×
01.03.2019
219.016.d0ce

Результат интеллектуальной деятельности: КАТАЛИЗАТОР ПРЯМОГО СИНТЕЗА ТРИЭТОКСИСИЛАНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к химии кремнийорганических соединений, а именно к разработке эффективного медьсодержащего катализатора, применяемого для прямого синтеза триэтоксисилана из металлургического кремния и этилового спирта, а также способу получения такого катализатора. Описан катализатор прямого синтеза триэтокисилана на основе порошка хлорида меди(1), представляющий собой ультрамелкодисперсные порошки меди(1), округлые агрегаты которого имеют диаметр от 600 нм до 3 мкм и состоят из глобул диаметром до 200 нм, которые, в свою очередь, представляют собой наночастицы хлорида меди(1) с размером до 20 нм. Описан также способ получения описанного выше катализатора путем восстановительного термолиза хелатного комплекса меди, получаемого in situ из дигидрата хлорида меди (11) в среде полиола. Технический эффект - получение целевого продукта с селективностью свыше 80%. 2 н.п. ф-лы, 11 пр., 4 табл.

Изобретение относится к химии кремнийорганических соединений, а именно к разработке эффективного медьсодержащего катализатора, применяемого для прямого синтеза триэтоксисилана из металлургического кремния и этилового спирта, а также способу получения такого катализатора.

Известно, что процесс «прямого синтеза» позволяет получать три- и тетраэтоксисиланы. Причем триэтоксисилан, в отличие от триметоксисилана, легко подвергается очистке и применяется для получения высокочистого моносилана, из которого, в свою очередь, производятся различные модификации кремния, применяемые в электронике, электрохимических устройствах, солнечной энергетике и др. Альтернативная технология получения триэтоксисилана, основанная на этерификации трихлорсилана, обладает рядом недостатков. В частности, одним из основных побочных продуктов взаимодействия трихлорсилана с этиловым спиртом является хлористый водород, вызывающий коррозию технологического оборудования и дополнительно создающий экологические проблемы. Кроме того, получаемый по этому способу целевой продукт загрязнен хлором, следствием чего является необходимость многостадийной очистки сырого триэтоксисилана.

Впервые на возможность «прямого синтеза» алкоксисиланов на основе кремния и спиртов с использованием медьсодержащего катализатора было указано Роховым Е.Г. в 1948 г., однако только в 1972 году он запатентовал способ «прямого синтеза» алкоксисиланов, заключающийся в пропускании паров алифатических спиртов через смесь кремния и меди, массовая доля меди в которой составляла 10%, предварительно прогретую в токе водорода при температуре свыше 1000°С, в силиконовом масле при температуре 250-300°С [1]. С помощью этого метода были получены триалкоскисиланы с низкими выходами.

Позже выяснилось, что реакция взаимодействия кремния с этиловьм спиртом может катализироваться различными соединениями меди. Так, использование хлорида меди (1) в качестве катализатора и проведение реакции в смеси полиароматических углеводородов позволило существенно повысить выход целевых продуктов [2]. Сочетание катализаторов на основе хлоридов одно- и двухвалентной меди с высококипящими инертными растворителями на основе линейных алкилированных бензолов, таких, например, как смесь изомерных додецилбензолов или тридецилбензолов, также приводит к увеличению выходов алкоксисиланов [3]. В процессах «прямого синтеза» триалкоксисиланов хлориды меди можно заменить другими соединениями этого металла. Например, в патенте [4] качестве катализаторов предложено использовать оксиды и гидроксиды меди. Авторы [4] утверждают, что применение оксидов и гидроксидов меди вместо соответствующих хлоридов позволяет повысить селективность процесса по триалкоксисилану оксидами и избежать проблем, связанных с использованием хлоридов. В последнее время в качестве катализаторов широко используются нанопорошки меди и ее оксидов и гидроксидов [5]. Основным недостатком таких катализаторов является зависимость их каталитических свойств от способа приготовления. Кроме того, в ряде случаев имеет место плохая воспроизводимость каталитической активности нанопорошков меди и ее оксидов в «прямом синтезе» триалкоксисиланов. Как было отмечено выше, в роли наиболее широко используемого катализатора выступает хлорид меди (I). При этом следует отметить, что существуют методы получения CuCl, основанные на взаимодействии металлической меди с хлором (так называемый «сухой способ») или восстановлении солей двухвалентной меди различными органическими и неорганическими реагентами в присутствии хлорид-ионов (т.н. «мокрый метод»). Впервые на зависимость каталитических свойств хлорида меди (I) от способа его приготовления было указано в патенте [3]. Так, однохлористая медь, приготовленная «мокрым способом» в результате взаимодействия сульфата меди с металлической медью в водном растворе соляной кислоты и хлорида натрия, включающим стадии кристаллизации, выделения и сушки, обеспечивает более высокую скорость реакции и конверсию кремния по сравнению с хлоридом меди (I), полученном в результате взаимодействия металлической меди с хлором [3]. Наблюдаемый эффект объясняется тем, что размер частиц хлорида меди (I), синтезированного «мокрым» способом, не превышает 2 мкм. Более аргументированные выводы о влиянии способа приготовления катализатора на его активность, основанные на детальном изучении стадии активации «контактной массы» - смеси мелкоразмолотого порошка кремния и хлорида меди (I), были сделаны в работе [6].

В качестве прототипа выбраны наноразмерные порошки хлорида меди (I), получаемые различными методами диспергирования, причем происхождение исходной соли не указывается [5. Pat US 7858818, B01J 23/72, C07F 7/02, 28.12.2010]. Основным недостатком прототипа является плохая воспроизводимость активности катализатора и селективности процесса «прямого синтеза» триэтоксисилана.

Задачей изобретения является разработка ультрамелкодисперсного катализатора на основе хлорида меди (I) и способа его получения, обеспечивающего хорошо воспроизводимую активность катализатора и селективность процесса «прямого синтеза» триэтоксисилана.

Задача решается катализатором прямого синтеза триэтоксисилана на основе порошка хлорида меди (I), который представляет собой ультрамелкодисперсные порошки хлорида меди (I), округлые агрегаты которого имеют диаметр от 600 нм до 3 мкм и состоят из глобул диаметром до 200 нм, которые, в свою очередь, представляют собой наночастицы хлорида меди (I) с размерами до 20 нм.

Задача решается способом получения катализатора прямого синтеза триэтоксисилана, который получают в результате восстановительного термолиза хелатного комплекса меди, получаемого in situ из дигидрата хлорида меди (II) в среде полиола, в результате чего получают ультрамелкодисперсные порошки хлорида меди (I), округлые агрегаты которого имеют диаметр от 600 нм до 3 мкм и состоят из глобул диаметром до 200 нм, которые, в свою очередь, представляют собой наночастицы хлорида меди (I) с размерами до 20 нм.

Задача решается за счет того, что целевой продукт получается в результате двухстадийного процесса. На первой стадии из хлорида меди (II) в среде полиола готовится раствор соответствующего хелатного комплекса меди (II). На второй стадии полученный комплекс двухвалентной меди подвергается термолизу, в результате которого происходит образование хлорида меди (I). Полученный катализатор отделяется фильтрованием и промывается органическими растворителями. В качестве полиолов могут применять полиатомные органические спирты, такие как этиленгликоль, глицерин, 1,2-пропиленгликоль и т.д. Стадия приготовления раствора хелатного комплекса меди (II) проводится в избытке подходящего полиола при температурах от 20 до 150°С. Нижний предел температуры определяется температурой окружающей среды, а верхний - термической стабильностью получаемого медного комплекса. Наиболее удобный нижний предел температуры составляет 100°С и связан с тем, что при более низких температурах полиолы представляют собой вязкие жидкости. Массовое соотношение полиола и хлорида меди (II), вводимых в реакцию, может варьироваться от 5:1 до 100:1. Наиболее удобный интервал соотношений составляет от 7:1 до 14:1. Нижний предел этого соотношения определяется растворимостью соответствующего хелата в избытке полиола, а верхний - разумным расходованием реагентов. Вторую стадию - восстановительный термолиз проводят в среде полиола, использованного на первой стадии при температурах от 150 до 250°С. Наиболее удобным представляется интервал от 180 до 200°С. Нижний предел температурного интервала определяется скоростью восстановительного термолиза, а верхний - температурой кипения полиола. Целевой продукт выделяется фильтрованием либо горячей реакционной массы, либо после охлаждения последней и разбавления ее водой. В этом случае в воду могут быть добавлены восстановительные агенты, препятствующие окислению хлорида меди кислородом воздуха. В качестве восстановителей могут быть использованы различные неорганические (тиосульфат натрия, нитрит натрия, ронгалит и т.п.) или органические (глюкоза, гидрохинон и т.п.) восстановители. Кроме того, растворенный в воде кислород может быть удален барботированием через воду инертных газов или сернистого газа.

В результате реакции получаются ультрамелкодисперсные порошки хлорида меди (I), по данным сканирующей электронной микроскопии представляющие собой округлые агрегаты диаметром от 600 нм до 3 мкм. В свою очередь, по данным просвечивающей электронной микроскопии, агрегаты состоят из глобул диаметром до 200 нм, которые, в свою очередь, представляют собой наночастицы хлорида меди (I) с размерами до 20 нм.

Эксперименты по «прямому синтезу» триалкоксисиланов показали высокую каталитическую активность получаемых катализаторов. При этом селективность процесса превышает 80%. За счет полученной структуры ультрамелкодисперсных порошков хлорида меди (I) объясняется их высокая каталитическая активность и селективность процесса «прямого синтеза» триэтоксисилана.

Следует отметить, что из существующего уровня развития науки и техники было неочевидно, что в результате восстановительного термолиза хлорида меди (II) в среде полиолов будут получены ультрамелкодисперсные порошки хлорида меди (I) с описанной выше морфологией.

Кроме того, было неочевидно, что полученные таким образом материалы будут являться высокоэффективными катализаторами «прямого синтеза» триэтоксисилана.

Сущность изобретение иллюстрируется следующими примерами:

Пример 1. Общая методика приготовления катализатора

В стеклянную колбу, снабженную магнитной мешалкой, помещают дигидрат хлорида меди (II) и добавляют глицерин. Смесь помещают в баню, нагретую до 100-150°С, и перемешивают при этой температуре в течение 1 ч. По окончании этой процедуры колбу снабжают прямым холодильником и помещают в баню со сплавом Вуда, нагретую до 180°С, и реакционную смесь выдерживают при этой температуре при перемешивании в течение 2 ч в токе аргона. За указанное время образуется белый осадок. После охлаждения реакционную смесь разбавляют водой и осадок отфильтровывают. Осадок промывают несколькими порциями дистиллированной воды и спиртом. После этого осадок помещают в колбу и высушивают в вакууме в течение 4-6 ч.

Результаты приведены в таблице 1.

Морфологию полученных образцов исследуют с помощью сканирующей и просвечивающей микроскопии. Элементный состав установливают с помощью атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой.

В примерах 2, 3 варьируют природу полиола.

Пример 2.

Реакцию проводят в условиях, приведенных в примере 1, но вместо глицерина в качестве полиола использют этиленгликоль.

Результаты приведены в таблице 1.

Пример 3.

Реакцию проводят в условиях, приведенных в примере 1, но вместо глицерина в качестве полиола используют пропиленгликоль-1,2.

Результаты приведены в таблице 1.

Таблица 1
Пример Полиол Выход CuCl, % Диаметр частиц, мкм
1. глицерин 96 0.8-2.0
2. этиленгликоль 95 0.9-3.0
3. пропиленгликоль-1,3 97 1.0-2.5

Примеры 4-6.

Реакцию проводят в условиях, приведенных в примере 1, варьируют температуру приготовления хелатного комплекса. Результаты приведены в таблице 2.

Таблица 2
Пример Температура приготовления хелатного комплекса, °С Выход CuCl, %
4. 100 98
5. 125 96
6. 150 94

Примеры 7-9.

Реакцию проводят в условиях примера 1, варьируют температуру восстановительного термолиза.

Результаты приведены в таблице 3.

Таблица 3
Пример Температура восстановительного термолиза, °С Выход CuCl, %
7. 180 97
8. 200 98
9. 220 95

Примеры 10-11.

Катализатор, полученный по описанному выше способу, испытан в реакции «прямого синтеза» триэтоксисилана. Результаты представлены в таблице. Для сравнения приведены данные по «прямому синтезу» триэтоксисилана в присутствии однохлористой меди, приготовленной по стандартной методике. Результаты представлены в таблице 4.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Pat. 3641077 US. Catalytic preparation of alkoxy derivatives of silicon, germanium, tin, thallium, and arsenic / Rochow, E.G. - Feb.8, 1972; CA 1972: 99819.

2. Pat. 3775457 US. Method of manufacting alkoxysilanes / Muraoka, H., Asano, M., Ohashi, Т., Yoshida, H. - Nov.27, 1973.

3. Pat. 5362897 US. Process for producing trialkoxysilanes / Katsuyoshi, H., Yoshinori, Y. - Nov.8, 1994.

4. Pat. 4727173 US. Process for producing trialkoxysilanes from the reaction of silicon metal and alcohols / Mendicino, F.D.; Union Carbide Corp., USA; CA 1988: 454953.

5. Pat. Appl. 20080103323 US. Nanosized copper catalyst precursors for the direct synthesis of trialkoxysilanes / Cromer, S.R., Eng, R.N., Lewis, K.M., Merelgh, А.Т., O'young, C.-L., Yu, H.; Momentive Performance Materials Inc. - 01.05.2008; CAPLUS AN 2008: 526019 (Pat US 7858818, B01J 23/72, C07F 7/02, 28.12.2010).

6. Acker, J., Käther, S., Lewis, K.M., Bohmhammel, K. The reactivity in the system CuCl-Si related to the activation of silicon in the Direct Synthesis // Silicon Chemistry. - 2003. - Vol.2. - No. 3. - P.195-206.

Источник поступления информации: Роспатент

Показаны записи 311-320 из 364.
18.05.2019
№219.017.5a1b

Теплообменник

Изобретение относится к теплотехнике и может быть использовано в теплообменных аппаратах энергетических установок. Теплообменник содержит винтообразные элементы из труб, установленные в зазорах между витками друг друга. При этом в каждом витке выполнены два прямых и два скругленных участка....
Тип: Изобретение
Номер охранного документа: 0002451875
Дата охранного документа: 27.05.2012
18.05.2019
№219.017.5b3e

Способ создания изображений трехмерных объектов для систем реального времени

Изобретение относится к трехмерной визуализации в реальном времени. Техническим результатом является увеличение скорости визуализации. В способе на каждом визуальном образе объекта выделяют простые геометрические примитивы, по которым строят геометрию объекта, восстанавливают трехмерный...
Тип: Изобретение
Номер охранного документа: 0002467395
Дата охранного документа: 20.11.2012
20.05.2019
№219.017.5d5f

Способ консервирования панцирьсодержащего сырья

Изобретение относится к рыбоперерабатывающей промышленности. Способ включает диспергирование панцирьсодержащего сырья, смешивание его с консервантом, фасование полученной смеси в тару с последующим ее укупориванием. В качестве консерванта используют католит, предварительно полученный в катодной...
Тип: Изобретение
Номер охранного документа: 0002429727
Дата охранного документа: 27.09.2011
20.05.2019
№219.017.5d60

Способ консервирования панцирьсодержащих отходов комплексной переработки криля

Изобретение относится к рыбоперерабатывающей промышленности. Способ предусматривает диспергирование панцирьсодержащих отходов комплексной переработки криля, смешивание их с консервантом, фасование полученной смеси в тару с последующим ее укупориванием. Смешивание с консервантом осуществляют в...
Тип: Изобретение
Номер охранного документа: 0002429726
Дата охранного документа: 27.09.2011
24.05.2019
№219.017.6028

Способ координированного маневрирования судна

Изобретение относится к технике управления движением судов и может быть использовано, в частности, для обеспечения режимов плавания судов класса «река-море» в специфических условиях внутренних водных путей и прибрежных районов морей при управлении курсом и скоростью хода при прохождении...
Тип: Изобретение
Номер охранного документа: 0002429161
Дата охранного документа: 20.09.2011
27.05.2019
№219.017.6207

Резонансный акустический уровнемер

Изобретение относится к области ультразвуковой измерительной техники и предназначено для автоматического дистанционного измерения уровней жидкости различных типов в производственных и транспортных емкостях в нефтехимической, химической, горнодобывающей, пищевой и других отраслях промышленности....
Тип: Изобретение
Номер охранного документа: 0002443981
Дата охранного документа: 27.02.2012
27.05.2019
№219.017.6209

Мягкий реданированный поплавок

Изобретение относится к экранопланостроению, авиастроению и судостроению, касается профилирования мягких реданированных поплавков, преимущественно для экранопланов. Мягкий реданированный поплавок имеет пневмооболочку, оснащенную элементами соединения с корпусом транспортного средства,...
Тип: Изобретение
Номер охранного документа: 0002442709
Дата охранного документа: 20.02.2012
27.05.2019
№219.017.620a

Датчик измерителя напряженности электростатического поля

Предложен датчик измерителя напряженности электростатического поля. Он содержит неподвижный заземленный экранирующий электрод с секторными вырезами, вращающийся заземленный электрод-модулятор и чувствительный электрод. Последний выполнен в виде диска с отверстием для прохода вала модулятора....
Тип: Изобретение
Номер охранного документа: 0002442183
Дата охранного документа: 10.02.2012
27.05.2019
№219.017.620b

Профилированная нижняя часть мягкого поплавка с поперечным реданом

Изобретение относится к авиастроению, судостроению и к экранопланостроению, касается профилирования нижней части мягкого поплавка с поперечным реданом. Профилированная нижняя часть мягкого поплавка выполнена с поперечным реданом. Мягкий поплавок образован пневмобаллонами, заключенными в...
Тип: Изобретение
Номер охранного документа: 0002442708
Дата охранного документа: 20.02.2012
29.05.2019
№219.017.681e

Способ и устройство для измерения постоянной времени релаксации объемного заряда в диэлектрических жидкостях

Изобретение относится к области измерительной техники, в частности к определению электрофизических свойств диэлектрических материалов, и может быть использовано для определения постоянной времени релаксации объемного заряда диэлектрических жидкостей. Способ состоит в том, что исследуемую...
Тип: Изобретение
Номер охранного документа: 0002453857
Дата охранного документа: 20.06.2012
Показаны записи 191-191 из 191.
16.06.2023
№223.018.7d35

Применение 1-(герматран-1-ил)-1-оксиэтиламина для торможения развития атеросклероза в эксперименте

Изобретение относится к медицине, фармакологии и биологии и касается применения 1-(герматран-1-ил)-1-оксиэтиламина формулы: в качестве средства, угнетающего общую (суммарную) активность лизосомального липолитического фермента - кислой фосфолипазы А1. Изобретение позволяет расширить арсенал...
Тип: Изобретение
Номер охранного документа: 0002746321
Дата охранного документа: 12.04.2021
+ добавить свой РИД