×
08.03.2019
219.016.d30a

Результат интеллектуальной деятельности: СПОСОБ ОБНАРУЖЕНИЯ ДЕФЕКТОВ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ МЕТОДОМ АКУСТИЧЕСКОЙ ТОМОГРАФИИ

Вид РИД

Изобретение

Аннотация: Использование: для неразрушающего контроля и обнаружения дефектов магистральных трубопроводов при их сложнонапряженном состоянии. Сущность изобретения заключается в том, что осуществляют первичное преобразование акустических колебаний с применением бинарного знакового аналого-стохастического квантования. В моменты смены знака результата бинарного знакового аналого-стохастического квантования формируют цифровые коды отсчетов, по которым определяют взаимную корреляционную функцию для положительных и отрицательных значений задержки, фиксируют время задержки для максимального значения взаимной корреляционной функции и определяют местоположение дефекта на контролируемом участке трубопровода. Технический результат: обеспечение возможности упрощения процесса определения местоположение дефекта. 1 ил.

Изобретение относится к контрольно-измерительной технике, а именно к методам неразрушающего контроля и обнаружения дефектов магистральных трубопроводов при их сложнонапряженном состоянии.

Известен способ обнаружения дефектов в трубопроводах, согласно которому по концам исследуемого участка трубопровода устанавливают пары акустических датчиков, один из которых в каждой паре регистрирует продольные колебания, а другой - поперечные колебания. После обработки сигналов от датчиков определяют местоположение и характер обнаруженного дефекта [патент РФ №2138037].

Наиболее близким к предлагаемому способу является способ по патенту РФ №1730917. Согласно этому способу на концах контролируемого участка трубопровода устанавливают пары акустических датчиков, которые фиксируют генерируемые дефектом колебания и по полученным результатам определяют его местоположение. Данный способ принят за прототип.

Недостатками данных способов является сложность процесса выявления дефекта, необходимость знать акустические свойства материала контролируемой трубы, что снижает функциональные возможности способа.

Задачей предлагаемого изобретения является создание способа обнаружения дефектов магистральных трубопроводов, лишенных недостатков наиболее близкого аналога.

Технический результат достигается тем, что осуществляют первичное преобразование акустических колебаний с применением бинарного знакового аналого-стохастического квантования, формируют цифровые коды отсчетов времени в моменты смены знака результата бинарного знакового аналого-стохастического квантования, определяют взаимную корреляционную функцию по цифровым кодам отсчетов времени для положительных и отрицательных значений задержки, фиксируют время задержки для максимального значения взаимной корреляционной функции, определяют местоположение дефекта на контролируемом участке трубопровода и регистрируют его.

Рассмотрим содержание предлагаемого способа.

Метод акустической томографии обнаружения дефектов трубопроводов основывается на физическом явлении эмиссии (излучении) акустических шумов в зонах (интервалах) повышенных напряжений. К таким зонам относятся также и интервалы, на которых имеется утончение стенки трубы за счет коррозии (внутренней и внешней). Акустические шумы, которые возникают непосредственно в результате дефектов трубопровода, являются его собственными шумами и рассматриваются как информативные сигналы. Внешние шумы являются результатом различного рода физических флюктуаций несвязанных с дефектами трубопровода.

В процессе диагностики трубопровода методом акустической томографии осуществляется регистрация и последующий корреляционный анализ собственных шумов трубопроводов в акустическом диапазоне частот на фоне внешних шумовых помех.

На фиг. 1 представлена схема проведения диагностики повреждения трубопровода методом акустической томографии.

Пусть в точке С трубопровод имеет повреждение (фиг. 1). Оно является источником акустического сигнала X(t). Скорость распространения этого сигнала равна Vx. На концах диагностируемого участка в точках А и В на расстоянии L находятся виброакустические датчики. Они регистрируют сигнал X(t). В точки А и В сигнал X(t) приходит соответственно с задержкой на время ta и tb. Поэтому в этих точках будем регистрировать сигналы:

Пусть начало отсчета координат находится в точке А. Тогда расстояние до места повреждения равно:

где τba=tb-ta>0 - время разности прихода сигнала X(t) в точки А и В.

Идентификация местоположения повреждения сводится к определению времени τba. Оно не может превышать . Время τba находится на основе оценивания взаимной корреляционной функции (ВКФ) RBA(t1,t2) центрированных реализаций и сигналов XA(t) и XB(t).

В условиях нормальной эксплуатации повреждение трубопровода развивается продолжительное время. Поэтому в процессе текущей диагностики сигнал X(t) можно рассматривать как стационарный. Сигналы XA(t) и XB(t) имеют одну физическую природу, так как они представляют собой один и тот же распространяющийся по трубопроводу сигнал X(t). Следовательно, сигналы XA(t) и XB(t) можно считать стационарными и стационарно связанными сигналами. Поэтому RBA(t1,t2) будет функцией только разности аргументов τ=t2-t1. Тогда с учетом (1) и τba=tb-ta будем иметь:

где М[…] - оператор математического ожидания; RХХ(τ) - корреляционная функция (КФ) сигнала X(t).

КФ RХХ(τ) является четной и симметричной относительно нулевого значения для любого τ из области ее определения, т.е. RXX(τ)=RXX(-τ). Для τ=0 она имеет максимальное значение , где DXX и σXX - дисперсия и среднеквадратическое отклонение сигнала X(t).

Из (3) следует, что RXX(τ-τba) имеет максимальное значение для τ=τ. Поэтому определение τ в ходе диагностики трубопровода сводится к оцениванию RBA(τ) и нахождению максимума RBAba).

Обработка непрерывных сигналов XA(t) и XB(t) связана со сложностями оценивания КФ в аналоговом виде. Существующие цифровые алгоритмы позволяют эффективно организовать вычисление оценок . Однако в реальных условиях сигналы XA(t) и XB(t) приходится регистрировать при наличии внешних шумовых помех. При этом отношение сигнал/шум может иметь большое значение. Это приводит к следующим проблемам:

1) малое число разрядов АЦП оказывается недостаточным для точного представления сигналов XA(t) и XB(t);

2) увеличение числа разрядов АЦП ведет к усложнению устройств приема и передачи цифровых отсчетов;

3) выбор числа уровней квантования ограничен и зависит от разрешающей способности датчиков, регистрирующих сигналы XA(t) и XB(t);

4) при равномерном шаге квантования помехозащищенность от шумов и помех будет разной для сигналов с малой амплитудой и с большой.

Техническая задача, на решение которой направлено изобретение, заключается в повышении надежности обнаружения слабых информативных сигналов в аддитивной смеси с шумом и в одновременном упрощении цифровой обработки сигналов ХА(t) и ХB(t). Это достигается за счет использования в процессе регистрации сигналов XA(t) и XB(t) в качестве первичного преобразования в цифровую форму бинарного знакового аналого-стохастического квантования.

Бинарное знаковое аналого-стохастическое квантование представляет собой нелинейную операцию вероятностного округления реализации непрерывного сигнала. При этом в качестве меры квантования выступает вспомогательный равномерно распределенный случайный сигнал. Особенностями такого квантования являются:

1) оно позволяет осуществлять предельно грубое бинарное (двухуровневое) квантование без систематической погрешности независимо от статистических свойств преобразуемых сигналов;

2) результатом является ограниченный по уровню двухполярный знаковый сигнал, который обладает потенциальной помехоустойчивостью к внешним аддитивным шумовым флуктуациям.

В условиях современного роста производительности и степени интеграции вычислительной техники знаковое аналого-стохастическое квантование позволяет упростить технические средства диагностики. Это расширяет возможность обработки результатов квантования сигналов непосредственно в сложных условиях эксплуатации трубопроводных сетей.

Для вычисления оценок формируются знаковые сигналы:

где ξ1(t) и ξ2(t) - вспомогательные сигналы, которые являются однородными и независимыми относительно друг друга.

Сигналы ξ1(t) и ξ2(t) принимают значения в пределах -ξmax…+ξmax. При этом должны выполняться условия и .

Оценка будет равна:

где t0 и Т - начальный момент и продолжительность времени анализа.

Длительности сигналов z1(t) и z2(t) равны 2Т. Тогда задержка τ может изменяться от нуля до τmах=Т.

Сигналы z1(t) и z2(t) ограниченны по уровню значениями -1 и +1. Поэтому динамику изменения этих сигналов во времени можно представить с помощью их мгновенных значений в начальный момент времени анализа t0 и отсчетов времени, в которые они пересекают нулевой уровень. Исходя из этого, для сигнала z1(t) будем иметь z1(t0) и . Аналогично для сигнала z2(t) будем иметь z2(t0) и . При этом , и . Всегда можно считать t0=0. Тогда интеграл в (5) можно вычислить аналитически, и будем иметь:

и

Соотношение (2) справедливо для La<Lb. Если La>Lb, то τ<0. Тогда:

При этом из (3) следует:

Из (9) видно, что для любого τ∈[0;tmах] имеем τ+τ ≠ 0, т.е. в этом случае RBA(τ) не достигает максимума. Он будет при τ=-τ. Для стационарных и стационарно связанных сигналов справедливо свойство RBA(-τ)=RAB(τ). Поэтому следует также вычислять оценку ВКФ:

Для вычисления используются соотношения (6) и (7). При этом сигналы z1(t) и z2(t) меняются местами. Ниже представлена запись основных этапов вычисления La.

1. Формируются знаковые сигналы z1(t) и z2(t).

2. Определяются отсчеты времени: ,.

3. Вычисляется , τ∈[-τmах;0].

4. Вычисляется , τ∈[0;+τmах].

5. Определяется τba∈[-τmах; +τmах], для которого будет иметь максимум среди всех значений и .

6. Для τ определяется местоположение повреждения:

,

Благодаря бинарному знаковому аналого-стохастическому квантованию, операции умножения, свойственные классическим цифровым алгоритмам, вырождаются в процедуры, которые в основном требуют выполнения логических операций и арифметических операций суммирования и вычитания значений отсчетов времени, формируемых в процессе данного вида квантования. Это исключает методическую погрешность, вызванную выполнением этих операций в цифровом виде, и снижает трудоемкость вычисления оценок ВКФ.

Способ обнаружения дефектов магистральных трубопроводов методом акустической томографии, согласно которому на концах контролируемого участка трубопровода устанавливают первый и второй акустические датчики, фиксируют акустическими датчиками генерируемые дефектом акустические колебания и по полученным результатам определяют местоположение дефекта, отличающийся тем, что осуществляют первичное преобразование акустических колебаний с применением бинарного знакового аналого-стохастического квантования, формируют цифровые коды отсчетов времени в моменты смены знака результата бинарного знакового аналого-стохастического квантования, определяют взаимную корреляционную функцию по цифровым кодам отсчетов времени для положительных и отрицательных значений задержки, фиксируют время задержки для максимального значения взаимной корреляционной функции, определяют местоположение дефекта на контролируемом участке трубопровода и регистрируют его.
СПОСОБ ОБНАРУЖЕНИЯ ДЕФЕКТОВ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ МЕТОДОМ АКУСТИЧЕСКОЙ ТОМОГРАФИИ
СПОСОБ ОБНАРУЖЕНИЯ ДЕФЕКТОВ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ МЕТОДОМ АКУСТИЧЕСКОЙ ТОМОГРАФИИ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 191.
26.08.2017
№217.015.d9b0

Способ компенсации оптических аберраций с использованием деформируемого зеркала

Изобретение относится к способам, которые обеспечивают компенсацию оптических аберраций с использованием деформируемого зеркала, и может быть использовано в активных и адаптивных оптических системах, предназначенных для компенсации аберраций волнового фронта светового излучения. Способ...
Тип: Изобретение
Номер охранного документа: 0002623661
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.df33

Способ приготовления кисломолочногопродукта

Изобретение относится к молочной промышленности. Подготовленное молоко подвергают действию электрического тока в катодном пространстве диафрагменного электролизера с плоскими электродами из нержавеющей стали 10Х17Н13М2Т при объемной плотности тока 2 А/см и катодной плотности тока 0,018 А/см в...
Тип: Изобретение
Номер охранного документа: 0002625030
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.f51a

Катализатор, способ его приготовления и процесс селективной гидроочистки бензина каталитического крекинга

Изобретение относится к области химии, в частности к катализаторам для селективной гидроочистки бензинов каталитического крекинга, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Заявляется катализатор селективной гидроочистки бензина каталитического...
Тип: Изобретение
Номер охранного документа: 0002637808
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f85d

Адсорбент для очистки сточных вод от ионов меди

Изобретение относится к охране окружающей среды. Предложен сорбент для очистки сточных вод от меди. Сорбент представляет собой отработанный в процессе фильтрации пива кизельгур, подвергнутый сушке при 50-200°C и последующей термохимической активации при 60-100°C. Активацию проводят в 2,0-2,5 М...
Тип: Изобретение
Номер охранного документа: 0002639803
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.f8cd

Способ получения изопропилбензола

Изобретение относится к способу получения изопропилбензола алкилированием бензола пропиленом и переалкилированием полиалкилибензолов. Способ характеризуется тем, что реакции алкилирования и переалкилирования проводят раздельно, причем реакцию алкилирования проводят в жидкой фазе с применением...
Тип: Изобретение
Номер охранного документа: 0002639706
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.0516

Способ производства фруктового продукта в виде пластинок из груш, яблок и виноградного сырья

Изобретение относится к пищевой промышленности, в частности к изготовлению фруктового продукта в виде пластинок из груш, яблок и виноградного сырья. Пищевой продукт готовят путем подготовки груш и яблок. Удаляют несъедобные части и кожуру. Режут на ломтики толщиной 5-8 мм, обрабатывают в...
Тип: Изобретение
Номер охранного документа: 0002630702
Дата охранного документа: 12.09.2017
19.01.2018
№218.016.078f

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к способу приготовления катализатора для глубокой гидроочистки нефтяных фракций. Способ включает пропитку алюмооксидного носителя раствором соединений металлов VIII, VI и V групп. При этом готовят совместный пропиточный раствор MoO и/или WO, не обязательно VO, от 0,33 до...
Тип: Изобретение
Номер охранного документа: 0002631424
Дата охранного документа: 22.09.2017
20.01.2018
№218.016.0f39

Способ получения 1н-бензо[f]хромен-2-ил(арил)кетонов

Изобретение относится к способу получения 1-бензо[ƒ]хромен-2-ил(арил)кетонов реакцией замещенных 1-[(диметиламино)метил]-2-нафтолов с 3-(диметиламино)-1-арил-проп-2-ен-1-онами. Полученные соединения являются перспективными исходными соединениями для синтеза фармакологически активных веществ....
Тип: Изобретение
Номер охранного документа: 0002633368
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0f41

Расплавляемый электролит для химического источника тока

Изобретение относится к расплавляемому электролиту для химического источника тока, включающему при следующем соотношении компонентов, мас. %: фторид лития 1,57…1,63, хромат лития 64,59…66,29, хлорид калия 16,38…18,52, хромат калия 15,32…15,70. Технический результат – снижение температуры...
Тип: Изобретение
Номер охранного документа: 0002633360
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1152

Погружной скважинный генератор газопаровой смеси

Изобретение относится к области промышленной теплоэнергетики и может быть применено для генерирования газопаровой смеси с целью термической обработки скважин в нефтедобывающей промышленности. Техническим результатом изобретения является обеспечение надежного функционирования генератора...
Тип: Изобретение
Номер охранного документа: 0002633983
Дата охранного документа: 20.10.2017
Показаны записи 1-2 из 2.
09.06.2018
№218.016.5d19

Способ электромагнитного контроля сварных соединений и устройство для его осуществления

Группа изобретений относится к неразрушающим методам контроля и может быть использована для дефектоскопии сварных соединений труб и листовых изделий из ферромагнитных материалов. Сущность изобретений заключается в том, что возбуждение переменных магнитных потоков в сварном шве и околошовной...
Тип: Изобретение
Номер охранного документа: 0002656112
Дата охранного документа: 31.05.2018
06.06.2023
№223.018.78b5

Устройство управления движением и маневрированием группы роботизированных и автономных наземных транспортных средств на основе применения многосвязной адаптивной системы управления

Изобретение относится к устройству управления движением и маневрированием группы роботизированных и автономных наземных транспортных средств на основе многосвязной адаптивной системы управления. Устройство управления движением и маневрированием группы роботизированных и автономных наземных...
Тип: Изобретение
Номер охранного документа: 0002753778
Дата охранного документа: 23.08.2021
+ добавить свой РИД