×
03.03.2019
219.016.d278

Результат интеллектуальной деятельности: Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля

Вид РИД

Изобретение

Аннотация: Изобретение относится к области порошковой металлургии. Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля включает стадию предварительного выделения заданной фракции путем классификации исходного порошкообразного материала зернистостью 5-150 мкм, стадию получения целевого продукта, заключающуюся в проведении термовакуумной обработки в течение 3-4 ч при остаточном давлении 10-10 мм рт.ст., температуре 800-900°С и скорости нагрева до данной температуры 15-20°С/мин и последующей плазменной сфероидизации, при этом оставшийся после предварительного выделения заданной фракции более мелкий и более крупный порошок подвергают перемешиванию, прессованию, вакуумному спеканию до относительной плотности 70-80%, размолу, после чего полученный порошок возвращают на стадию предварительного выделения заданной фракции и далее выделенную заданную фракцию направляют на стадию получения целевого продукта. Техническим результатом изобретения является повышение выхода целевого продукта в процессе плазменной сфероидизации порошка с пониженным содержанием примесей. 1 ил., 4 табл., 28 пр.

Изобретение относится к области порошковой металлургии, в частности, к получению узкофракционных порошков жаропрочных никелевых сплавов со сферической формой частиц.

Для изготовления изделий из жаропрочных никелевых сплавов новыми перспективными методами, включающими аддитивные технологии, горячее изостатическое прессование, лазерную газопорошковую наплавку и др., необходимы чистые не агрегированные порошки, имеющие сферическую форму частиц, что обеспечивает их высокую текучесть и необходимую плотность упаковки частиц в слое.

В настоящее время для получения сферических порошков металлов и сплавов используются различные методы, преимущественно основанные на диспергировании расплавов с применением различных вариантов нагрева перерабатываемого материала и силового воздействия на расплав (Силаев А.Ф. Фишман Б.Д. Диспергирование жидких металлов и сплавов. М. Металлургия, 1983; Advances in powder metallurgy. Properties, processing and applications. Edited by Isaac Chang and Yuyuan Zhao. Woodhead Publishing, 2013; Зленко M.A., Нагайцев M.B., Довбыш B.M., Аддитивные технологии в машиностроении. ГНЦ РФ ФГУП «НАМИ», Москва, 2015), но объем производства сферических порошков несоизмеримо мал по сравнению с крупнотоннажным производством порошков, не обладающих сферической формой. Промышленно выпускаемые порошки требуют дополнительную обработку перед использованием в аддитивных технологиях. К такой обработке относится сфероидизация порошков при их расплавлении в потоке термической плазмы, генерируемой в электроразрядных плазмотронах -дуговом (Н. Bissett, I.J. van der Walt, J.L. Havenga, J.T. Nel. Titanium and zirconium metal powder spheroidization by thermal plasma processes. The Journal of The Southern African Institute of Mining and Metallurgy, v. 5, October 2015, pp. 937-942), высокочастотном (R. Vert, R. Pontone, R. Dolbec, L. Dionne, M.I. Boulos. Induction plasma technology applied to powder manufacturing: example of titanium-based materials. 22nd International Symposium on Plasma Chemistry, July 5-10, 2015; Antwerp., Belgium, P-II-7-32), сверхвысокочастотном (Method for the densification and spheroidization of solid and solution precursor droplets of materials using microwave generated plasma processing. Appl. US 2014131906 A1). Обработка порошков в высокотемпературных газовых потоках позволяет обеспечить полную сфероидизацию частиц, но общим недостатком указанных плазменных процессов сфероидизации является образование наночастиц в результате частичного испарения обрабатываемого материала в потоке плазмы и конденсации паров в виде наночастиц при охлаждении газодисперсного потока. Образованные при сфероидизации в плазме наночастицы снижают выход целевого продукта и ухудшают текучесть порошка, которая является его важной эксплуатационной характеристикой в аддитивных технологиях.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является способ получения, разделения и очистки порошковых материалов (Patent US 7572315. Process for the synthesis, separation and purification of powder materials, 2009). Способ предусматривает комбинацию обработки порошка в плазме с последующей ультразвуковой обработкой полученного в плазме продукта. Ультразвуковая обработка позволяет отделить сфероидизированные частицы от наноразмерных частиц, образовавшихся в плазменном процессе в результате испарения-конденсации материала исходного порошка.

Недостатком способа является снижение выхода целевого продукта - сферических частиц - в результате образования побочного продукта - наноразмерных частиц, являющихся вредной примесью для порошков, используемых в аддитивных технологиях. Присутствие в сфероидизированном порошке наноразмерных частиц требует дополнительных операций по их удалению, что приводит к повышению производственных затрат. Кроме того, рассматриваемый способ не предусматривает очистку порошков, подвергаемых сфероидизации, от газовых примесей, в частности кислорода, присутствие которого в жаропрочных сплавах приводит к снижению прочностных свойств.

Техническим результатом изобретения является повышение выхода целевого продукта в процессе сфероидизации порошковых материалов в термической плазме, а также снижения в них газовых примесей.

Технический результат достигается следующим образом.

Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля включает стадию предварительного выделения заданной фракции путем классификации исходного порошкообразного материала зернистостью 5-150 мкм, стадию получения целевого продукта, заключающуюся в проведении термовакуумной обработки в течение 3-4 часов при остаточном давлении 10-5-10-6 мм рт.ст., температуре 800-900°С и скорости нагрева до данной температуры 15-20 градусов/мин и последующей плазменной сфероидизации. При этом оставшийся после предварительного выделения заданной фракции более мелкий и более крупный порошок подвергают перемешиванию, прессованию, вакуумному спеканию до относительной плотности 70-80%, размолу. После чего полученный порошок возвращают на стадию предварительного выделения заданной фракции и далее выделенную заданную фракцию направляют на стадию получения целевого продукта.

Изобретение поясняется чертежом, где на фигуре 1 показан узкофракционный порошок со сферической формой частиц зернистостью 30-60 мкм.

Из исходного порошкообразного материала выделяется заданная фракция, определяемая конкретным использованием порошка после сфероидизации. В аддитивных технологиях селективного лазерного плавления (СЛП), селективного лазерного спекания (СЛС), селективного электронно-лучевого плавления (СЭЛП) в качестве исходного сырья применяются узкофракционные сферические порошки, выделяемые из полидисперсного порошкового материала зернистостью 5-150 мкм. При этом размер частиц узкой фракции зависит от типа и модели установок. Выделение узкой фракции наиболее эффективно осуществляется с помощью газодинамической сепарации. В результате исходный порошковый материал разделяется на три фракции - целевую с заданным диапазоном размеров частиц, а также более мелкую и более крупную фракции.

Выделенная заданная фракция порошка с требуемым диапазоном размеров частиц (зернистостью) перед сфероидизацией подвергается термовакуумной обработке для очистки порошкообразного материала от газовых примесей. Сферойдизация проводится путем расплавления каждой частицы при ее попадании в высокотемпературную зону плазменного потока.

Режимы термовакуумной обработки (температура, остаточное давление, длительность и скорость нагрева в печи) определяются составом исходного порошкообразного материала. Для жаропрочных сплавов на основе алюминида никеля температуру термовакуумной обработки выбирают в интервале 800-900°С. При температуре ниже 800°С не обеспечивается очистка порошкообразного материала, а при температуре более 900°С происходит спекание частиц порошка, изменяющее его морфологию и гранулометрический состав.

Остаточное давление вакуумной печи выбирают в диапазоне 10-5-10-6 мм рт.ст., где значение 10-6 мм рт.ст. определяется техническими возможностями промышленных печей, а при давлении, превышающем 10-5 мм рт.ст., снижается эффективность и степень очистки порошка от газовых примесей.

Длительность термовакуумной обработки выбирают в диапазоне 3-4 часов в зависимости от состава порошкообразного материала. При длительности менее 3 часов не обеспечивается необходимая степень очистки от примесей, а при длительности более 4 часов дальнейшей заметной очистки не происходит, но увеличивается расход электроэнергии, и ухудшаются экономические характеристики технологического процесса.

Скорость нагрева в зависимости от состава порошкообразного материала выбирают в интервале 15-20°С/мин. При скорости менее 15°С/мин увеличивается длительность технологического цикла, что ухудшает технико-экономические показатели, а при скорости нагрева более 20°С/мин возникают тепловые поля неоднородности, и процесс очистки протекает неравномерно по объему порошковой засыпки.

Оставшиеся после предварительного выделения заданной фракции более мелкая и более крупная фракции порошка подвергаются перемешиванию. Полученная смесь прессуется в таблетки, которые затем спекаются в вакуумной печи, не допускающей изменения химического состава материала. Время и температура вакуумного спекания выбираются таким образом, чтобы относительная плотность спеченных образцов (спеков) находилась в интервале 70-80%. Для достижения данных значений относительной плотности в процессе вакуумного спекания происходит диффузионное спекание частиц с образованием прочных мостиков и перешейков. В тоже время эти спеки подвергаются размолу без загрязнений продуктами натирания от размольных тел.

Спеки подвергаются дальнейшему размолу в мельнице, причем режимы измельчения выбираются таким образом, чтобы максимальный размер частиц в порошке после размола соответствовал верхнему значению размера частиц в выделенной заданной фракции.

При относительной плотности спека менее 70% не происходит спекания мелких и крупных частиц, а при относительной плотности более 80% спек приобретает повышенную прочность, затрудняющую процесс размола.

Полученный после размола порошок добавляется к исходному порошкообразному материалу и возвращается на стадию разделения на фракции. Вовлечение в плазменную сфероидизацию фракций порошка, полученного после размола спека, позволяет уменьшить количество отходов и тем самым увеличить выход годного целевого продукта (узкофракционного сферического порошка) до 80% по отношению к массе исходного порошкообразного материала.

Образование наночастиц при плазменной сфероидизации происходит в результате испарения частиц мелкой фракции, присутствующей в исходном порошке. Поэтому исключение мелкой фракции из сфероидизируемого порошка позволит снизить содержание наночастиц в целевом продукте.

Реализация способа представлена следующим примером.

Пример 1.

Исходным порошкообразным материалом является жаропрочный сплав на основе моноалюминида никеля марки CompoNiAl-M5-3 следующего химического состава: Ni - 53.8 масс. %, А1 - 23.7%, Cr - 13.7%, Со - 7.8%, Hf - 0.98% (Zaitsev А.А., Sentyurina Zh.A., Levashov E.A., et al. Structure and properties of NiAl-Cr(Co,Hf) alloys prepared by centrifugal SHS casting. Part 1 - Room temperature investigations. Materials Science & Engineering A, 690, 2017, p. 463-472), состоящий из частиц неправильной формы зернистостью от 5 до 150 мкм и предназначенный для получения сферического порошка зернистостью 30-60 мкм.

Исходный полидисперсный порошкообразный материал подвергается сепарации в газодинамическом классификаторе, в результате которой выделяются три фракции: менее 30 мкм (А), 30-60 мкм (Б, целевая) и более 60 мкм (В). Фракция Б в количестве 65% от общей массы порошкового материала направляется на стадии получения целевого продукта (узкофракционного сферического порошка): термовакуумную обработку и последующую плазменную сфероидизацию.

Полученные при разделении фракции размером менее 30 мкм и более 60 мкм подвергают перемешиванию, прессованию смеси в брикеты, вакуумному спеканию до относительной плотности 80%, последующему размолу, а полученный порошок возвращают на стадию разделения исходного порошкового материала.

Фракции А и В перемешиваются, затем смесь прессуется в таблетки до относительной плотности 60%. Таблетки подвергаются вакуумному спеканию при температуре 1100°С, давлении 10-6 мм.рт.ст., времени изотермический выдержки 4 часа. Полученный при этом спек имеет относительную плотность 80%. Спек подвергается размолу в шаровой мельнице до получения порошка дисперсностью менее 60 мкм, который добавляется к исходному порошкообразному материалу. Затем проводится повторная классификация и дополнительно выделяется фракция Б в количестве 15%, которая добавляется к ранее выделенной целевой фракции Б и направляется на стадию получения целевого продукта (узкофракционного сферического порошка): термовакуумную обработку и последующую плазменную сфероидизацию. Таким образом, общая масса порошка выделенной фракции составила 80% от массы исходного порошкового материала.

Сформировавшаяся выделенная фракция порошка фракции Б подвергается термовакуумной обработке на следующих режимах: температура 850°С, давление 10-6 мм.рт.ст., скорость нагрева 20°С/мин., время изотермической выдержки 3 часа. В результате термовакуумной обработки содержание примесного кислорода снижается с 0.13 до 0,05 масс. %. Порошок направляется на сфероидизацию в потоке термической плазмы для получения целевого продукта со сферической формой частиц размером 30-60 мкм и степенью сферичности 96%. Содержание наночастиц в сфероидизированном порошке не превышает 1 масс. %. Выход годного узкофракционного сферического порошка фракции 30-60 мкм от общей массы исходного порошкового материала составляет около 80%. При этом содержание примесного кислорода составляет 0,05 масс. %.

В примерах 2-7 (таблица 1) показано, что осуществление способа получения узкофракционных сферических порошков зернистостью 30-60 мкм из сплава CompoNiAl-M5-3 за пределами указанных в формуле изобретения параметров не обеспечивает достижение технического результата как по содержанию примесного кислорода, так и по выходу целевого продукта. Пример 8.

Исходным порошкообразным материалом является жаропрочный сплав на основе моноалюминида никеля марки CompoNiAl-M5-3, состоящий из частиц неправильной формы зернистостью от 5 до 150 мкм и предназначенный для получения сферического порошка зернистостью 10-30 мкм.

Исходный полидисперсный порошкообразный материал подвергается сепарации в газодинамическом классификаторе, в результате которой выделяются три фракции: менее 10 мкм (А), 10-30 мкм (Б, целевая) и более 30 мкм (В). Фракция Б в количестве 48% от общей массы порошкового материала направляется на стадии получения целевого продукта (узкофракционного сферического порошка): термовакуумную обработку и последующую плазменную сфероидизацию.

Полученные при разделении фракции размером менее 10 мкм и более 30 мкм подвергают перемешиванию, прессованию смеси в брикеты, вакуумному спеканию до относительной плотности 75%, последующему размолу, а полученный порошок возвращают на стадию разделения исходного порошкового материала.

Фракции А и В перемешиваются, затем смесь прессуется в таблетки до относительной плотности 65%. Таблетки подвергаются вакуумному спеканию при температуре 1100°С, давлении 10-6 мм.рт.ст., времени изотермический выдержки 4 часа. Полученный при этом спек имеет относительную плотность 78%. Спек подвергается размолу в шаровой мельнице до получения порошка дисперсностью менее 30 мкм, который добавляется к исходному порошкообразному материалу. Затем проводится повторная классификация и дополнительно выделяется фракция Б в количестве 30%, которая добавляется к ранее выделенной целевой фракции Б и направляется на стадию получения целевого продукта (узкофракционного сферического порошка): термовакуумную обработку и последующую плазменную сфероидизацию. Таким образом, общая масса порошка выделенной фракции составила 78% от массы исходного порошкового материала.

Сформировавшаяся выделенная фракция порошка фракции Б подвергается термовакуумной обработке на следующих режимах: температура 800°С, давление 10-6 мм.рт.ст., скорость нагрева 20°С/мин., время изотермической выдержки 3 часа. В результате термовакуумной обработки содержание примесного кислорода снижается с 0.13 до 0,06 масс. %. Порошок направляется на сфероидизацию в потоке термической плазмы для получения целевого продукта со сферической формой частиц размером 10-30 мкм и степенью сферичности 97%. Содержание наночастиц в сфероидизированном порошке не превышает 1 масс. %. Выход годного узкофракционного сферического порошка фракции 10-30 мкм от общей массы исходного порошкового материала составляет около 80%. При этом содержание примесного кислорода не превышает 0,06 масс. %.

В примерах 9-14 (таблица 2) показано, что осуществление способа получения узкофракционных сферических порошков зернистостью 10-30 мкм из сплава CompoNiAl-M5-3 за пределами указанных в формуле изобретения параметров не обеспечивает достижение технического результата как по содержанию примесного кислорода, так и по выходу целевого продукта.

Пример 15.

Исходным порошкообразным материалом является жаропрочный сплав на основе моноалюминида никеля марки CompoNiAl-M5-3, состоящий из частиц неправильной формы зернистостью от 5 до 150 мкм и предназначенный для получения сферического порошка зернистостью 100-120 мкм.

Исходный полидисперсный порошкообразный материал подвергается сепарации в газодинамическом классификаторе, в результате которой выделяются три фракции: менее 100 мкм (А), 100-120 мкм (Б, целевая) и более 120 мкм (В). Фракция Б в количестве 25% от общей массы порошкового материала направляется на стадии получения целевого продукта (узкофракционного сферического порошка): термовакуумную обработку и последующую плазменную сфероидизацию.

Полученные при разделении фракции размером менее 100 мкм и более 120 мкм подвергают перемешиванию, прессованию смеси в брикеты, вакуумному спеканию до относительной плотности 80%, последующему размолу, а полученный порошок возвращают на стадию разделения исходного порошкового материала.

Фракции А и В перемешиваются, затем смесь прессуется в таблетки до относительной плотности 65%. Таблетки подвергаются вакуумному спеканию при температуре 1200°С, давлении 10-6 мм.рт.ст., времени изотермический выдержки 5 часов. Полученный при этом спек имеет относительную плотность 85%. Спек подвергается размолу в шаровой мельнице до получения порошка дисперсностью менее 120 мкм, который добавляется к исходному порошкообразному материалу. Затем проводится повторная классификация и дополнительно выделяется фракция Б в количестве 54%, которая добавляется к ранее выделенной целевой фракции Б и направляется на стадию получения целевого продукта (узкофракционного сферического порошка): термовакуумную обработку и последующую плазменную сфероидизацию. Таким образом, общая масса порошка выделенной фракции составила 79% от массы исходного порошкового материала.

Сформировавшаяся выделенная фракция порошка фракции Б подвергается термовакуумной обработке на следующих режимах: температура 900°С, давление 10-6 мм.рт.ст., скорость нагрева 15°С/мин., время изотермической выдержки 4 часа. В результате термовакуумной обработки содержание примесного кислорода снижается с 0.13 до 0,06 масс. %. Порошок направляется на сфероидизацию в потоке термической плазмы для получения целевого продукта со сферической формой частиц размером 100-120 мкм и степенью сферичности 94%. Содержание наночастиц в сфероидизированном порошке не превышает 1 масс. %. Выход годного узкофракционного сферического порошка фракции 100-120 мкм от общей массы исходного порошкового материала составляет 76%. При этом содержание примесного кислорода составляет 0,06 масс. %.

В примерах 16-21 (таблица 3) показано, что осуществление способа получения узкофракционных сферических порошков зернистостью 100-120 мкм из сплава CompoNiAl-M5-3 за пределами указанных в формуле изобретения параметров не обеспечивает достижение технического результата как по содержанию примесного кислорода, так и по выходу целевого продукта.

Пример 22.

Исходным порошкообразным материалом является жаропрочный сплав на основе моноалюминида никеля следующего химического состава: Ni - 39.2 масс. %, Al - 15.8%, Cr - 29.5%, Мо - 11.6%, Ti - 3,9%, состоящий из частиц неправильной формы зернистостью от 5 до 150 мкм с содержанием примесного кислорода 0,25, предназначенный для получения сферического порошка зернистостью 20-40 мкм.

Исходный полидисперсный порошкообразный материал подвергается сепарации в газодинамическом классификаторе, в результате которой выделяются три фракции: менее 20 мкм (А), 20-40 мкм (Б, целевая) и более 40 мкм (В). Фракция Б в количестве 60% от общей массы порошкового материала направляется на стадии получения целевого продукта (узкофракционного сферического порошка): термовакуумную обработку и последующую плазменную сфероидизацию.

Полученные при разделении фракции размером менее 20 мкм и более 40 мкм подвергают перемешиванию, прессованию смеси в брикеты, вакуумному спеканию до относительной плотности 70%, последующему размолу, а полученный порошок возвращают на стадию разделения исходного порошкового материала.

Фракции А и В перемешиваются, затем смесь прессуется в таблетки до относительной плотности 70%. Таблетки подвергаются вакуумному спеканию при температуре 1050°С, давлении 10-6 мм.рт.ст., времени изотермический выдержки 4 часа. Полученный при этом спек имеет относительную плотность 75%. Спек подвергается размолу в шаровой мельнице до получения порошка дисперсностью менее 40 мкм, который добавляется к исходному порошкообразному материалу. Затем проводится повторная классификация и дополнительно выделяется фракция Б в количестве 25%, которая добавляется к ранее выделенной целевой фракции Б и направляется на стадию получения целевого продукта (узкофракционного сферического порошка): термовакуумную обработку и последующую плазменную сфероидизацию. Таким образом, общая масса порошка выделенной фракции составила 85% от массы исходного порошкового материала.

Сформировавшаяся выделенная фракция порошка фракции Б подвергается термовакуумной обработке на следующих режимах: температура 850°С, давление 10-6 мм.рт.ст., скорость нагрева 20°С/мин., время изотермической выдержки 3,5 часа. В результате термовакуумной обработки содержание примесного кислорода снижается с 0.25 до 0,07 масс. %. Порошок направляется на сфероидизацию в потоке термической плазмы для получения целевого продукта со сферической формой частиц размером 20-40 мкм и степенью сферичности 95%. Содержание наночастиц в сфероидизированном порошке не превышает 1 масс. %. Выход годного узкофракционного сферического порошка фракции 20-40 мкм от общей массы исходного порошкового материала составляет 82%. При этом содержание примесного кислорода составляет 0,06 масс. %.

В примерах 23-28 (таблица 4) показано, что осуществление способа получения узкофракционных сферических порошков зернистостью 20-40 мкм из жаропрочного сплава на основе алюминида никеля состава Ni-Al-Cr-Mo-Ti за пределами указанных в формуле изобретения параметров не обеспечивает достижение технического результата как по содержанию примесного кислорода, так и по выходу целевого продукта.

Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля, включающий стадию предварительного выделения заданной фракции путем классификации исходного порошкообразного материала зернистостью 5-150 мкм, стадию получения целевого продукта, заключающуюся в проведении термовакуумной обработки в течение 3-4 ч при остаточном давлении 10-10 мм рт.ст., температуре 800-900°С и скорости нагрева до данной температуры 15-20°С/мин и последующей плазменной сфероидизации, при этом оставшийся после предварительного выделения заданной фракции более мелкий и более крупный порошок подвергают перемешиванию, прессованию, вакуумному спеканию до относительной плотности 70-80%, размолу, после чего полученный порошок возвращают на стадию предварительного выделения заданной фракции и далее выделенную заданную фракцию направляют на стадию получения целевого продукта.
Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля
Источник поступления информации: Роспатент

Показаны записи 11-20 из 322.
20.04.2016
№216.015.35ff

Акустический способ контроля качества и процесса формирования ледопородных ограждений при сооружении подземных объектов

Изобретение относится к области геоакустики и может быть использовано для неразрушающего контроля качества и процесса формирования ледопородных ограждений. Сущность: по глубине замораживающих скважин (4, 5) размещают акустические преобразователи (6, 7) для приема импульсов акустической эмиссии,...
Тип: Изобретение
Номер охранного документа: 0002581188
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36a9

Способ извлечения скандия из красного шлама производства глинозема

Изобретение относится к металлургии редких металлов, а именно к извлечению скандия из красного шлама, который является отходом производства глинозема. Способ включает выщелачивание скандия раствором серной кислоты при нагревании в течение 2 часов и фильтрацию пульпы. Выщелачивание скандия из...
Тип: Изобретение
Номер охранного документа: 0002581327
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3813

Способ интенсификации сорбции благородных металлов с помощью нанодисперсного сорбента

Изобретение относится к получению нанодисперсного сорбента металлов и к использованию полученного сорбента для интенсификации процесса сорбции и может быть применено в гидрометаллургии благородных металлов. Способ извлечения благородных металлов из растворов включает сорбцию на органическом...
Тип: Изобретение
Номер охранного документа: 0002582838
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38b0

Двухпроводной дифференциальный магнитоимпедансный датчик

Изобретение относится к измерительной технике и представляет собой двухпроводной дифференциальный магнитоимпедансный датчик. Датчик содержит два магнитоимпедансных детектора, изготовленных по бескаркасной намоточной технологии, т.е. детектирующие катушки детекторов намотаны непосредственно на...
Тип: Изобретение
Номер охранного документа: 0002582488
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3ad5

Емкостная моп диодная ячейка фотоприемника-детектора излучений

Изобретение относится к полупроводниковым координатным детекторам ионизирующих частиц. В емкостной МОП диодной ячейке фотоприемника-детектора излучений применена новая электрическая схема, в которой используются усилительный обогащенный p-МОП транзистор, конденсатор, p-i-n-диод, поликремниевые...
Тип: Изобретение
Номер охранного документа: 0002583955
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cdc

Биполярная ячейка координатного фотоприемника - детектора излучений

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. Изобретение обеспечивает повышение эффективности регистрации оптических и глубоко проникающих излучений и повышение быстродействия детектора излучений. Биполярная ячейка координатного фотоприемника -...
Тип: Изобретение
Номер охранного документа: 0002583857
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3fca

Конструкционная криогенная аустенитная высокопрочная коррозионно-стойкая, в том числе в биоактивных средах, свариваемая сталь и способ ее обработки

Изобретение относится к области металлургии конструкционных сталей и предназначено для изготовления криогенных высокопрочных сварных конструкций, используемых при транспортировке сжиженных газов. Сталь содержит, в мас.%: С - 0,05-0,07, Cr - 18,0-20,0, Ni - 5,0-7,0, Μn - 9,0-11,0, Mo - 1,4-1,8,...
Тип: Изобретение
Номер охранного документа: 0002584315
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.43d8

Способ обработки низколегированных медных сплавов

Изобретение относится к области обработки специальных проводниковых сплавов, в частности к получению низколегированных медных сплавов, и может быть использовано в электротехнике для изготовления электродов сварочных машин, контактных проводов для электрофицированного транспорта, коллекторных...
Тип: Изобретение
Номер охранного документа: 0002585606
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.43ed

Литейная форма для центробежной заливки крупногабаритных фасонных отливок сложной формы из жаропрочных и химически активных сплавов

Изобретение может быть использовано при получении крупногабаритных литых деталей летательных аппаратов и атомной техники, работающих под действием высоких нагрузок. Литейная форма содержит металлический поддон с центрирующим устройством, графитовые закладные элементы и формообразующие...
Тип: Изобретение
Номер охранного документа: 0002585604
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.45a4

Электропривод

Изобретение относится к электротехнике, в частности к электроприводу переменного тока с режимом динамического торможения асинхронного двигателя. При отказе механического тормоза при аварийной остановке применяется электрический тормоз - электропривод переходит в режим регулируемого...
Тип: Изобретение
Номер охранного документа: 0002586630
Дата охранного документа: 10.06.2016
Показаны записи 11-20 из 46.
20.11.2015
№216.013.9325

Способ получения спеченного пористого вольфрамового каркаса

Изобретение относится к порошковой металлургии. Способ получения спеченного пористого вольфрамового каркаса включает смешение порошка вольфрама с порошковой активирующей добавкой, состоящей из порошков никеля и железа, прессование и спекание. Используют порошок вольфрама с размером частиц 1-0,5...
Тип: Изобретение
Номер охранного документа: 0002569287
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9326

Способ изготовления наноразмерного твердого сплава

Изобретение относится к порошковой металлургии. Способ изготовления наноразмерного твердого сплава включает приготовление смеси из наноразмерных порошков карбида вольфрама и кобальта, прессование ее в стальной пресс-форме и спекание в вакууме. Причем перед прессованием в смесь наноразмерных...
Тип: Изобретение
Номер охранного документа: 0002569288
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.932b

Мишень для получения функциональных покрытий и способ ее изготовления

Изобретение относится к получению изделий из порошковых материалов методом самораспространяющегося высокотемпературного синтеза (СВС). Мишень для получения покрытий ионно-плазменным напылением состоит из профилированной металлической пластины, с которой посредством слоя металлического припоя...
Тип: Изобретение
Номер охранного документа: 0002569293
Дата охранного документа: 20.11.2015
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.45d4

Способ переработки лейкоксенового концентрата и устройство для его осуществления

Изобретение относится к переработке лейкоксеновых концентратов с высоким содержанием кремния. Способ и устройство для переработки упомянутых концентратов основаны на плазменно-дуговой восстановительной плавке концентрата при температуре 2500-3000 К и атмосферном давлении. При этом диоксид...
Тип: Изобретение
Номер охранного документа: 0002586190
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4e67

Композиция для изготовления режущего инструмента для стали и чугуна

Изобретение относится к порошковой металлургии и может быть использовано для изготовления режущего инструмента. Композиция содержит сверхтвердый материал, включающий смесь порошков кубического нитрида бора и алмаза, при следующем соотношении компонентов, мас. %: кубический нитрид бора 20-60,...
Тип: Изобретение
Номер охранного документа: 0002595000
Дата охранного документа: 20.08.2016
25.08.2017
№217.015.9950

Способ изготовления катализатора из нанопроволоки

Изобретение относится к нанотехнологии, может быть использовано в химической промышленности для создания эффективных катализаторов. Заключается в том, что на подложку наносят вспомогательный слой, в котором формируют ряды канавок нанометровой глубины с вертикальными стенками, наносят слой...
Тип: Изобретение
Номер охранного документа: 0002609788
Дата охранного документа: 03.02.2017
25.08.2017
№217.015.a5b0

Способ получения электродов из сплавов на основе алюминида никеля

Изобретение относится к области специальной металлургии, в частности к получению литых шихтовых заготовок электродов из высоколегированных сплавов на основе алюминидов никеля, и может быть использовано для центробежной атомизации материала электродов и получения гранул для применения в...
Тип: Изобретение
Номер охранного документа: 0002607857
Дата охранного документа: 20.01.2017
25.08.2017
№217.015.b688

Способ получения наноразмерных порошков элементов и их неорганических соединений и устройство для его осуществления

Изобретение может быть использовано для получения наноразмерных порошков элементов и их неорганических соединений методом «испарения - конденсации» в потоке газа. Перерабатываемый материал подают в виде грубодисперсного порошка с размером частиц не менее 1 мм. Для его испарения используют поток...
Тип: Изобретение
Номер охранного документа: 0002614714
Дата охранного документа: 28.03.2017
+ добавить свой РИД