×
08.03.2019
219.016.d319

Результат интеллектуальной деятельности: ОПТИМИЗИРОВАННЫЙ ТЕРМОПАРНЫЙ СЕНСОР

Вид РИД

Изобретение

№ охранного документа
0002681224
Дата охранного документа
05.03.2019
Аннотация: Изобретение относится к инфракрасным твердотельным сенсорам, а более конкретно к инфракрасным неохлаждаемым термопарным сенсорам. Термопарный сенсор содержит поглощающий ИК-излучение слой на диэлектрической мембране, вывешенной относительно подложки на теплоизолирующих микроконсолях, один конец которых закреплен на мембране, а другой - на подложке. На поверхности консолей сформирована по крайней мере одна термопара, «горячий спай» которой расположен на мембране, которая нагревается под действием ИК-излучения, повышая температуру «горячего спая», а «холодные» контакты расположены на подложке, имеющей стабильную температуру. Оптимальное соотношение между длиной консолей и площадью сенсора, определенное в предлагаемом изобретении, обеспечивает сенсору достижение минимального значения эквивалентной шуму разности температур и, соответственно, максимального отношения сигнал/шум при заданных площади сенсора и времени кадра. Технический результат - достижение максимально возможной чувствительности термопарного сенсора. 3 ил.

Изобретение относится к инфракрасным твердотельным сенсорам, а, более конкретно, к инфракрасным неохлаждаемым термопарным сенсорам, то есть сенсорам с термопарами в качестве термочувствительного элемента.

Целью изобретения является обеспечение максимально возможной чувствительности термопарного сенсора.

Известны кремниевые неохлаждаемые термопарные сенсоры, используемые для создания неохлаждаемых приемников ИК изображения [1, 2]. При изготовлении этих сенсоров используются различные варианты микрообработки кремния для формирования МЭМС структур в виде тонких диэлектрических мембран, теплоизолированных от подложки.

Наиболее близким по конструктивным признакам к предлагаемому изобретению является термопарный сенсор, описанный в патенте [3]. Приведенный в этом источнике сенсор содержит поглощающий ИК излучение слой на диэлектрической мембране, вывешенной относительно подложки на теплоизолирующих консолях, один конец которых закреплен на мембране, а другой - на подложке. На поверхности консолей сформирована по крайней мере одна термопара, «горячий спай» которой расположен на мембране, которая нагревается под действием ИК излучения, повышая температуру «горячего спая», а «холодные» контакты расположены на подложке, имеющей стабильную температуру. Полезный сигнал в виде термо-ЭДС, образующейся в результате возникающей разности температур между «горячим спаем» и «холодными» контактами, считывается КМОП-схемами, интегрированными непосредственно в кристалл. Приведенные в указанном патенте варианты конструкций сенсора отличаются друг от друга различными соотношениями между размерами теплочувствительной мембраны и поддерживающих консолей. При одинаковых размерах общей площади сенсора, включающей площадь теплочувствительной мембраны и площадь, приходящуюся на консоли, приведенные конструкции сенсора будут иметь разную чувствительность. Однако, оптимальные соотношения между размерами теплочувствительной мембраны и поддерживающих консолей для обеспечения максимально возможной чувствительности сенсора в патенте не определены.

Чувствительность термопарного сенсора в составе приемника ИК изображения определяется целым рядом факторов, а именно:

- площадью сенсора S, включающей в себя площадь чувствительной мембраны А и площадь Sc, занимаемую консолями, S=А+Sc;

- теплоемкостью С мембраны (включая поглощающее покрытие), равную С=сА, где с -теплоемкость мембраны на единицу площади;

- теплопроводностью консолей, определяемой тепловой проводимостью термопары, которая для случая, когда сенсор содержит одну термопару, равна Gt=2gtwht/L,

где gt - удельная теплопроводность материала термопары, w и ht, соответственно, ее ширина и толщина, a L - длина одного плеча термопары, равная, как правило, длине консоли, на которой это плечо сформировано;

- электрическим сопротивлением термопары, Rt=2ρtL/wht, где ρt - удельное электрическое сопротивление материала термопары, a L, w и ht, соответственно, ее длина, ширина и толщина;

- временем тепловой релаксации сенсора τг;

- временем кадра τƒ приемника ИК изображения.

Перечисленные параметры находятся в тесной взаимосвязи друг с другом, оказывая влияние на чувствительность сенсора. В предлагаемом изобретении на основе проведенного теоретического рассмотрения, выявляющего указанные взаимосвязи, показано, что при известных тепло- и электрофизических параметрах материалов, используемых при создания термопарного сенсора для реализации на его основе приемника ИК изображения, а также ограничениях, определяемых заданными значениями площади сенсора и времени кадра приемника ИК изображения, существует оптимальное соотношение между площадью мембраны А и площадью Sc, занимаемой консолями, которое обеспечивает максимально возможную чувствительность сенсора.

Техническим результатом настоящего изобретения является реализация конструкции термопарного сенсора с максимально возможной чувствительностью за счет выбора оптимального соотношения между размерами теплочувствительной мембраны и поддерживающих консолей в пределах заданной площади сенсора.

Указанный результат достигается за счет того, что в известном термопарном сенсоре с заданной площадью S, длина консолей, на которых формируется термопара, выбирается такой, чтобы выполнялось следующее соотношение:

где μ - топологический фактор смежности, учитывающий площадь зазоров между термопарой и мембраной и определяемый соотношением S=А+2μwL, a Sopt=, при этом предполагается, что Sopt≤S.

Формула (1) получена исходя из следующий положений.

1. Основной характеристикой чувствительности является эквивалентна шуму разность температур (NETD - Noise Equivalent Temperature Difference). Оптимальные геометрические параметры конструкции сенсора достигаются при минимизации NETD.

Собственные шумы термопары определяются тепловым шумом ее сопротивления, который равен, что дает следующее значение NETD:

где Δp - поглощенная единицей площади теплоприемника избыточная мощность излучения абсолютно черного тела, нагретого до температуры Т+ΔТ, в рассматриваемом спектральном диапазоне при расположении сенсора в фокальной плоскости оптической системы, α - коэффициент Зеебека, достигающий для сенсора с термопарами из поликристаллического кремния величины 300 мкВ/К.

Выражение (2) выведено для случая, когда сенсор содержит одну термопару. С целью увеличения сигнала в ряде случаев в сенсор вводят несколько последовательно соединенных термопар. Однако, простое последовательное соединение нескольких термопар приводит лишь к увеличению NETD. Обобщенное выражение (2) для n последовательно соединенных термопар можно записать в виде:

которое иллюстрирует увеличение NETD в раз, что связано с увеличением сопротивления термопар в раз и теплопроводности n раз.

2. Минимизация NETD при заданной площади сенсора достигается за счет реализации условий, при которых время тепловой релаксации сенсора, характеризующее скорость реакции мембраны сенсора на изменение мощности теплового излучения, сравнимо с временем кадра приемника ИК изображения, а именно, когда выполняется следующее соотношение:

3. Исходя из уравнения теплового баланса, имеющего вид

время тепловой релаксации сенсора равно

4. Соотношение между задаваемой площадью сенсора и длиной консолей имеет вид:

Тогда соотношение (1) является результатом решения уравнения (6) относительно L, с учетом условий (3) и (5). При этом наименьшее значение NETD реализуется, в случае выполнения условий (1), (6) с такой шириной термопары w, при которой Sopt=S, а использование n последовательных термопар с эффективной топологической шириной (μ*⋅w*), такой, что n(μ*⋅w*)=μ⋅w, позволяет, в отличие от случая, иллюстрируемого формулой (2а), увеличить выходной сигнал в n раз при сохранении оптимального значения NETD.

Перечень графических материалов, иллюстрирующих заявляемое изобретение.

Рисунок 1 иллюстрирует известную конструкцию термопарного сенсора, приведенного в прототипе. Здесь 1 - диэлектрическая мембрана с поглощающим тепло покрытием, 2 -поддерживающая консоль, 3 - консоли с термопарой, 4 - «горячий» спай термопары, размещенный на мембране, 5- «холодные» концы термопары, 6 - полупроводниковая подложка.

На рисунке 2 представлены графики зависимостей L=ƒ(S) и NETD=ƒ(S), соответствующие формуле (1), для варианта технологии изготовления сенсора с топологическими нормами проектирования 0,35 мкм.

На рисунке 3 показаны две конструкции термопарного сенсора с одной термопарой, в котором соотношение между площадью сенсора 5 и длиной L консолей, на которых сформирована термопара, отвечает формуле (1). Рисунок За иллюстрирует сенсор с площадью S=60×60 мкм2, у которого длина консоли L=10 мкм в соответствие с формулой (1), а на фиг. 3б представлен сенсор с площадью S=30×30 мкм2, у которого длина консоли, соответствующая формуле (1), уже существенно больше и равна L=54 мкм. Обозначения элементов идентичны обозначениям элементов на рисунке 1.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Патент США №6,335,478 В1.

2. Патент США №US 8,592,765 В2.

3. Патент США №US 6,163,061.


ОПТИМИЗИРОВАННЫЙ ТЕРМОПАРНЫЙ СЕНСОР
ОПТИМИЗИРОВАННЫЙ ТЕРМОПАРНЫЙ СЕНСОР
ОПТИМИЗИРОВАННЫЙ ТЕРМОПАРНЫЙ СЕНСОР
ОПТИМИЗИРОВАННЫЙ ТЕРМОПАРНЫЙ СЕНСОР
ОПТИМИЗИРОВАННЫЙ ТЕРМОПАРНЫЙ СЕНСОР
Источник поступления информации: Роспатент

Показаны записи 1-2 из 2.
26.08.2017
№217.015.ee4b

Ячейка фотоэлектрического преобразователя приемника изображения

Изобретение относится к микроэлектронике, а именно к интегральным фотоэлектрическим преобразователям. Ячейка фотоэлектрического преобразователя приемника изображения содержит фотодиод, транзистор считывания заряда, накопленного фотодиодом, транзистор предустановки, обеспечивающий восстановление...
Тип: Изобретение
Номер охранного документа: 0002628738
Дата охранного документа: 21.08.2017
01.11.2018
№218.016.97fd

Ячейка термопарного приемника ик изображения

Изобретение относится к инфракрасным твердотельным приемникам изображения, а более конкретно к инфракрасным неохлаждаемым твердотельным приемникам ИК изображения на основе термопарных сенсоров. Ячейка термопарного приемника ИК изображения содержит термопарный сенсор, транзистор выборки и...
Тип: Изобретение
Номер охранного документа: 0002671295
Дата охранного документа: 30.10.2018
Показаны записи 1-5 из 5.
10.04.2014
№216.012.b1af

Адаптивный датчик на основе чувствительного полевого прибора

Изобретение относится к сенсорам физико-химических или биохимических воздействий, в частности к области инфракрасной техники, а именно к преобразователям теплового излучения в электрический сигнал. В адаптивном датчике на основе чувствительного полевого прибора, содержащем структуру...
Тип: Изобретение
Номер охранного документа: 0002511203
Дата охранного документа: 10.04.2014
26.08.2017
№217.015.ee4b

Ячейка фотоэлектрического преобразователя приемника изображения

Изобретение относится к микроэлектронике, а именно к интегральным фотоэлектрическим преобразователям. Ячейка фотоэлектрического преобразователя приемника изображения содержит фотодиод, транзистор считывания заряда, накопленного фотодиодом, транзистор предустановки, обеспечивающий восстановление...
Тип: Изобретение
Номер охранного документа: 0002628738
Дата охранного документа: 21.08.2017
10.05.2018
№218.016.412c

Инфракрасный сенсор с переключаемым чувствительным элементом

Инфракрасный сенсор с переключаемым чувствительным элементом относится к устройствам для бесконтактного измерения температуры в различных системах управления и контроля. Инфракрасный сенсор с переключаемым чувствительным элементом содержит теплоприемную мембрану, прикрепленную к подложке с...
Тип: Изобретение
Номер охранного документа: 0002649040
Дата охранного документа: 29.03.2018
01.11.2018
№218.016.97fd

Ячейка термопарного приемника ик изображения

Изобретение относится к инфракрасным твердотельным приемникам изображения, а более конкретно к инфракрасным неохлаждаемым твердотельным приемникам ИК изображения на основе термопарных сенсоров. Ячейка термопарного приемника ИК изображения содержит термопарный сенсор, транзистор выборки и...
Тип: Изобретение
Номер охранного документа: 0002671295
Дата охранного документа: 30.10.2018
07.02.2019
№219.016.b7ec

Активный магниточувствительный сенсор многоэлементного преобразователя магнитного поля

Изобретение относится к электронным преобразователям магнитного поля, а более конкретно к кремниевым датчикам Холла в виде интегральной схемы, содержащей магниточувствительный элемент Холла и электронную схему для измерения и обработки сигнала. Предлагаемый активный магниточувствительный сенсор...
Тип: Изобретение
Номер охранного документа: 0002678958
Дата охранного документа: 04.02.2019
+ добавить свой РИД