×
08.03.2019
219.016.d30e

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЯ НА ИМПЛАНТАТЕ ИЗ СПЛАВА ТИТАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гальванотехники, в частности к анодированию сплавов титана, и может быть использовано в травматологии, ортопедии и стоматологии. Способ включает анодирование имплантата импульсным током в условиях искрового разряда при напряжении 170-200 В и температуре 10-20°С в течение 15-30 мин при постоянном перемешивании в электролите, содержащем раствор фосфорной кислоты с концентрацией 10%, порошок СаО до пересыщенного состояния и 10% порошка гидроксиапатита дисперсностью менее 70 мкм, при этом электролит дополнительно содержит 2,5-15 мас.% раствора хитозана, полученного при растворении сухого порошка хитозана в уксусной кислоте с концентрацией 4,5%, а анодирование ведут, пропуская ток положительной полярности со скоростью подъема напряжения 1-3 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс. Технический результат: получение эластичных и пористых покрытий на имплантате. 5 ил., 1 табл., 5 пр.

Изобретение относится к области электролитического нанесения покрытий с помощью химических реакций на поверхности, а именно к анодированию тугоплавких металлов или их сплавов и может быть использовано в травматологии, ортопедии и стоматологии.

Известен способ нанесения покрытия на имплантат из титана и его сплавов [RU 2221904 С1, МПК (2000.01) C25D 11/26, A61F 2/02, опубл. 20.01.2004], выбранный в качестве прототипа, включающий анодирование имплантата импульсным или постоянным током в условиях искрового разряда при напряжении 90-200 В с частотой следования импульсов 0,5-10,0 Гц при температуре 20-35°С в растворе фосфорной кислоты в течение 10-30 мин при постоянном перемешивании. Анодирование ведут в растворе фосфорной кислоты с концентрацией 5-25%, содержащем порошок СаО до пересыщенного состояния, или в растворе фосфорной кислоты с концентрацией 5-25%, содержащем порошок СаО до пересыщенного состояния и дополнительно 5-10% суспензии гидроксиапатита дисперсностью менее 70 мкм для создания суспензии.

Толщина полученных покрытий составляет 5-40 мкм.

Техническим результатом предложенного изобретения является разработка способа формирования покрытия на имплантате из сплава титана, позволяющего получить эластичные и пористые покрытия.

Способ формирования покрытия на имплантате из сплава титана, также как в прототипе включает анодирование имплантата импульсным током в условиях искрового разряда при напряжении 170-200 В и температуре 10-20°С в течение 15-30 мин при постоянном перемешивании в электролите, состоящем из раствора фосфорной кислоты с концентрацией 10%, порошка СаО до пересыщенного состояния и 10% порошка гидроксиапатита дисперсностью менее 70 мкм.

Согласно изобретению анодирование ведут, пропуская ток положительной полярности со скоростью подъема напряжения 1-3 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс в электролите, дополнительно содержащем 2,5-15 мас. % раствора хитозана, полученного при растворении сухого порошка хитозана в уксусной кислоте с концентрацией 4,5%.

Предложенный способ формирования покрытия на имплантате из сплавов титана позволяет получить пористые покрытия с эластичностью 1 мм, толщиной 2-5 мкм. Количество пор на 1500 мкм2 составляет от 3925±535 до 8311±736 шт. с диаметром пор на поверхности покрытий от 0,6±0,3 до 0,8±0,3 мкм.

Таким образом, полученные покрытия по сравнению с прототипом обладают большим количеством и диаметром пор, что способствует лучшей интеграции имплантата в живой организм. Эластичность покрытий увеличена минимум на 6 мм. Количество пор увеличено на 393-4779 шт. на 1500 мкм2, а диаметр пор на поверхности покрытий - на 0,1-0,3 мкм.

На фиг. 1-4 приведены снимки поверхности покрытия на имплантате, сформированного предложенным способом.

На фиг. 5 приведен снимок поверхности покрытия на имплантате, сформированного способом-прототипом.

В таблице 1 представлены результаты осуществления способа.

Использовали имплантаты размером 50×20×0,5 мм3 из сплава титана ВТ-6, которые для удаления оксидной пленки и загрязнений подвергали травлению в водном растворе азотной и плавиковой кислот, взятых в объемных отношениях HN:HF:H2O=1:2,5:2,5, при температуре 15-20°С в течение 10-15 секунд с последующей нейтрализацией в 1% водном растворе гидроксида натрия и многократной промывкой дистиллированной водой.

Пример 1

Для получения электролита подготовили раствор фосфорной кислоты с концентрацией 10%, к которому добавили порошок СаО до пересыщенного состояния, 10% порошок гидроксиапатита дисперсностью менее 70 мкм, и 2,5 мас. % раствора хитозана, полученного при растворении сухого порошка хитозана в 4,5% уксусной кислоте.

Полученный электролит вылили в электролитическую ванну, поместили в нее подготовленный имплантат и формировали покрытие с использованием установки для микродугового оксидирования [https://doi.org/10.1063/1.5001611].

Через раствор пропустили ток положительной полярности с напряжением 170 В со скоростью подъема напряжения 1 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс в течение 15 минут. Процесс вели при температуре 10°С при постоянном перемешивании.

После формирования покрытия, имплантат извлекли из электролитической ванны, промыли под проточной водой в течение 15 минут и прокипятили в дистиллированной воде в течение часа. После извлечения из дистиллированной воды поверхность имплантата осушили безворсовой салфеткой и поместили в воздушный стерилизатор для окончательного выпаривания влаги при температуре 105°С в течение 30 минут.

Исследование морфологии поверхности покрытия имплантата провели с помощью сканирующей электронной микроскопии, используя электронный микроскоп JEOL-6000. Морфология полученной поверхности покрытия показана на снимке, представленном на фиг. 1.

Измерение диаметра и подсчет количества пор на полученном снимке было проведено с помощью программы «ImageJ». Количество пор составило 3925±535 шт. на 1500 мкм2. Диаметр пор составил 0,6±0,3 мкм (таблица 1). Эластичность полученного покрытия, измеренная с использованием прибора «Изгиб», составила 1 мм. Толщина покрытия, измеренная с помощью прибора для измерения геометрических параметров КОНСТАНТА К5, составила 2 мкм.

Пример 2.

Состав используемого электролита, отличался от примера 1, использованием 5 мас. % раствора хитозана. Покрытие формировали при напряжении 180 В со скоростью подъема напряжения 2 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс в течение 20 минут. Процесс вели при температуре 15°С. На фиг. 2 показана морфология полученного покрытия. В таблице 1 приведены результаты исследования полученного покрытия.

Пример 3.

Состав используемого электролита, отличался использованием 10 мас. % раствора хитозана. Покрытие формировали при напряжении 190 В со скоростью подъема напряжения 3 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс в течение 20 минут. Процесс вели при температуре 20°С. На фиг. 3 показана морфология полученного покрытия. В таблице 1 приведены результаты исследования полученного покрытия.

Пример 4.

Состав используемого электролита, отличался от приведенного в примере 1, использованием 15 мас. % раствора хитозана. Покрытие формировали при напряжении 200 В со скоростью подъема напряжения 3 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс в течение 30 минут. Процесс вели при температуре 10°С. На фиг. 4 показана морфология полученного покрытия. В таблице 1 приведены результаты исследования полученного покрытия.

Пример 5.

Для нанесения покрытия по способу-прототипу подготовили раствор электролита, состоящий из фосфорной кислоты с концентрацией 10%, к которому добавили порошок СаО до пересыщенного состояния и 10% порошок гидроксиапатита дисперсностью менее 70 мкм.

Полученный электролит вылили в электролитическую ванну, поместили в нее подготовленный имплантат и формировали покрытие с использованием установки для микродугового оксидирования. Через раствор пропустили ток положительной полярности с напряжением 200 В, с частотой следования импульсов 10 Гц в течение 30 минут. Процесс вели при температуре 20°С при постоянном перемешивании. На фиг. 5 показана морфология полученного покрытия. В таблице 1 приведены результаты исследования полученного покрытия.

СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЯ НА ИМПЛАНТАТЕ ИЗ СПЛАВА ТИТАНА

Способ формирования покрытия на имплантате из сплава титана, включающий анодирование имплантата импульсным током в условиях искрового разряда при напряжении 170-200 В и температуре 10-20°С в течение 15-30 мин при постоянном перемешивании в электролите, состоящем из раствора фосфорной кислоты с концентрацией 10%, порошка СаО до пересыщенного состояния и 10% порошка гидроксиапатита дисперсностью менее 70 мкм, отличающийся тем, что электролит дополнительно содержит 2,5-15 мас. % раствора хитозана, полученного при растворении сухого порошка хитозана в уксусной кислоте с концентрацией 4,5%, а анодирование ведут, пропуская ток положительной полярности со скоростью подъема напряжения 1-3 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс.
СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЯ НА ИМПЛАНТАТЕ ИЗ СПЛАВА ТИТАНА
СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЯ НА ИМПЛАНТАТЕ ИЗ СПЛАВА ТИТАНА
СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЯ НА ИМПЛАНТАТЕ ИЗ СПЛАВА ТИТАНА
Источник поступления информации: Роспатент

Показаны записи 131-140 из 255.
13.02.2018
№218.016.23c7

Масляно-смоляная композиция

Изобретение относится к области органических высокомолекулярных соединений, а именно к составам для нанесения покрытий на основе масляно-смоляных композиций, и может быть использовано в лакокрасочной промышленности при производстве лаков, красок и адгезивов. Масляно-смоляная композиция содержит...
Тип: Изобретение
Номер охранного документа: 0002642638
Дата охранного документа: 25.01.2018
13.02.2018
№218.016.2437

Способ изготовления хроматографического генератора технеция-99m облученным нейтронами молибденом-98

Изобретение относится к способам получения технеция-99m для медицинской диагностики. Способ изготовления хроматографического генератора технеция-99m из облученного нейтронами молибдена-98 включает обработку оксида алюминия предельным количеством кислоты, необходимым для полного прекращения ее...
Тип: Изобретение
Номер охранного документа: 0002642485
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2a48

Способ плазменно-дуговой сварки плавящимся электродом

Изобретение относится к области сварочного производства с совместным использованием плазменной дуги и дуги от плавящегося электрода. Способ включает в себя возбуждение плазменной дуги между кольцевым неплавящимся электродом плазмотрона и изделием, подачу в зону сварки плавящегося электрода...
Тип: Изобретение
Номер охранного документа: 0002643010
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2b53

Резец для горных и дорожных машин

Изобретение относится к горной промышленности и может быть использовано на исполнительных органах горных и дорожных машин при проведении проходческих и добычных работ, а также при проведении строительных работ по ремонту дорожных покрытий. Резец содержит державку, головку в виде тела вращения...
Тип: Изобретение
Номер охранного документа: 0002643386
Дата охранного документа: 01.02.2018
17.02.2018
№218.016.2d10

Способ получения диоксида титана рутильной модификации (варианты)

Изобретение может быть использовано в пищевой, химической, фармацевтической и лакокрасочной промышленности. Способ получения пигментного диоксида титана рутильной модификации включает обработку гидратированного диоксида титана в присутствии рутилизирующей добавки. Используют аморфный диоксид...
Тип: Изобретение
Номер охранного документа: 0002643555
Дата охранного документа: 02.02.2018
17.02.2018
№218.016.2de7

Способ испытания элементов котельного оборудования и трубопроводов на прочность и герметичность

Изобретение относится к способам испытания на прочность и герметичность элементов котельного оборудования и трубопроводов. Сущность: котельное оборудование и трубопроводы наполняют жидкостью, нагнетая давление до величины пробного давления. После достижения величины пробного давления...
Тип: Изобретение
Номер охранного документа: 0002643681
Дата охранного документа: 05.02.2018
17.02.2018
№218.016.2e11

Способ тушения пожаров

Изобретение относится к противопожарной технике, а именно к способам тушения пожаров при возгораниях на больших площадях, и может быть использовано для локализации и ликвидации крупных лесных пожаров, а также при подавлении возгораний промышленных и общественных объектов. Способ тушения...
Тип: Изобретение
Номер охранного документа: 0002643637
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.2ecc

Генератор для получения стерильных радиоизотопов

Изобретение относится к генератору для получения стерильных радиоизотопов. Генератор содержит колонку с сорбентом и радиоизотопом, размещенную внутри радиационной защиты и корпуса генератора, иглу элюата, соединенную трубкой с колонкой, многоходовый кран снабжен ручкой переключения, воздушный...
Тип: Изобретение
Номер охранного документа: 0002644395
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.2f2b

Устройство для измерения переменных токов высоковольтной линии электропередачи

Изобретение относится к электротехнике, к устройствам для измерения переменных токов, и может быть использовано для измерения переменных токов, протекающих в высоковольтных линиях электропередачи. Технический результат состоит в снижении массогабаритных показателей. Устройство для измерения...
Тип: Изобретение
Номер охранного документа: 0002644574
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.32fe

Масляно-смоляная композиция

Изобретение относится к области органических высокомолекулярных соединений, а именно к составам для нанесения покрытий на основе масляно-смоляной композиции, и может быть использовано в лакокрасочной промышленности при производстве лаков, красок и адгезивов. Масляно-смоляная композиция...
Тип: Изобретение
Номер охранного документа: 0002645486
Дата охранного документа: 21.02.2018
Показаны записи 21-22 из 22.
01.09.2019
№219.017.c55b

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Способ прогнозирования износостойкости твердосплавных группы...
Тип: Изобретение
Номер охранного документа: 0002698490
Дата охранного документа: 28.08.2019
05.04.2020
№220.018.135f

Импульсный генератор

Изобретение относится к импульсной технике. Технический результат: формирование высоковольтных сильноточных импульсов с устойчивым передним фронтом выходных импульсов. Для этого предложен импульсный генератор, который содержит первый источник питания 1, два дросселя 2 и 3, две конденсаторные...
Тип: Изобретение
Номер охранного документа: 0002718420
Дата охранного документа: 02.04.2020
+ добавить свой РИД