№223.018.4300

Способ получения графеносодержащих суспензий эксфолиацией графита

Изобретение относится к получению графеносодержащих суспензий, используемых при модифицировании графеном композитных материалов: масел, смазок, бетонов. Способ получения графеносодержащих суспензий эксфолиацией графита включает приготовление смеси кристаллического графита с жидкостью, получение...
Тип: Изобретение
Номер охранного документа: 0002793553
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.4395

Устройство для разгрузки кускового материала из бункера

Изобретение относится к горнорудной, химической, угольной, строительной и другим областям народного хозяйства. Устройство для разгрузки кускового материала из бункера содержит желоб и форсунку. Желоб расположен под углом 60° к горизонтали, имеет плоскую форму сечения с бортами и установлен в...
Тип: Изобретение
Номер охранного документа: 0002793486
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.43cb

Штамп для полугорячего выдавливания длинномерных труб с вырубкой из пресс-остатка

Изобретение относится к кузнечно-прессовой оснастке, в частности к штампам для выдавливания длинномерных труб. Штамп содержит бандаж, матрицу с внутренней конической поверхностью, конической рабочей поверхностью и калибрующим пояском, пуансон и пуансонодержатель. Головная часть пуансона...
Тип: Изобретение
Номер охранного документа: 0002793661
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.4752

Устройство для разгрузки кускового материала из бункера

Устройство для разгрузки кускового материала из бункера содержит желоб, расположенный под углом 60° к горизонтали и имеющий плоскую форму сечения с бортами, установленный в пазах боковых стенок бункера, являющихся направляющими для желоба, причем борта желоба охватывают боковые стенки бункера,...
Тип: Изобретение
Номер охранного документа: 0002793719
Дата охранного документа: 05.04.2023
12.04.2023
№223.018.4777

Установка для динамических испытаний плоских образцов материалов на растяжение

Изобретение относится к испытательной технике и может быть использовано для проведения экспериментальных исследований свойств материалов в условиях высокоскоростного нагружения. Установка содержит механический копер и механизм передачи нагрузки плоскому образцу. Механизм передачи нагрузки имеет...
Тип: Изобретение
Номер охранного документа: 0002744319
Дата охранного документа: 05.03.2021
12.04.2023
№223.018.49fd

Устройство для измерения ускорений

Изобретение предназначено для применения в качестве элемента систем навигации и стабилизации. Сущность предлагаемого устройства заключается в том, что в его конструкцию введена аналоговая отрицательная обратная связь с выхода полосового фильтра на один из входов датчика момента через...
Тип: Изобретение
Номер охранного документа: 0002793846
Дата охранного документа: 07.04.2023
12.04.2023
№223.018.4a0c

Двухосный индикаторный гиростабилизатор

Изобретение относится к гироскопической технике, а более конкретно к двухосным индикаторным гиростабилизаторам на микромеханических гироскопах, работающим на пилотируемых и беспилотных летательных аппаратах (ЛА). Двухосный индикаторный гиростабилизатор содержит наружную рамку, установленную на...
Тип: Изобретение
Номер охранного документа: 0002793844
Дата охранного документа: 07.04.2023
12.04.2023
№223.018.4a14

Устройство для измерения ускорений

Изобретение относится к измерительной технике. В устройство для измерения ускорений дополнительно введены аналоговая отрицательная обратная связь с выхода усилителя на один из входов датчика момента через высокочастотный фильтр, другой выход усилителя соединен с входом компаратора через...
Тип: Изобретение
Номер охранного документа: 0002793895
Дата охранного документа: 07.04.2023
12.04.2023
№223.018.4a37

Акселерометр

Изобретение относится к измерительной технике. Сущность изобретения заключается в том, что в акселерометр введены аналоговая отрицательная обратная связь с выхода датчика угла на вход датчика момента через усилитель с насыщением, первый низкочастотный фильтр, интегратор и второй низкочастотный...
Тип: Изобретение
Номер охранного документа: 0002793845
Дата охранного документа: 07.04.2023
Показаны записи 1-5 из 5.
10.12.2015
№216.013.95e1

Ракетный двигатель твердого топлива

Изобретение относится к ракетной технике и предназначено для использования в ракетах систем залпового огня. Ракетный двигатель твердого топлива содержит корпус с защитно-крепящим слоем, сопло и секционный заряд с секциями большого относительного удлинения с манжетами. Донная секция заряда...
Тип: Изобретение
Номер охранного документа: 0002569989
Дата охранного документа: 10.12.2015
25.08.2017
№217.015.c1d7

Узел разделения головной части боеприпаса

Изобретение относится к области ракетной техники и может быть использовано при разработке разделяющихся боеприпасов реактивной и ствольной артиллерии. Технический результат – повышение надежности работы устройства. Узел разделения головной части боеприпаса содержит оболочку с дном, опорное...
Тип: Изобретение
Номер охранного документа: 0002617824
Дата охранного документа: 27.04.2017
25.08.2017
№217.015.c1e9

Устройство для экспериментальной отработки отсеков разделения реактивных снарядов с составными источниками энергии

Изобретение относится к военной технике, а именно к экспериментальным устройствам для стендовой отработки процесса разделения реактивных снарядов. Технический результат - обеспечение возможности испытания изделий на регламентируемые ударные воздействия при использовании зарядной камеры с...
Тип: Изобретение
Номер охранного документа: 0002617823
Дата охранного документа: 27.04.2017
16.05.2019
№219.017.528a

Двухрежимный ракетный двигатель твердого топлива

Изобретение относится к области ракетной техники, а именно к ракетным двигателям твердого топлива – РДТТ, и предназначено для использования в ракетах различного назначения. Технический результат – повышение эффективности работы РДТТ. Устройство содержит цилиндрический корпус, стартовую и...
Тип: Изобретение
Номер охранного документа: 0002687500
Дата охранного документа: 14.05.2019
17.06.2023
№223.018.7ea9

Ракетная часть реактивного снаряда

Изобретение относится к ракетной технике, именно к ракетной части реактивного снаряда. Ракетная часть реактивного снаряда содержит корпус, блок стабилизатора и втулку. На внешней поверхности корпуса в области, ограниченной втулкой и резьбовым соединением с блоком стабилизатора, выполнен...
Тип: Изобретение
Номер охранного документа: 0002775451
Дата охранного документа: 01.07.2022
+ добавить свой РИД