×
23.02.2019
219.016.c78c

Результат интеллектуальной деятельности: СПОСОБ РЕНТГЕНОВСКОГО ФЛУОРЕСЦЕНТНОГО АНАЛИЗА МАТЕРИАЛОВ

Вид РИД

Изобретение

№ охранного документа
0002372611
Дата охранного документа
10.11.2009
Аннотация: Использование: для рентгеновского флуоресцентного анализа материалов. Сущность: заключается в том, что разбавляют образец анализируемого материала в контролируемом соотношении не содержащим определяемых элементов разбавителем, облучают образец рентгеновским излучением, измеряют интенсивности рентгеновских флуоресцентных линий определяемых элементов и рассчитывают его состав по измеренным интенсивностям, при этом в качестве разбавителя используют соединения элемента, край поглощения которого расположен между аналитической линией основного определяемого элемента материала и краями поглощения остальных определяемых элементов. Технический результат: повышение точности определения малых содержаний сопутствующих элементов (примесей), аналитические линии которых расположены в длинноволновой части рентгеновского спектра, в материалах с высоким содержанием основного элемента, аналитическая линия которого расположена в коротковолновой области рентгеновского спектра. 1 з.п. ф-лы, 1 ил.

Предлагаемое изобретение относится к области определения количественного элементного состава материалов методами рентгеновского флуоресцентного анализа (РФА), а именно к способам РФА для количественного определения состава материалов, главным компонентом которых является химический элемент или его соединение с аналитическими линиями в коротковолновой области рентгеновского спектра. Предлагаемый способ может быть использован как в энергодисперсионных рентгенофлуоресцентных анализаторах, так и в кристалл-дифракционных рентгеновских спектрометрах, например, для количественного определения состава концентратов обогатительных фабрик по переработке руд циркония, ниобия, молибдена, олова и некоторых других тяжелых металлов, концентрированных растворов с высоким содержанием этих металлов, некоторых сплавов, в частности ферромолибдена.

Основной проблемой, затрудняющей определение главных компонентов таких материалов методами РФА с высокой точностью, является так называемое концентрационное вырождение, заключающееся в малом относительном угловом коэффициенте аналитического графика G=(∂C/∂I):(C/I) для тяжелого элемента в области его высоких содержаний в матрице (в среде) с малым эффективным атомным номером [Калинин Б.Д., Плотников Р.И. Основные аналитические параметры рентгеновских спектрометров и их связь с воспроизводимостью анализа. Сб. "Аппаратура и методы рентгеновского анализа", 1982, в.28, стр.3-8, Ленинград: "Машиностроение"; Ревенко А.Г. Рентгеноспектральный флуоресцентный анализ природных материалов. Новосибирск: "Наука", 1994, с.134-137].

Это приводит к существенному увеличению относительной погрешности рассчитанных концентраций элементов по отношению к относительным погрешностям измерения интенсивностей их характеристических линий, т.е. к высокому коэффициенту усиления ошибки при переходе от интенсивностей к концентрациям и снижению точности анализа.

Основным и практически единственным методом борьбы с концентрационным вырождением является разбавление исследуемых проб нейтральным разбавителем, не содержащим определяемого элемента, например, водой при анализе растворов или тетраборатом натрия или лития при анализе геологических проб в сплавленном виде.

Например, известен способ РФА с подготовкой проб (образцов анализируемых материалов) железных руд и концентратов, содержащих 70-90% окислов железа, сплавлением с тетраборатом лития или с другим плавнем в контролируемом соотношении 1:5-1:10 [Лисаченко Г.В. К вопросу пробоподготовки при РФА товарной продукции обогатительных фабрик. Заводская лаборатория, 1981, 47(3), 38-41].

Этот способ включает сплавление анализируемого концентрата в контролируемом соотношении с плавнем-разбавителем, не содержащим определяемых элементов, до получения гомогенного сплава, облучение его рентгеновским излучением, измерение интенсивностей рентгеновских флуоресцентных линий определяемых элементов и количественный расчет состава образца по измеренным интенсивностям.

В этом способе разбавление образца анализируемого материала плавнем-разбавителем приводит к уменьшению концентрации основного элемента. При этом относительный наклон его аналитического графика увеличивается, а следовательно, повышается точность определения концентрации основного элемента в анализируемом образце.

Основным недостатком такого способа является необходимость высокой степени разбавления для получения гомогенного плава, что, помимо большого расхода реагентов, ведет к существенному ослаблению интенсивностей аналитических линий сопутствующих элементов (примесей) и, следовательно, к снижению точности их определения.

Известен принятый авторами за прототип способ определения концентрации основного элемента в анализируемом образце, включающий разбавление образца анализируемого материала в контролируемом соотношении не содержащим определяемых элементов разбавителем, облучение образца рентгеновским излучением, измерение интенсивностей рентгеновских флуоресцентных линий определяемых элементов и расчет его состава по измеренным интенсивностям [Lique de Castro MD, Lique Garcia JL. Acceleration and Automation of Solid Sample Treatment. Elsevier Sci Ltd. Included in serie "Techniques and Instrumentation in Analytical Chemistry", 24. Hardbound, 2002]. В этом способе исходный образец разбавляют "тяжелым" разбавителем - небольшим количеством элемента или его соединения с высоким коэффициентом поглощения аналитической линии основного элемента. Таким разбавителем может служить, например, порошкообразное железо, сульфат бария или любой другой материал на основе тяжелых элементов, не содержащий определяемых элементов. Анализируемый образец и "тяжелый" разбавитель, взятые в контролируемом соотношении, например, порядка 3:1-2:1, тщательно перемешивают до получения гомогенной смеси.

В этом способе, по сравнению с аналогом, требуется существенно меньшее количество разбавителя, кроме того, упрощается гомогенизация смеси, что снижает взаимное влияние элементов (матричных эффектов) на результаты анализа.

Однако, в случае многоэлементного анализа, у этого способа остается основной недостаток аналога - существенное ослабление находящихся в длинноволновой части спектра аналитических линий прочих контролируемых элементов, характеризующих, наряду с основным элементом, качество концентрата. При анализе молибденовых концентратов медно-молибденовых и вольфрамо-молибденовых руд к таким элементам относятся медь или вольфрам, содержание которых в концентрате составляет доли процента.

Предлагаемое изобретение решает задачу повышения точности определения малых содержаний сопутствующих элементов (примесей), аналитические линии которых расположены в длинноволновой части рентгеновского спектра, в материалах с высоким содержанием основного элемента, аналитическая линия которого расположена в коротковолновой области рентгеновского спектра.

Поставленную задачу решает предлагаемый способ рентгеновского флуоресцентного анализа материалов, включающий разбавление образца анализируемого материала в контролируемом соотношении не содержащим определяемых элементов разбавителем, облучение образца рентгеновским излучением, измерение интенсивностей рентгеновских флуоресцентных линий определяемых элементов и расчет его состава по измеренным интенсивностям, в котором в качестве разбавителя используют соединения элемента, край поглощения которого расположен между аналитической линией основного определяемого элемента материала и краями поглощения остальных определяемых элементов.

В отличие от известного, в предлагаемом способе в качестве разбавителя используют соединения элемента, край поглощения которого расположен между аналитической линией основного определяемого элемента материала и краями поглощения остальных определяемых элементов.

В том случае, когда анализируемым материалом служит молибденовый концентрат, в качестве разбавителя могут использовать карбонат, фторид или сульфат стронция.

Совокупность отличительных признаков и их взаимосвязь с ограничительными признаками в предлагаемом изобретении обеспечивает не только высокую точность определения основного элемента в анализируемом материале, но и существенно повышает точность определения малых содержаний сопутствующих элементов (примесей), аналитические линии которых расположены в длинноволновой части рентгеновского спектра, в материалах с высоким содержанием основного элемента, аналитическая линия которого расположена в коротковолновой области рентгеновского спектра, за счет увеличения измеряемой интенсивности аналитических линий сопутствующих элементов.

На чертеже представлены аналитические графики G=(∂C/∂I):(C/I) для молибденового (Мо) концентрата:

а - неразбавленный концентрат;

б - концентрат, разбавленный порошком железа (Fe) в отношении 1:1;

в - концентрат, разбавленный порошком фторида стронция (SrF2) в отношении 2:1.

При осуществлении предлагаемого способа рентгенофлуоресцентного анализа материалов, содержащих высокую концентрацию тяжелого элемента в качестве основного определяемого компонента, предварительно выбирают представительный образец анализируемого материала, приводят его в порошкообразное состояние, вводят в него в контролируемом соотношении порошок разбавителя и тщательно перемешивают до получения гомогенной смеси. В качестве разбавителя выбирают соединение элемента, который не содержится в анализируемом материале и край поглощения которого расположен между аналитической линией основного определяемого элемента материала и краями поглощения остальных определяемых элементов (примесей, содержащихся в анализируемом материале в малых количествах). Полученный в результате разбавления образец облучают рентгеновским излучением и измеряют интенсивность аналитических линий всех элементов, концентрацию которых необходимо определить. Под действием поглощенного рентгеновского излучения элемент разбавителя испускает характеристическое рентгеновское излучение, дополнительно возбуждающее химические элементы, линии которых расположены в длинноволновой области спектра, а так как коэффициент ослабления облучающего рентгеновского излучения материалом разбавителя для линий этих элементов меньше коэффициента ослабления для линии основного элемента анализируемого материала, то измеряемая интенсивность этих линий становится больше.

Концентрацию каждого элемента определяют по известной зависимости между интенсивностью аналитической линии элемента и его содержанием:

Ci=a0i+a1i·Ii, где

Ci - концентрация определяемого элемента i;

Ii - интенсивность аналитической линии определяемого элемента i;

a0i, a1i - коэффициент регрессии, определяемый методом наименьших квадратов в процессе градуировки анализатора.

Предлагаемый способ РФА был опробован на образцах концентрата медно-молибденовых руд. Измерения были проведены на энергодисперсионном рентгеновском анализаторе БРА-18. Использовались образцы с содержанием дисульфида молибдена MoS2 от 88% до 96% (52,8%-57,6% Мо) и 1% халькопирита CuFeS2 (0,346% Cu). Остаток составлял диоксид кремния SiO2. Были измерены как образцы исходного концентрата, так и образцы, разбавленные нейтральным разбавителем - порошком Fe в отношении 1:1 и в соответствии с изобретением разбавителем SrF2 в отношении 2:1. Край поглощения Sr с энергией 16,1 кэВ расположен между линиями Cu Kα (8,04 кэВ) и Мо Kα (17,48 кэВ), что обеспечивало ослабление линии Мо примерно в 3 и 2,5 раза при разбавлении соответственно Fe и SrF2.

Приведенные на чертеже аналитические графики относительной интенсивности линии Мо Кα показывают, что разбавление "тяжелым" разбавителем приводит к существенному увеличению наклона аналитического графика, зависящему от коэффициента поглощения разбавителя и степени разбавления. Интенсивность линий образца с содержанием Мо 57% в молибденовом концентрате принята за 1.

Количественные характеристики зависимости скорости счета (имп/с) аналитических линий Мо и Cu в молибденовом концентрате от свойств разбавителя и степени разбавления приведены в таблице.

Концентрация Мо, % Неразбавленный концентрат Разбавление SrF2, 2:1 Разбавление Fe, 1:1
57.6 12610 5266 4837
56.4 12555 5216 4768
55.2 12504 5160 4698
54.0 12453 5086 4627
52.8 12401 5010 4555
Абсолютный наклон аналитического графика для Мо (η), имп/с %
Относительный наклон аналитического графика 0.35 1.03 1.21
G, %/%
Скорость счета от 900 724 215
меди (Cu) до 830 675 182

Оценивая статистическую погрешность анализа для среднего содержания Мо 55,2% как

где - средняя скорость счета и T - экспозиция,

находим, что, например, при Т=40 с повторяемость определения Мо без разбавления составит ≈0,8%, а с разбавлением ≈0,4%, т.е. уменьшается вдвое. Использование разбавителя согласно предлагаемому изобретению дает возможность в 3-4 раза повысить интенсивность линии меди, что обеспечивает снижение погрешности определения меди также примерно в два раза по сравнению с разбавителем, используемым согласно прототипу.

Таким образом, предлагаемый способ РФА существенно повышает точность определения малых содержаний сопутствующих элементов (примесей), аналитические линии которых расположены в длинноволновой части рентгеновского спектра, в материалах с высоким содержанием основного элемента, аналитическая линия которого расположена в коротковолновой области рентгеновского спектра, обеспечивая при этом высокую точность определения содержания основного элемента в анализируемом материале.

Источник поступления информации: Роспатент

Показаны записи 1-2 из 2.
10.07.2013
№216.012.54eb

Способ эмиссионного анализа элементного состава жидких сред

Изобретение может быть использовано в системах водоподготовки на предприятиях водоснабжения населенных пунктов, в атомной и тепловой энергетике, химической промышленности, в технологическом процессе пищевой промышленности для контроля качества воды, в экологическом мониторинге объектов...
Тип: Изобретение
Номер охранного документа: 0002487342
Дата охранного документа: 10.07.2013
27.05.2014
№216.012.ca87

Способ рентгенолюминесцентной сепарации минералов и рентгенолюминесцентный сепаратор для его осуществления

Предлагаемые изобретения относятся к области обогащения полезных ископаемых, а именно к разделению дробленого минерального материала, содержащего люминесцирующие под воздействием возбуждающего излучения минералы, на обогащаемый и хвостовой продукты. Рентгенолюминесцентный сепаратор содержит...
Тип: Изобретение
Номер охранного документа: 0002517613
Дата охранного документа: 27.05.2014
Показаны записи 1-10 из 10.
27.09.2013
№216.012.7038

Способ рентгеноспектральной сепарации материала и устройство для его реализации

Использование: для ренгтеноспектральной сепарации материала. Сущность: заключается в том, что осуществляют покусковую подачу материала, содержащего куски с разными эффективными атомными номерами в зону анализа, облучение материала коллимированным пучком первичного рентгеновского излучения,...
Тип: Изобретение
Номер охранного документа: 0002494379
Дата охранного документа: 27.09.2013
27.05.2014
№216.012.c8b6

Способ сепарации частиц полезного материала и устройство для его осуществления

Изобретение относится к способам сепарации частиц полезного материала, включающего золото, драгоценные металлы и алмазы, в частности к способам автоматической сортировки руд и извлечения алмазов из алмазосодержащих материалов, а также к устройствам, реализующим такие способы. Способ сепарации...
Тип: Изобретение
Номер охранного документа: 0002517148
Дата охранного документа: 27.05.2014
20.12.2014
№216.013.1235

Способ рентгеноспектральной сепарации при покусковой подаче сепарируемого материала и устройство для его реализации

Использование: для обогащения (сепарации) минерального и вторичного металлургического сырья. Сущность изобретения заключается в том, что сравнивают интенсивности рассеянного рентгеновского излучения от сепарируемого образца и расположенного за ним экрана, при этом сравнивают отношения...
Тип: Изобретение
Номер охранного документа: 0002536084
Дата охранного документа: 20.12.2014
10.07.2015
№216.013.5c62

Устройство для рентгенофлуоресцентного анализа материалов с формированием потока возбуждения плоским рентгеновским волноводом-резонатором

Использование: для рентгенофлуоресцентного анализа исследуемого материала. Сущность изобретения заключается в том, что устройство для рентгенофлуоресцентного анализа исследуемого материала содержит источник первичного рентгеновского излучения, формирователь потока возбуждения, прободержатель с...
Тип: Изобретение
Номер охранного документа: 0002555191
Дата охранного документа: 10.07.2015
20.04.2016
№216.015.3310

Универсальная рентгеновская трубка для энергодисперсионных рентгеновских спектрометров

Использование: для исследования элементного состава материалов. Сущность изобретения заключается в том, что универсальная рентгеновская трубка для энергодисперсионных рентгеновских спектрометров включает корпус, катод, фокусирующий электрод, анод с рабочей поверхностью, перпендикулярной...
Тип: Изобретение
Номер охранного документа: 0002582310
Дата охранного документа: 20.04.2016
20.05.2016
№216.015.3ef7

Способ рентгенофлуоресцентного определения содержания примесей конструкционных материалов

Использование: для рентгенофлуоресцентного определения примесей. Сущность изобретения заключается в том, что рентгенофлуоресцентное определение содержаний примесей конструкционных материалов включает измерение интенсивностей аналитических линий контролируемых примесей в группе образцов этого...
Тип: Изобретение
Номер охранного документа: 0002584064
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3eff

Способ градуировки партии рентгеновских спектрометров

Использование: для градуировки рентгеновских спектрометров. Сущность изобретения заключается в том, что осуществляют отбор из стандартных образцов состава конструкционных материалов образец с нижними значениями скоростей счета по всем определяемым элементам и второй образец с верхними...
Тип: Изобретение
Номер охранного документа: 0002584065
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.408b

Устройство для энергодисперсионного рентгенофлуоресцентного анализа на основе вторичных излучателей

Использование: для энергодисперсионного рентгенофлуоресцентного анализа. Сущность изобретения заключается в том, что устройство для энергодисперсионного рентгенофлуоресцентного анализа на основе вторичных излучателей включает рентгеновскую трубку, вторичные излучатели, устройство подачи...
Тип: Изобретение
Номер охранного документа: 0002584066
Дата охранного документа: 20.05.2016
09.06.2019
№219.017.7d28

Способ рентгеноспектрального определения содержания водорода, углерода и кислорода в органических соединениях и устройство для определения содержания водорода, углерода и кислорода в органических соединениях

Использование: для рентгеноспектрального определения содержания водорода, углерода и кислорода в органических соединениях. Сущность: заключается в том, что осуществляют облучение исследуемого образца рентгеновским излучением, в котором присутствуют, по крайней мере, две дискретные линии в...
Тип: Изобретение
Номер охранного документа: 0002426104
Дата охранного документа: 10.08.2011
09.06.2019
№219.017.7e8c

Способ рентгеноспектрального определения эффективного атомного номера материала и устройство для определения эффективного атомного номера материала

Использование: для рентгеноспектрального определения эффективного атомного номера материала. Сущность заключается в том, что осуществляют облучение исследуемого материала характеристическим или смешанным рентгеновским излучением и регистрацию вторичного спектра рассеянного излучения, при этом...
Тип: Изобретение
Номер охранного документа: 0002432571
Дата охранного документа: 27.10.2011
+ добавить свой РИД