×
26.02.2019
219.016.c823

Результат интеллектуальной деятельности: Способ контроля износа режущего инструмента токарного станка в процессе обработки детали

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлообработки и может быть использовано для текущего контроля износа режущего инструмента. Способ контроля включает использование двух хронометрических датчиков, установленных по единой оси вращения обрабатываемой детали на валу мотор-редуктора и на задней бабке станка, с разных сторон от режущего инструмента. В процессе обработки детали в контроллере станка с датчиков получают цифровую хронометрическую информацию во временной области, из которой определяют частотные спектральные характеристики двух отдельных хронограмм вращения с разделением на низко- и высокочастотные области с границей 1000 Гц для вычисления по ним косвенного квазипропорционального параметра износа режущего инструмента, который определяют как среднее квадратичное значение полученных параметров по каждому каналу обоих датчиков с возможностью дальнейшего пропорционального перехода от величины найденного параметра износа к величине износа инструмента в текущий момент времени. Использование изобретения позволяет повысить точность и достоверность контроля износа инструмента в режиме реального времени. 8 ил.

Область техники

Изобретение относится к области металлообрабатывающего оборудования, конкретно к токарным станкам с текущим контролем износа рабочей кромки режущего инструмента (резца) в процессе обработки детали.

Уровень техники

Известно УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ИЗНОСА РЕЗЦА (патент РФ №124612, МПК В23В 25/06, опубл. 10.02.2013), содержащее средство съема информации в виде бесконтактного датчика перемещения и средство обработки и передачи управляющего сигнала, выполненное в виде компьютера, при этом средство съема информации расположено внутри резца под режущей пластинкой. Это устройство, очевидно, используют для измерения износа резца соответствующим способом.

Недостатком данного технического решения является необходимость внесения изменений в конструкцию державки резца. В тексте указано, что бесконтактный датчик перемещения устанавливается в теле резца. Таким образом, необходимо изготовление специальных державок резцов (невозможно использовать стандартные универсальные). Бесконтактный датчик, установленный в теле резца, располагается непосредственно в зоне резания. Дополнительными источниками погрешности такой системы (устройства и способа с его использованием) являются стружка, температурные расширения материалов детали и резца, вибрации в зоне резания и т.п.

Известно УСТРОЙСТВО ДЛЯ КОНТРОЛЯ И КОМПЕНСАЦИИ ИЗНОСА РЕЖУЩЕЙ КРОМКИ РЕЗЦА (патент РФ №107986, МПК В23В 25/06, опубл. 10.09.2011), содержащее основное средство съема информации, обеспечивающее возможность определения тангенциальной составляющей силы резания, а также систему обработки и передачи программно сформированной последовательности управляющих электрических импульсов на исполнительное средство токарного станка, функционально обеспечивающее перемещение резца в направлении обрабатываемого изделия на величину текущего износа его режущей кромки. При этом оно снабжено дополнительным, средством съема информации, обеспечивающим возможность определения радиальной составляющей силы резания, причем основное и дополнительное средство съема информации выполнены в виде тензометрических датчиков или тензометрического моста, причем основное средство съема информации установлено на резцедержателе, а дополнительное - на внутренней поверхности полого вала револьверной головки, обеспечивающее возможность определения радиальной Силы резания. Это устройство также, очевидно, используют для контроля и компенсации износа режущей кромки резца соответствующим способом.

Недостатками данного технического решения (устройства и способа с его использованием) являются: - внесение изменений в конструкцию резцедержателя; - использование тензометрических датчиков, установленных на револьверной головке токарного станка, для измерения составляющих силы резания. Точность измерения такими тензодатчиками обеспечивается на уровне (0,02-1,0)%, что хуже точности контроля износа резца в предлагаемом техническом решении (не хуже 2,5⋅10-3%); - высокие требования к помехозащищенности тензорезисторов и систем, построенных на их основе: погрешность, вызванная технологическим разбросом сопротивлений тензорезисторов; - тепловой шум измеряемого сопротивления; - температурная погрешность, вызванная разогревом датчика протекающим током; погрешность, связанная с разностью температурных коэффициентов расширения тензорезистора и материала объекта, на который наклеен тензорезистор; - внешние наводки.

Известен авторский СПОСОБ ДИАГНОСТИРОВАНИЯ ЦИКЛИЧЕСКИХ МАШИН -МЕТАЛЛОРЕЖУЩИХ СТАНКОЕ ФАЗОХРОНОМЕТРИЧЕСКИМ МЕТОДОМ (ФХМ) (патент на изобретение №2561236 (МПК G01M 1/00, опубл. 27.08.2015), в описании которого также даны общие схемы (фиг. 1, 2 в патенте №2561236) токарных станков с хронометрическими датчиками, в том числе с использованием их для контроля износа режущего инструмента. Эти сведения позволяют считать реализацию способа в такой схеме токарного станка наиболее близким аналогом к предлагаемому способу контроля износа режущего инструмента (резца) токарного станка в процессе обработки детали.

Ограничением реализации прототипного способа можно признать недостаточную информативность и отсутствие конкретных подробностей и особенностей промышленной применимости способа с учетом конструктивного устройства токарного станка с хронометрическими датчиками для ФХМ-контроля текущего износа однолезвийного режущего инструмента (резца) станка.

Раскрытие изобретения

Задачей и техническим результатом изобретения является реализация способа контроля износа резца (режущего инструмент) в процессе обработки детали на токарном станке с инструментарием (установкой на станке двух хронометрических датчиков и контроллера объединенной обработки их сигналов) для косвенного определения износа режущего инструмента с помощью ФХМ в процессе обработки детали однолезвийным режущим инструментом станка в режиме реального времени (временная задержка не более 0.1 с).

Решение задачи и технический результат обеспечиваются способом контроля износа режущего инструмента (резца) токарного станка, содержащего мотор-редуктор; шпиндельный узел; в патроне шпинделя обрабатываемую деталь; суппорт с режущим инструментом для обработки детали: заднюю бабку; не менее одного хронометрического датчика; контроллер ФХМ-обработки сигналов хронометрических датчиков, в том числе для контроля износа резца. При этом используют два хронометрических датчика, установленных по единой оси вращения обрабатываемой детали на валу мотор-редуктора и на задней бабке станка, с разных сторон от режущего инструмента, обрабатывающего деталь. В процессе обработки детали с датчиков и при ФХМ-обработке в контроллере станка получают цифровую хронометрическую информацию во временной области для получения из нее частотных спектральных характеристик двух отдельных хронограмм вращения с разделением в них низко- и высокочастотных областей для вычисления по ним косвенного квазипропорционального параметра Ψ износа режущего инструмента по формуле , где P1 и Р2 - интегральные мощности соответственно низко- и высокочастотной области спектральных частотных характеристик хронограммы вращения со средней величиной общей границы областей, определенной в 1000 Гц. При этом для двух датчиков расчетную величину Ψ определяют как среднее квадратичное значение полученных параметров Ψ1 и Ψ2 по каждому каналу обоих датчиков: (прим.: геометрически средняя величина Ψ по указанной формуле дает наиболее точный результат осреднения, если задача стоит в нахождении такого значения среднего, которое было бы равноудалено от обоих исходных граничных значений).

Далее для оператора токарного станка целесообразен пропорциональный переход от величины параметра Ψ к величине износа инструмента в текущий момент времени, как абсолютной линейной величине (в мкм), относительной величине (в %) степени износа резца в сравнении с максимально допустимой абсолютной величиной износа или качественной экспертной оценке текущего износа резца, как незначительного, среднего или катастрофического. В соответствии с этим по текущей величине параметра Ψ оператору станка целесообразно отображать на дисплее контроллера станка информацию либо в виде оценочной величины абсолютного износа h (мкм) рабочей кромки режущей пластины резца, либо в виде относительной оценки (%) износа рабочей кромки резца как незначительного (экспертная оценка степени износа ниже 40%), среднего (экспертная оценка степени износа от 40 до 90%), или катастрофического (экспертная оценка степени износа свыше 90%).

Перечень фигур

Фиг. 1 - блок-схема токарного станка с текущим ФХМ-контролем износа резца

Фиг 2, 3 - фотографии хронометрических датчиков на базе углового энкодера марки ЛИР-158, установленных на единой оси вращения на валу мотор-редуктора и на задней бабке;

Фиг. 4 - график хронограммы среднего износа режущего инструмента станка;

Фиг. 5 - график хронограммы катастрофического износа режущего инструмента станка;

Фиг.6 - типовой пример графика спектра частот хронограммы вращения с разделением по областям (низко и высокочастотным). Граничное значение частоты равно 1000 Гц.

Фиг. 7 - конкретный пример графика спектра частот хронограммы вращения (датчик 7 на валу мотор-редуктора 1 станка)

Фиг. 8 - конкретный пример графика спектра частот хронограммы вращения (датчик 6 на задней бабке 5 станка).

Осуществление изобретения

На фиг. 1 токарный станок с мотор-редуктором и с ФХМ-диагностикой станка содержит: 1 - мотор-редуктор станка; 2 - шпиндельный узел станка; 3 - обрабатываемую деталь в патроне шпинделя 2; 4 - суппорт с режущим инструментом для обработки детали 3: 5 - заднюю бабку станка; 6 - хронометрический датчик на задней бабке 5; 7 - хронометрический датчик на валу мотор-редуктора 1; 8 - контроллер ФХМ-обработки сигналов датчиков 6, 7 и контроля износа резца с отображением оператору станка текущей относительной степени износа резца и/или абсолютных величин износа. Все указанные позиции элементов конструктивно размещены в едином токарном станке.

Применение двухдатчиковой измерительной системы в способе обеспечивает: - возможность компенсации погрешностей измерения системы С-П-И-Д (станок-приспособление-инструмент-деталь) более полной и надежной при регистрации хронограмм вращения общей оси станка с разных сторон от контролируемого режущего инструмента; - возможность взаимной калибровки измерительных каналов; - повышение функциональности системы за счет резервирования при необходимости одного измерительного канала вторым.

При использовании системы с двумя хронометрическими датчиками измерения (поз. 6, 7 на фиг. 1 и фото фиг. 2, 3) указанными датчиками получают высокопрецизионные интервалы времени соответствующих фаз рабочих циклов частей машины в едином опорном времени (т.е. результаты измерений получены по двум измерительным каналам датчиков одновременно и без пропусков). В результате ФХМ-обработки (обработка хронограммы вращения производится путем построения ее фурье-спектра) хронограмм (данных временных интервалов, соответствующих фазам рабочего цикла в процессе обработки детали (см. фиг. 4, 5) по каждому каналу результатов измерений получают спектры частот (см. фиг. 7, 8). Затем, поделив мощность спектра из области высокочастотных колебаний (область Р2) на общую мощность спектра колебаний (область P1 + область Р2), можно получить некоторое процентное соотношение - параметр Ψ, рост которого по мере обработки свидетельствует о деградации (износе) инструмента: , где P1 - мощность спектра колебаний низкочастотной области, Вт; Р2 - мощность спектра колебаний высокочастотной области, Вт.

Обоснование и исследования средней величины границы низко- и высокочастотной областей спектрограмм и параметра Ψ были проведены в диссертации и ее автореферате «Разработка метода и средств мониторинга текущего технического состояния токарного инструмента на базе фазохронометрического подхода» (М.: МГТУ им. Н.Э. Баумана, 2016 г.) соавтора предлагаемого технического решения Сырицкого А.Б. Выявлено, что в колебаниях до 1000 Гц для токарных станков содержится информация о неравномерности работы электродвигателя станка, дефектах зубчатого зацепления, смазки и т.п., а колебания, связанные с износом токарного режущего инструмента, являются высокочастотными на частотах свыше 1000 Гц. Также выявлено, что по мере износа резца токарного станка возрастает доля мощности высокочастотных колебаний в спектре хронограммы вращения и текущая величина параметра Ψ квазипропорциональна величине текущего износа резца (при этом параметр Ψ очень чувствителен в износу). Согласно результатам моделирования и экспериментальных исследований значение параметра Ψ увеличивается практически линейно (величина достоверности аппроксимации R2=0,9966) по мере увеличения износа резца. Для перехода к абсолютным величинам износа h режущей кромки резца можно использовать пропорцию при принятии соответствия максимального значения параметра Ψmax абсолютной критической величине износа hmax Определение Ψmax и hmax выполняют один раз при настройке системы контроля и мониторинга износа узлов станка, включая износ контрольного резца, для работы с неизменными параметрами обработки деталей. На дисплее блока вывода информации на станке для его оператора могут выводиться следующие параметры: - идентификационный номер режущего инструмента; - время, прошедшее после начала обработки (в минутах); - износ инструмента в текущий момент времени (абсолютная величина в мкм или относительная величина степени износа резца в % или качественная экспертная оценка текущего износа резца, как незначительного, среднего или катастрофического).

В конкретном примере реализации способа на токарном станке с двумя хронометрическими датчиками для контроля износа резца предварительно при настройке системы контроля и мониторинга износа узлов станка, включая износ контрольного резца, были получены Ψmax=0,0018% и hmax=500 мкм, и далее экспериментально от каждого датчика в произвольный момент процесса обработки детали очередным режущим инструментом с очередным идентификационным номером получены частотные спектры, представленные на фиг. 7,8, по которым определены следующие величины параметров Ψ:Ψ1=0,00086095%; Ψ2=0,00093507%; что с учетом величин Ψmax=0,0018%о и hmax=500 мкм и их квазипропорциональности соответствует абсолютной величине износа рабочей кромки резца около 250 мкм, что в свою очередь соответствует относительной степени износа режущего инструмента 50% (экспертная оценка - средняя степень износа резца).


Способ контроля износа режущего инструмента токарного станка в процессе обработки детали
Способ контроля износа режущего инструмента токарного станка в процессе обработки детали
Способ контроля износа режущего инструмента токарного станка в процессе обработки детали
Способ контроля износа режущего инструмента токарного станка в процессе обработки детали
Способ контроля износа режущего инструмента токарного станка в процессе обработки детали
Способ контроля износа режущего инструмента токарного станка в процессе обработки детали
Способ контроля износа режущего инструмента токарного станка в процессе обработки детали
Способ контроля износа режущего инструмента токарного станка в процессе обработки детали
Способ контроля износа режущего инструмента токарного станка в процессе обработки детали
Источник поступления информации: Роспатент

Показаны записи 51-60 из 68.
03.07.2019
№219.017.a497

Устройство формирования высокоскоростного удлиненного оперенного элемента, в том числе самозакручивающегося

Изобретение относится к оборонной технике и может быть использовано в различных кумулятивных боеприпасах (КБП), предназначенных для поражения целей высокоскоростными поражающими элементами (ПЭ). Устройство состоит из взрывателя, корпуса с заключенным в нем зарядом взрывчатого вещества с...
Тип: Изобретение
Номер охранного документа: 0002693207
Дата охранного документа: 01.07.2019
04.07.2019
№219.017.a4fc

Способ установки элементов в конструкции

Заявленное решение относится к мебельному производству и деревянному домостроению. Технический результат заключается в упрощении процесса установки. Способ установки элементов в конструкции включает размещение вертикальных и/или горизонтальных составляющих конструкции, в вертикальных и/или...
Тип: Изобретение
Номер охранного документа: 0002693265
Дата охранного документа: 01.07.2019
05.07.2019
№219.017.a5f3

Устройство для испытания трубчатых образцов из проницаемых материалов при комбинированном нагружении осевой силой и внешним давлением

Изобретение относится к области исследования прочностных свойств твердых материалов путем создания в них широкого диапазона напряжений, конкретно к испытаниям трубчатых образцов при действии внешнего давления и осевой растягивающей или сжимающей нагрузки. Устройство состоит из камеры высокого...
Тип: Изобретение
Номер охранного документа: 0002693547
Дата охранного документа: 03.07.2019
19.07.2019
№219.017.b604

Способ ковалентной иммобилизации лизоцима для последующего применения иммобилизованного лизоцима для снижения бактериальной обсемененности биологических жидкостей

Изобретение относится к технологиям производства и использования сорбентов, применяемых в том числе для медицинских целей, а именно для экстракорпоральной терапии больных с сепсисом с использованием сорбции биологических жидкостей. Задача изобретения: расширение ассортимента способов...
Тип: Изобретение
Номер охранного документа: 0002694883
Дата охранного документа: 17.07.2019
23.07.2019
№219.017.b6ca

Волоконно-оптическое устройство регистрации вибрационных воздействий с разделением контролируемых участков

Изобретение относится к метрологии, в частности к рефлектометрии. Волоконно-оптическое устройство регистрации вибрационных воздействий содержит последовательно соединенные высокостабильный узкополосный источник излучения, усилитель оптического сигнала, управляемый драйвером акустооптический...
Тип: Изобретение
Номер охранного документа: 0002695098
Дата охранного документа: 19.07.2019
23.07.2019
№219.017.b6db

Многоканальное волоконно-оптическое устройство регистрации вибрационных воздействий с одним приёмным модулем регистрации

Изобретение относится к волоконно-оптическим сенсорным системам. Многоканальное волоконно-оптическое устройство регистрации вибрационных воздействий включает в себя: последовательно соединенные высокостабильный узкополосный источник излучения; усилитель оптического сигнала (бустер); управляемый...
Тип: Изобретение
Номер охранного документа: 0002695058
Дата охранного документа: 19.07.2019
23.07.2019
№219.017.b6ea

Способ измерения ионосферных предвестников землетрясений

Изобретение относится к области сейсмологии и может быть использовано для прогнозирования землетрясений. Сущность: регистрируют волны плотности электронной концентрации зондируемого слоя ионосферы на частоте ниже критической в виде дискретных цифровых отсчетов сигналов. Причем регистрацию...
Тип: Изобретение
Номер охранного документа: 0002695080
Дата охранного документа: 19.07.2019
23.07.2019
№219.017.b6ef

Способ измерений содержания парниковых газов в атмосфере

Изобретение относится к области экологии, к дистанционным методам мониторинга природных сред. Способ включает зондирование подстилающей поверхности спектрометром с широким полем зрения во всем интервале полос переизлучений газовых молекул Лаймана, Бальмара, Пашена, определение средневзвешенного...
Тип: Изобретение
Номер охранного документа: 0002695086
Дата охранного документа: 19.07.2019
23.07.2019
№219.017.b771

Способ очистки лесосеки после сортиментных лесозаготовок

Изобретение относится к способу очистки лесосеки после сортиментных лесозаготовок и может быть использовано в лесной промышленности на лесозаготовках. Лесная машина 7 перемещается по линии движения 4 перпендикулярно волокам. Линия движения 4 включает отрезки 5 равной длины, большей, чем диаметр...
Тип: Изобретение
Номер охранного документа: 0002694968
Дата охранного документа: 18.07.2019
23.07.2019
№219.017.b801

Космический комплекс для утилизации группы объектов крупногабаритного космического мусора

Изобретение относится к области машиностроения, а более конкретно к утилизации космического мусора. Космический комплекс для утилизации группы объектов космического мусора состоит из базового космического аппарата и нескольких тормозных двигательных модулей. К двигательному модулю присоединены...
Тип: Изобретение
Номер охранного документа: 0002695155
Дата охранного документа: 22.07.2019
Показаны записи 1-4 из 4.
20.07.2014
№216.012.de34

Способ электроннолучевой сварки

Изобретение относится к способу электроннолучевой сварки и позволяет улучшить качество сварных соединений. Способ включает приложение к плоскости стыка свариваемых деталей локального магнитного поля, направление электронного луча на стык с образованием канала проплавления и электроннолучевую...
Тип: Изобретение
Номер охранного документа: 0002522670
Дата охранного документа: 20.07.2014
27.12.2014
№216.013.14fd

Способ (варианты) и устройство диагностики подшипника качения

Изобретения относятся к измерительной технике, в частности к диагностике подшипников качения. Способ включает измерение интервалов времени, соответствующих перемещению, по меньшей мере, одного тела качения, по меньшей мере, на одно заданное расстояние, и интервалов времени, соответствующих...
Тип: Изобретение
Номер охранного документа: 0002536797
Дата охранного документа: 27.12.2014
10.02.2015
№216.013.244c

Способ сжигания инфицированных биологических отходов, в том числе трупов животных

Изобретение относится к способам сжигания инфицированных биологических отходов и может быть использовано в сельском хозяйстве, медицинских, биологических и фармацевтических предприятиях. Техническим результатом является интенсификация процесса сжигания путем принудительной подачи воздуха в зону...
Тип: Изобретение
Номер охранного документа: 0002540745
Дата охранного документа: 10.02.2015
27.08.2015
№216.013.73dd

Способ диагностирования циклических машин - металлорежущих станков фазохронометрическим методом

Изобретение относится к области диагностики технического состояния машин и механизмов и может быть использовано, например, для оценки технического состояния металлорежущих станков и их элементов конструкций. Способ заключается в определении перечня диагностируемых параметров и возможных...
Тип: Изобретение
Номер охранного документа: 0002561236
Дата охранного документа: 27.08.2015
+ добавить свой РИД