×
01.03.2019
219.016.cd8a

СПОСОБ ПОЛУЧЕНИЯ СТИРОЛА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002323198
Дата охранного документа
27.04.2008
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу получения стирола и включает газофазную дегидратацию 1-фенилэтанола при повышенной температуре в присутствии катализатора дегидратации, в котором катализатор дегидратации включает формованные частицы катализатора на основе окиси алюминия с площадью поверхности (по БЭТ) от 80 до 140 м/г и объемом пор (Hg) более 0,65 мл/г. Применение способа позволяет уменьшить количество образующихся побочных продуктов и увеличить время работы катализатора до его регенерации. 2 з.п. ф-лы, 1 табл.
Реферат Свернуть Развернуть

Настоящее изобретение относится к способу получения стирола, включающему газофазную дегидратацию 1-фенилэтанола при повышенной температуре в присутствии катализатора дегидратации.

Обычным способом производства стирола является совместное получение окиси пропилена и стирола из этилбензола. Вообще говоря, такой способ включает стадии: (i) взаимодействие этилбензола с кислородом или воздухом с образованием гидропероксида этилбензола, (ii) взаимодействие полученного таким образом гидроперексида этилбензола с пропеном в присутствии катализатора эпоксидирования с получением окиси пропилена и 1-фенилэтанола (известного также как α-фенилэтанол или метилфенилкарбинол), и (iii) превращение 1-фенилэтанола в стирол путем дегидратации, применяя подходящий катализатор дегидратации.

Само по себе применение катализаторов на основе окиси алюминия в дегидратации 1-фенилэтанола хорошо известно в уровне техники.

Например, в документе US A-3526674 описано применение катализатора на основе окиси алюминия в жидкофазной дегидратации 1-фенилэтанола в стирол, причем указанный катализатор на основе окиси алюминия имеет в подходящем случае площадь поверхности по БЭТ от 40 до 250 м2/г и применяется в тонко измельченной форме, т.е. в виде частиц с размером 0,15 мм (100 меш) или меньше.

В документе US A-3658928 описан способ газофазной дегидратации 1-фенилэтанола в стирол в присутствии контролируемого количества добавленного пара и в присутствии катализатора, который в подходящем случае является доступным для приобретения катализатором на основе окиси алюминия, таким как Harshaw Al-0104.

Катализатор Harshaw Al-0104 имеет объем пор примерно 0,35 мл/г. Способ дегидратации, использующий катализаторы на основе окиси алюминия (оксид алюминия: Al2О3), особенно подходящие для такого способа, был описан в документе WO 99/58480. Применение таких катализаторов делает возможным выгодное превращение 1-фенилэтанола в стирол без многих недостатков применения катализаторов предшествующего уровня. Однако даже применение этих улучшенных катализаторов все же ведет к образованию тяжелых побочных продуктов, обычно до 5% олигомеров и полимеров стирола. Эти тяжелые побочные продукты не превращаются дальше и, следовательно, снижают полный выход целевого стирола. Кроме того, эти высокомолекулярные побочные продукты стремятся занять поры катализатора, после чего катализатор больше не может использоваться для превращения 1-фенилэтанола в стирол. Это требует стадии регенерации катализатора, что неблагоприятно повышает стоимость процесса.

Таким образом, цель настоящего изобретения состоит в том, чтобы найти катализатор газофазной дегидратации 1-фенилэтанола в стирол, при котором стирол получается при улучшенной селективности, и конверсию 1-фенилэтанола можно долгое время поддерживать на высоком уровне. Это означает, что регенерировать катализатор необходимо реже.

В контексте настоящей заявки термин "стирол" охватывает также замещенные стиролы, под которыми подразумеваются стиролы, содержащие один или насколько заместителей, связанных с ароматическим циклом или с винильной группой. Такие заместители обычно включают алкильные группы, такие как метильные или этильные группы. Аналогично термин "1-фенилэтанол" также охватывает замещенные 1-фенилэтанолы, имеющие такие же заместители, как соответствующие замещенные стиролы.

Было обнаружено, что катализатор дегидратации на основе окиси алюминия, у которого площадь поверхности по БЭТ составляет от 80 до 140 м2/г и объем пор (Hg) превышает 0,65 мл/г, подходит для получения стирола путем газофазной дегидратации 1-фенилэтанола при повышенной температуре наряду с тем, что дегидратация 1-фенилэтанола поддерживается на высоком уровне в течение долгого времени. Кроме того, было найдено, что при таком способе образуется меньше тяжелых побочных продуктов, чем с катализаторами предшествующего уровня.

Объем пор (Hg) катализатора для применения в настоящем изобретении больше чем 0,65 мл/г. Предпочтительно объем пор составляет не более чем 1,0 мл/г. Более точно, катализатор предпочтительно имеет объем пор (Hg) от 0,75 до 0,85 мл/г.

Площадь поверхности по БЭТ может быть измерена любым способом, который известен как подходящий любому специалисту в данной области. Выражение "объем пор (Hg)" означает объем пор, измеренный с помощью ртути. Подходящие методы измерения пористости с помощью ртути также хорошо известны специалисту в данной области.

Формованные катализаторы на основе окиси алюминия со свойствами, необходимыми для применения в данном изобретении, могут быть приготовлены согласно процедурам, хорошо известным в уровне техники, например, выдавливанием пасты из окиси алюминия или прекурсора окиси алюминия с последующим прокаливанием. Примерами прекурсоров окиси алюминия являются гидраты окиси алюминия подобные тригидрату окиси алюминия, Al2O32O (известному также как гиббсит или байерит) и гидроксиду алюминия AlOOH (известному также как бемит или псевдобемит). Эти прекурсоры окиси алюминия преобразуются в окись алюминия в процессе прокаливания. Обычно в таком процессе порошок окиси алюминия или порошок прекурсора окиси алюминия сначала смешивают с порошком связующего (не обязательно). Подходящие связующие материалы включают неорганические оксиды, как оксиды кремния, магния, титана, алюминия, циркония и кремний-алюминия. Весовое отношение связующего к порошку окиси алюминия может составлять от 0 (связующее отсутствует) до 90:10. Обычно способную к экструдированию смесь готовят из твердой фазы (порошки окиси алюминия и, возможно, связующего) и воды путем смешения и перемешивания компонентов и пропускания этой смеси в экструдер. Такая способная к экструдированию смесь обычно выглядит как паста. Специалисты обычного уровня в данной области способны оптимизировать процедуру смешения/перемешивания для получения способной к экструдированию пасты и выбрать наиболее подходящие условия эструдирования. Помимо окиси алюминия, необязательно связующего и воды, выдавливаемая паста обычно содержит также экструзионные добавки для улучшения процесса выдавливания. Такие экструзионные добавки известны в уровне техники и включают, например, пептизаторы и флокулянты. Пептизаторы способствуют более плотной упаковке частиц в экструзионной смеси, а флокулянты способствуют включению воды. Подходящие пептизаторы известны в уровне техники и включают одновалентные неорганические кислоты (например, соляную кислоту и азотную кислоту) и органические кислоты, такие как алифатические монокарбоновые кислоты, ациклические монокарбоновые кислоты и жирные кислоты. Подходящие флокулянты также хорошо известны, они включают полиэлектролиты, такие как доступные для приобретения под торговыми марками NALCO и SUPERFLOC. Также для увеличения пористости конечного экструдата могут применяться выгораемые материалы. Примерами выгораемых материалов являются полиэтиленоксид, метилцеллюлоза, этилцеллюлоза, латекс, крахмал, ореховая скорлупа или мука, полиэтилен или любые полимерные микросферы или микровоски.

Катализатор, особенно подходящий для применения в данном изобретении, может быть сделан из псевдобемита (AlOOH). Такой порошок доступен для приобретения у компании Criterion Catalyst.

Пригодную для экструдирования смесь или пасту, полученную, как описано выше, подвергают затем экструзионной обработке. Эта экструзионная обработка может быть осуществлена обычной техникой выдавливания, известной в уровне техники. На выходе из экструдера имеется отверстие, которое придает выдавленной смеси выбранную форму при покидании ею экструдера. Если хотят получить экструдат сферической формы, влажному экструдату, вышедшему из экструдера, прежде чем он будет подвергнут прокаливанию, сначала придается сферическая форма в подходящем устройстве придания сферической формы. Частицы катализатора могут иметь любую форму, в том числе сферическую, цилиндрическую, трехдольчатую, четырехдольчатую, звездчатую, кольцевую, крестообразную и т.д. Мягкие экструдаты, полученные, как описано выше, затем сушат (необязательно) и затем подвергают стадии прокаливания. Катализатор с желаемыми свойствами может быть получен сушкой экструдатов при температурах от 100 до 140°C в течение нескольких часов с последующим прокаливанием при высокой температуре в течение нескольких часов.

Дегидратация 1-фенилэтанола в стирол согласно настоящему изобретению проводится в газовой фазе при повышенной температуре. Термин "повышенная температура" предпочтительно означает любую температуру выше 150°C. Предпочтительные условия дегидратации, которые должны применяться, являются условиями, применяемыми обычно, и включают температуры реакции от 210 до 330°C, более предпочтительно от 280 до 320°C, наиболее предпочтительно около 300°C, и давления в диапазоне от 0,1 до 10 бар, наиболее предпочтительно около 1 бара.

В способе согласно настоящему изобретению было обнаружено, что катализатор, описанный выше, имеет селективность реакции по стиролу по меньшей мере 96% при конверсии по меньшей мере 99%, а при конверсиях 99% и выше достигается селективность 97% или выше. В этой связи селективность реакции определяется как число молей стирола, образованных на моль соединения-прекурсора, превращенного в продукты. Аналогично селективность по другим соединениям, таким как тяжелые фракции, определяется как число молей соединений-прекурсоров, превращенных в тяжелые фракции, на моль соединений-прекурсоров, превращенных в продукты. Конверсия определяется как полная степень конверсии 1-фенилэтанола, как определено в условиях испытания, т.е. мольный процент прореагировавшего 1-фенилэтанола от полного числа молей 1-фенилэтанола, присутствующего в подаче. Кроме того, селективность катализатора по тяжелым побочным продуктам, таким как олигомеры и простые эфиры, очень низкая: селективность по эфирам обычно меньше 0,8%, более предпочтительно менее 0,3%, а селективность по олигомерам обычно меньше 3% и предпочтительно составляет 2% или меньше.

Далее изобретение будет проиллюстрировано следующими примерами, не ограничивающими пределы изобретения этими частными вариантами осуществления.

Пример 1

Катализатор трехдольчатой формы с физическими свойствами, указанными в таблице 1 (Ex-1), был испытан на характеристики дегидратации в установке с микропотоком, состоящей из реактора идеального вытеснения диаметром 13 мм, установки выпаривания 1-фенилэтанольного сырья и установки конденсирования паров продукта. В качестве сырья 1-фенилэтанола использовался образец технологического потока в стирольную реакторную систему серийной установки "Окись пропилена/Мономер стирол". Сырье содержало 81,2% 1-фенилэтанола, 10,6% метилфенилкетона и 2% воды. Остаток до 100% состоял из примесей и (побочных) продуктов предшествующих секций окисления и эпоксидирования. Выходной поток установки с микропотоком ожижали конденсацией, полученную двухфазную жидкую систему анализировали с помощью газохроматографического анализа.

Эксперимент по дегидратации проводили в условиях испытания: давление 1,0 бар и температура 300°C. Скорость подачи 1-фенилэтанола поддерживали на уровне 30 граммов в час, в трубку реактора загружали 20 см3 катализатора. Реакцию продолжали приблизительно 140 часов, после чего эксперимент прекращали.

Активность катализатора (конверсия) и его селективность по реакции через 50 часов работы определяли из газохроматографического анализа образцов продуктов реакции. Измеряли также активность через 120 часов. Данные приведены в таблице 1. Активность и селективность были определены выше.

Пример 2

Повторяли процедуру, описанную в примере 1, за исключением того, что использовали другие образцы сырья, содержащего 81,3% 1-фенилэтанола и 9,9% метилфенилкетона. Данные приведены в таблице 1 (Ex-2).

Сравнительный пример 1

Повторяли процедуру, описанную в примере 1, за исключением того, что катализатор трехдольчатой формы имел площадь поверхности по БЭТ 149 м2. Физические свойства указаны в таблице 1 (Comp-Ex-1). В эксперименте контролировали только конверсию 1-фенилэтанола, эксперимент был прекращен через 98 часов, когда конверсия 1-фенилэтанола составляла всего 79%.

Сравнительный пример 2

Повторяли процедуру, описанную в примере 1, за исключением того, что применяли катализатор звездчатой формы с физическими свойствами в диапазоне, какой описан в способе согласно документу WO 99/58480. Реакция продолжалась в течение приблизительно 120 часов. Данные по активности и селективности приведены в таблице 1 (Comp-Ex-2).

Сравнительный пример 3

Повторяли процедуру, описанную в примере 1, за исключением того, что применяли трехдольчатый катализатор с физическими свойствами в диапазоне, описанном в способе согласно документу WO 99/58480. Использовали образец сырья, содержащий 79,0% 1-фенилэтанола и 10,0% метилфенилкетона. Данные приведены в таблице 1 (Comp-Ex-3). Эксперимент прекращали через 113 часов, когда конверсия 1-фенилэтанола была всего 91%. Данные по активности и селективности приведены в таблице 1 (Comp-Ex-3).

Таблица 1
Свойства и характеристики катализатора
Ex-1Ex-2Comp-Ex-1Comp-Ex-2Comp-Ex-3
Площадь поверхности (БЭТ, м2/г)11011014910084
Объем пор (Hg, мл/г)0,770,770,840,570,44
Диаметр частиц (мм)2,52,52,53,62,5
Конверсия (%) через 50 ч99,999,998,099,799,9
Селективность по стиролу (%) через 50 ч96,596,5(a)95,995,0
Селективность по тяжелым фракциям (простые эфиры + олигомеры) (%) через 50 ч3,03,0(a)3,54,3
Конверсия (%) через 120 ч99,799,8(b)97,3(c)
(a) не определено
(b) эксперимент остановлен через 98 часов, когда конверсия была равна 79%
(c) эксперимент остановлен через 113 часов, когда конверсия была равна 91%

1.Способполучениястирола,включающийгазофазнуюдегидратацию1-фенилэтанолаприповышеннойтемпературевприсутствиикатализаторадегидратации,вкоторомкатализатордегидратациивключаетформованныечастицыкатализаторанаосновеокисиалюминиясплощадьюповерхности(поБЭТ)от80до140м/гиобъемомпор(Hg)более0,65мл/г.12.Способпоп.1,причемобъемпор(Hg)катализаторасоставляетот0,75до0,85мл/г.23.Способпоп.1и/или2,причемкатализаторнаосновеокисиалюминияприготовленизпсевдобемита.3
Источник поступления информации: Роспатент

Показаны записи 51-60 из 389.
27.03.2014
№216.012.af56

Индукционные нагреватели для нагревания подземных пластов

Система нагревания подземного пласта содержит протяженный электрический проводник, размещенный в подземном пласте. Электрический проводник расположен между, по меньшей мере, первым электрическим контактом и вторым электрическим контактом. Ферромагнитный проводник, по меньшей мере, частично...
Тип: Изобретение
Номер охранного документа: 0002510601
Дата охранного документа: 27.03.2014
10.04.2014
№216.012.b0c1

Способ получения ацилированных алкоксилатов вторичных спиртов и алкоксилатов вторичных спиртов

Изобретение относится к способу получения ацилированного алкоксилата вторичного спирта формулы (I), в которой R является линейной или разветвленной алкильной группой, включающей от 1 до 30 атомов углерода, необязательно замещенной циклоалкильной группой, включающей от 5 до 30 атомов углерода,...
Тип: Изобретение
Номер охранного документа: 0002510964
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b0d7

Композиция автомобильного топлива

Изобретение относится к применению полимерной присадки, улучшающей индекс (ИВ), в композиции дизельного автомобильного топлива для улучшения характеристики приемистости двигателя внутреннего сгорания, в котором находится композиция дизельного топлива, или двигателя внутреннего сгорания,...
Тип: Изобретение
Номер охранного документа: 0002510986
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b29e

Способ регенерации моноэтиленгликоля

Изобретение относится к способу регенерации моноэтиленгликоля из отводимого потока катализатора. Способ включает стадии: a) объединения отводимого потока и, необязательно, дополнительных отводимых потоков, которые содержат моноэтиленгликоль, с потоком тяжелых примесей, содержащим, по меньшей...
Тип: Изобретение
Номер охранного документа: 0002511442
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b517

Жидкие топливные композиции

Настоящее изобретение относится к жидкой топливной композиции, содержащей бензин, пригодный для использования в двигателе внутреннего сгорания с искровым зажиганием; и одно или более солевых производных амидов поли(гидроксикарбоновых кислот), имеющих формулу (III): [Y-CO[O-A-CO]-Z-R]pX, где Y...
Тип: Изобретение
Номер охранного документа: 0002512083
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c2fa

Система для добычи нефти с помощью эмульсии, содержащей смешивающийся растворитель

Изобретение относится к области стимулирования добычи нефти с использованием смешиваюшегося ее вытеснения из пласта. Обеспечивает повышение эффективности и надежности системы вытеснения нефти. Сущность изобретений: система для добычи нефти из подземного пласта включает: источник смешивающегося...
Тип: Изобретение
Номер охранного документа: 0002515673
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c420

Способ получения богатой водородом газовой смеси

Изобретение относится к способу получения богатой водородом газовой смеси из галогенсодержащей газовой смеси, включающей водород и по меньшей мере 50 об.% монооксида углерода, в пересчете на сухую массу, путем взаимодействия галогенсодержащей газовой смеси с водой, имеющей температуру от 150 до...
Тип: Изобретение
Номер охранного документа: 0002515967
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.ce8e

Использование саморегулирующихся ядерных реакторов при обработке подземного пласта

Группа изобретений относится к способам и системам, предназначенным для добычи углеводородов, водорода и/или других продуктов из различных подземных пластов. Система тепловой обработки внутри пласта для добычи углеводородов из подземного пласта содержит саморегулирующийся ядерный реактор,...
Тип: Изобретение
Номер охранного документа: 0002518649
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cec1

Применение саморегулирующихся ядерных реакторов при обработке подземного пласта

Изобретение относится к системам и способам для обработки подземного пласта. Система термической обработки in situ для добычи углеводородов из подземного пласта, содержит саморегулирующийся ядерный реактор; систему труб, по меньшей мере, частично расположенную в активной зоне...
Тип: Изобретение
Номер охранного документа: 0002518700
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d4e2

Способ удаления газообразных загрязнителей из потока газа, содержащего газообразные загрязнители и устройство для его осуществления

Изобретение относится к способу и устройству для удаления газообразных загрязнителей из потока сырьевого газа, содержащего метан. Поток сырьевого газа охлаждается с образованием суспензии, которая содержит твердый загрязнитель, жидкофазный загрязнитель и обогащенную метаном газовую фазу....
Тип: Изобретение
Номер охранного документа: 0002520269
Дата охранного документа: 20.06.2014
Показаны записи 1-7 из 7.
27.09.2013
№216.012.6fa6

Система и способ добычи нефти и/или газа

Группа изобретений относится к системам и способам для добычи нефти и/или газа. Обеспечивает повышение эффективности способа и надежности устройства за счет использования растворителя. Сущность изобретений: система для добычи нефти и/или газа из подземного пласта содержит первую группу скважин,...
Тип: Изобретение
Номер охранного документа: 0002494233
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6fa7

Система и способ добычи нефти и/или газа

Группа изобретений относится к системе и способу добычи нефти и/или газа. Обеспечивает повышение эффективности способа и надежности системы за счет использования смешивающегося вытеснения продукции из пласта. Сущность изобретений: система для добычи нефти и/или газа из подземного пласта...
Тип: Изобретение
Номер охранного документа: 0002494234
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6fac

Система и способ добычи нефти и/или газа

Группа изобретений относится к добыче нефти и/или газа. Обеспечивает усовершенствование добычи из нефтегазоносных пластов. Сущность изобретения: система для добычи нефти и/или газа содержит устройство для ввода в пласт по меньшей мере части серосодержащего соединения, первое устройство для...
Тип: Изобретение
Номер охранного документа: 0002494239
Дата охранного документа: 27.09.2013
27.03.2014
№216.012.aec3

Система и способ добычи нефти и/или газа (варианты)

Группа изобретений относится к системам и способам добычи нефти и/или газа с использованием методов повышения нефтеотдачи. Обеспечивает повышение эффективности решений на основе использования технологии смешивающегося вытеснения. Сущность изобретений: система добычи нефти и/или газа из...
Тип: Изобретение
Номер охранного документа: 0002510454
Дата охранного документа: 27.03.2014
10.08.2014
№216.012.e8dd

Система и способ добычи нефти и/или газа

Группа изобретений относится к системе и способу добычи нефти. Обеспечивает повышение нефтеотдачи пласта и производства сероуглерода. Сущность изобретений: система для добычи нефти содержит: пласт, содержащий смесь нефти с сероуглеродом и/или сероокисью углерода; сепарирующее вещество,...
Тип: Изобретение
Номер охранного документа: 0002525406
Дата охранного документа: 10.08.2014
29.06.2019
№219.017.99bb

Корочковый металлический катализатор, способ его получения и способ получения углеводородов

Настоящее изобретение относится к корочковому металлическому катализатору, способу его получения и к способу получения углеводородов из синтез-газа с использованием этого катализатора. Описан способ получения корочкового металлического катализатора, который включает в себя стадии: 1) нанесение...
Тип: Изобретение
Номер охранного документа: 0002271250
Дата охранного документа: 10.03.2006
29.06.2019
№219.017.9ac0

Формованные трехлепестковые частицы, защитный слой, способ уменьшения загрязнения в слоях катализатора, способ превращения органического сырья и способ получения средних дистиллятов из синтез-газа

Изобретение относится к формованным частицам, имеющим специальную форму. Они могут быть использованы для предотвращения или существенного уменьшения загрязнения слоев катализатора, работающих в потоках, содержащих загрязняющий материал, в результате чего уменьшается потеря напора в слое....
Тип: Изобретение
Номер охранного документа: 0002299762
Дата охранного документа: 27.05.2007
+ добавить свой РИД