×
23.02.2019
219.016.c5cf

Результат интеллектуальной деятельности: Измерительная система для определения истинного объёмного газосодержания

Вид РИД

Изобретение

№ охранного документа
0002680417
Дата охранного документа
21.02.2019
Аннотация: Изобретение относится к измерительным системам для определения физических свойств двухфазных потоков, а именно к измерительным системам для определения истинного объемного газосодержания потока масловоздушной эмульсии в трубопроводе. Измерительная система включает горизонтальный цилиндрический участок трубопровода, на входе которого установлено средство измерения давления и температуры масловоздушной эмульсии, электронный вычислительный блок, устройство для измерения объемного расхода и датчик перепада давления, причем электронный вычислительный блок выполнен с возможностью расчета истинного объемного газосодержания двухфазной масловоздушной эмульсии по определенному соотношению, которое позволяет рассчитать величину истинного объемного газосодержания прямым вычислением. Технический результат - сокращение затрат времени на определение величины истинного объемного газосодержания в потоке двухфазной масловоздушной эмульсии посредством ее прямого вычисления в реальном времени. 1 ил.

Изобретение относится к измерительным системам для определения физических свойств двухфазных потоков, а именно, к измерительным системам для определения истинного объемного газосодержания потока масловоз душной эмульсии в трубопроводе. Изобретение может быть использовано в системах смазки авиационного газотурбинного двигателя, а также в стационарных газотурбинных установках и других энергетических объектах. Также измерительная система может быть использована для определения содержания газа в других двухфазных газовых эмульсиях для управления различными технологическими процессами.

Величина объемного содержания газа в масловоздушной эмульсии необходима для расчета ее плотности, используемой при решении задач, касающихся определения параметров газожидкостных сред. Как правило, требуется долговременное непрерывное измерение в реальном времени значения истинного объемного газосодержания двухфазного потока на различных режимах работы оборудования.

Работа измерительных систем для определения содержания газа в потоке газовой эмульсии основана на различных физических принципах. Измерительные системы позволяют определить истинное газосодержание в сечении трубопровода, в локальной пробе или в объеме участка трубопровода.

Известна измерительная система для определения истинного объемного газосодержания потока газовой эмульсии, включающая генератор, возбуждающий акустические колебания в газожидкостной среде (RU 2115116, 1998). Недостатком данной измерительной системы является изменение гидродинамического режима потока и сложность ее реализации в трубопроводах маленького диаметра, например, в топливной или масляной системе двигателей.

Известна система для измерения истинного объемного газосодержания в сечении трубопровода, содержащая источник и детектор ионизирующего излучения (SU 1022002, 1983), однако ее использование ограничено требованиями техники безопасности. Данная система может применяться только в отношении газовых эмульсий, не содержащих не чувствительные к инфракрасному излучению азот, кислород, гелий, аргон, криптон, ксенон.

Известна измерительная система для определения объемного газосодержания в газожидкостной среде в трубопроводе, включающая измерительный горизонтальный цилиндрический участок трубопровода, датчики температуры, давления и скорости потока между двумя сечениями участка и электронный вычислительный блок, выполненный с возможностью расчета объемного газосодержания по уравнению состояния идеального газа, принимая двухфазную газожидкостную систему как смесь идеального сжимаемого газа и несжимаемой жидкости (US 6847898, 2005). Недостатком известного технического решения является низкая точность определения термодинамических характеристик эмульсии, таких как скорость звука, показатель адиабаты и др. В частности, расчет скорости звука в водовоздушной эмульсии без учета сжимаемости жидкой фазы составляет 330 м/с, а с учетом сжимаемости - 25 м/с, что подтверждается экспериментальным ее измерением.

Наиболее близким аналогом к заявляемому изобретению является измерительная система для определения истинного объемного газосодержания потока двухфазной масловоздушной эмульсии в трубопроводе (RU 152854, 2015), включающая измерительный горизонтальный цилиндрический участок трубопровода, на входе которого установлено средство измерения давления и температуры масловоздушной эмульсии, и электронный вычислительный блок, электрически подключенный к средству измерения давления и температуры.

Недостатком известного технического решения является необходимость использования метода последовательных приближений при решении двух нелинейных уравнений с двумя неизвестными для расчета объемного газосодержания. Указанный метод требует существенных затрат времени на определение величины истинного объемного газосодержания и может не обеспечить получения достоверного результата.

Техническая проблема, на решение которой направлено изобретение, заключается в сокращении затрат времени на определение истинного объемного газосодержания в потоке двухфазной масловоздушной эмульсии.

Технический результат, достигаемый при реализации настоящего изобретения, заключается в определении величины истинного объемного газосодержания потока двухфазной масловоздушной эмульсии посредством прямого вычисления в реальном времени.

Технический результат достигается за счет того, что измерительная система для определения истинного объемного газосодержания потока двухфазной масловоздушной эмульсии в трубопроводе включает измерительный горизонтальный цилиндрический участок трубопровода, на входе которого установлено средство измерения давления Рэм и температуры Тэм масловоздушной эмульсии, и электронный вычислительный блок, электрически подключенный к средству измерения давления Рэм и температуры Тэм, причем измерительная система дополнительно включает устройство для измерения объемного расхода, установленное на входе измерительного участка, и датчик перепада давления, установленный между входом и выходом измерительного участка, при этом электрические выходы устройства для измерения объемного расхода и датчика перепада давления подключены к электронному вычислительному блоку, а электронный вычислительный блок выполнен с возможностью расчета истинного объемного газосодержания двухфазной масловоздушной эмульсии по следующему соотношению:

αэм=(ρжт.трΔРизм/Q2изм)/(ρжг),

где:

αэм - истинное объемное газосодержание;

ρж - плотность масла в масловоздушной эмульсии при измеренных Тэм и Рэм;

Кт.тр - коэффициент, учитывающий потери давления в трубопроводе, м4;

ΔРизм - измеренный перепад давления в потоке масловоздушной эмульсии между входом и выходом измерительного участка;

Qизм - измеренный объемный расход масловоздушной эмульсии;

ρг - плотность воздуха в масловоздушной эмульсии при измеренных Тэм и Рэм,

причем:

где:

Fтp - площадь проходного сечения измерительного участка трубопровода;

λтp - коэффициент потерь на трение измерительного участка трубопровода;

lтp - длина измерительного участка трубопровода;

dтp - диаметр измерительного участка трубопровода;

ζм - суммарный коэффициент местных потерь давления на измерительном участке трубопровода.

Указанные существенные признаки обеспечивают решение поставленной технической проблемы с достижением заявленного технического результата, так как дополнение измерительной системы устройством для измерения объемного расхода, установленным на входе измерительного участка, подключенным электрическим выходом к электронному вычислительному блоку, и датчиком перепада давления, установленным между входом и выходом измерительного участка, также подключенным электрическим выходом к электронному вычислительному блоку, и выполнение электронного вычислительного блока с возможностью расчета истинного объемного газосодержания двухфазной масловоздушной эмульсии по определенному соотношению позволяет определять величину истинного объемного газосодержания потока двухфазной масловоздушной эмульсии посредством прямого вычисления в реальном времени.

Настоящее изобретение поясняется следующим подробным описанием измерительной системы для определения истинного объемного газосодержания потока двухфазной масловоздушной эмульсии в трубопроводе со ссылкой на фигуру, где показана схема измерительной системы.

Измерительная система для определения истинного объемного газосодержания потока двухфазной масловоздушной эмульсии в трубопроводе включает измерительный горизонтальный цилиндрический участок 1 трубопровода, на входе 2 которого установлено средство 3 измерения давления Рэм и температуры Тэм масловоздушной эмульсии, и электронный вычислительный блок 4 для расчета истинного объемного газосодержания двухфазной масловоздушной эмульсии, а также плотности масла и воздуха, электрически подключенный к средству 3 измерения давления Рэм и температуры Тэм. Измерительная система дополнительно включает устройство 5 для измерения объемного расхода, установленное на входе 2 измерительного участка 1, и датчик 6 перепада давления, установленный между входом 2 и выходом 7 измерительного участка 1. Электрические выходы устройства 5 для измерения объемного расхода и датчика 6 перепада давления подключены к электронному вычислительному блоку 4, а электронный вычислительный блок 4 выполнен с возможностью расчета истинного объемного газосодержания двухфазной масловоздушной эмульсии по следующему соотношению:

где:

αэм - истинное объемное газосодержание;

ρж - плотность масла в масловоздушной эмульсии при измеренных Тэм и Рэм;

Кт.тр - коэффициент, учитывающий потери давления в трубопроводе, м4;

ΔРизм - измеренный перепад давления в потоке масловоздушной эмульсии между входом и выходом измерительного участка;

Qизм - измеренный объемный расход масловоздушной эмульсии;

ρг - плотность воздуха в масловоздушной эмульсии при измеренных Тэм и Рэм,

причем:

где:

Fтp - площадь проходного сечения измерительного участка трубопровода;

λтp - коэффициент потерь на трение измерительного участка трубопровода;

lтp - длина измерительного участка трубопровода;

dтp - диаметр измерительного участка трубопровода;

ζм - суммарный коэффициент местных потерь давления на измерительном участке трубопровода.

Средство 3 измерения давления Рэм и температуры Тэм масловоздушной эмульсии может быть выполнено в виде отдельных датчиков давления и температуры или в виде комбинированного датчика давления и температуры.

Устройство 5 для измерения объемного расхода установлено на входе 2 измерительного участка 1. Датчик 6 перепада давления входами подключен к входу 2 и выходу 7 измерительного участка 1. Средство 3 измерения давления и температуры установлено на входе 2 измерительного участка 1, в сечении, в котором определяют истинное объемное газосодержание потока двухфазной масловоздушной эмульсии. Течение масловоздушной эмульсии в трубопроводе обеспечивает источник 8 давления, который не является элементом измерительной системы.

Средство 3 измерения давления Рэм и температуры Тэм, устройство 5 для измерения объемного расхода и датчик 6 перепада давления могут быть смонтированы с помощью штуцеров на внутренней поверхности измерительного участка 1 трубопровода с целью минимизации влияния их положения на течение потока в трубопроводе.

В качестве устройства 5 для измерения объемного расхода может быть использован известный из уровня техники датчик объемного расхода или электроприводной насос-измеритель объемного расхода (RU 2540204, 2015), в контроллере которого содержится алгоритм определения объемного расхода по предварительно полученной экспериментальной зависимости объемного расхода через насос от частоты вращения насоса и перепада давления на нем.

В частности, длина измерительного участка 1 может составлять не менее семи размеров его диаметра. Для повышения точности измерения перепада давлений длину участка 1 целесообразно выбирать максимально возможной.

Устройство 5 для измерения объемного расхода и датчики 3, 6 выполнены с возможностью формирования электрических измерительных сигналов, соответствующих параметрам потока двухфазной масловоздушной эмульсии, а электронный вычислительный блок 4 может включать алгоритмы обработки результатов измерений, например, алгоритмы осреднения значения параметра на заданном интервале и компенсации инерционности каналов измерения в виде известного уравнения:

Хкоризмизмизм/dt,

где:

Хкор - скорректированное значение параметра;

Хизм - измеренное значение параметра;

τизм - постоянная времени средства измерения;

изм/dt - величина производной измеряемого параметра.

В память вычислительного блока 4 вводятся характеристики измерительного участка 1 трубопровода: длина lтp, диаметр dтp, коэффициент λтp потерь на трение, суммарный коэффициент ζм местных потерь давления, а также коэффициенты аналитических выражений или двумерные таблицы зависимостей плотности ρж масла и плотности ρг воздуха от давления Рэм и температуры Тэм в масловоздушной эмульсии для получения вычисленных текущих значений этих величин:

ρж=f1эмэм);

ρг=f2эмэм),

где:

f1эмэм) - функция, выражающая зависимость ρж от Рэм и Тэм;

f2эмэм) - функция, выражающая зависимость ρг от Рэм и Тэм.

Величины коэффициентов λтp и ζм могут определяться по известным соотношениям (см., например, И.Е. Идельчик, «Справочник по гидравлическим сопротивлениям», 3-е издание, Москва, «Машиностроение», 1992, с. 10-11, 29-32). В частности, коэффициент λтp может определяться с учетом числа Рейнольдса (Re) как:

λтp=64/Re.

Измерительная система для определения истинного объемного газосодержания работает следующим образом.

Вычислительный блок 4 считывает информацию с устройства 5 для измерения объемного расхода, средства 3 измерения давления и температуры, и датчика 6 перепада давления. Производится обработка полученной информации, например, в части компенсации инерционности средств измерения и осреднения результатов на заданном интервале времени, рассчитываются величины плотности масла и воздуха по заложенным в память электронного вычислительного блока 4 данным, и определяется значение истинного объемного газосодержания αэм по соотношению (1).

Далее с устройства 5 для измерения объемного расхода, средства 3 измерения давления и температуры, и датчика 6 перепада давления считываются новые значения параметров, и определяется новое значение αэм.

Как известно, характер течения в трубопроводах микропузырьковых газожидкостных сред, к которым относится и двухфазная масловоздушная эмульсия, ничем не отличается от характера течения однофазной жидкости (см., например, статью Б.В. Бошенятова «Гидродинамика микропузырьковых газожидкостных сред», известия ТПУ, 2005, т. 308, №6, с. 160). Следовательно, величина массового расхода может быть определена из формулы Дарси-Вейсбаха для расчета потерь давления из-за трения эмульсии о стенки трубопровода, которая после перехода от объемного расхода к массовому и учета потерь давления на местных сопротивлениях в трубопроводе имеет следующий вид:

где:

Рэм.н и Рэм.к - величина давления соответственно на входе 2 и выходе 7 измерительного участка 1;

Gтp - величина массового расхода;

ρэм - плотность эмульсии на входе в участок 1 трубопровода;

Fтp - площадь проходного сечения измерительного участка 1 трубопровода, равная:

Fтр=πd2тp/4.

Соотношение (2) показывает, что величина Gтp может быть рассчитана по измеренной величине перепада ΔРизм давления в участке 1 трубопровода, равной разности величин давлений на его входе 2 и выходе 7, и характеристикам измерительного участка 1 (геометрическим данным и коэффициентам потерь).

Величина Gтp может быть также определена по измеренной величине объемного расхода Qизм и плотности ρэм эмульсии по соотношению:

Так как величина массового расхода одинакова для потока эмульсии в трубопроводе, то подставляя соотношение (3) в соотношение (2) получим следующее равенство:

откуда соотношение для расчета плотности эмульсии имеет вид:

причем

В соотношение (4) входят только известные характеристики трубопровода и измеренные значения перепада ΔРизм давления и объемного расхода Qизм.

Подставляя в соотношение (4) известное выражение для плотности эмульсии:

ρэм=(1-αэмжэмρг,

получим соотношение:

ρжт.трΔРизм/Qизмэмжг),

из которого получаем выражение для расчета величины объемного газосодержания:

αэм=(ρж- Кт.трΔРизм/Q2изм)/(ρжг).

Таким образом, используя измеренные объемный расход Qизм эмульсии и перепад ΔРизм давления в участке 1 трубопровода длиной lтр и диаметром dтр, а также рассчитанные текущие значения плотности ρж масла и плотности ρг воздуха можно рассчитать величину истинного объемного газосодержания αэм потока двухфазной масловоздушной эмульсии по соотношению (1).

Соотношение (1) позволяет рассчитать величину истинного объемного газосодержания αэм прямым вычислением, что подтверждает решение заявленной технической проблемы с достижением технического результата - сокращение затрат времени на определение величины истинного объемного газосодержания в потоке двухфазной масловоздушной эмульсии посредством ее прямого вычисления в реальном времени.

Решение проблемы определения объемного газосодержания потока двухфазной масловоздушной эмульсии особенно актуально для систем смазки газотурбинных двигателей (ГТД). В опорах ГТД образуется устойчивая масловоздушная эмульсия, которая откачивается насосами в маслобак (Гулиенко А.И. и др. Особенности рабочего процесса в масляной полости опор ротора газотурбинного двигателя // VI Международная НТК «Проблемы химмотологии: от эксперимента к математическим моделям высокого уровня». Сборник избранных докладов. - М.: «Граница», 2016, - с. 38-46). Информация о содержании воздуха в масловоздушной эмульсии позволяет достоверно рассчитать потери давления в тракте откачки, величину гидравлической мощности откачивающих насосов и другие параметры, на основании которых определяются диаметр трубопроводов, мощность электропривода для вращения насосов и др.

Предложенная измерительная система позволяет определять текущее мгновенное значение истинного объемного газосодержания потока двухфазной масловоздушной эмульсии в трубопроводе на установившихся и переходных режимах, например, в тракте откачки масловоздушной эмульсии из опор роторов ГТД.

В качестве дополнительного технического результата при осуществлении заявленной измерительной системы также повышается точность и достоверность определения величины истинного объемного газосодержания αэм, поскольку прямое вычисление с учетом потерь давления на трение в отличие от метода последовательных вычислений гарантирует сходимость процесса расчета, например, при скачках давления в трубопроводе.


Измерительная система для определения истинного объёмного газосодержания
Измерительная система для определения истинного объёмного газосодержания
Измерительная система для определения истинного объёмного газосодержания
Источник поступления информации: Роспатент

Показаны записи 41-50 из 204.
20.09.2015
№216.013.7d2c

Гибридный ракетно-прямоточный воздушно-реактивный аэрокосмический двигатель

Гибридный ракетно-прямоточный воздушно-реактивный аэрокосмический двигатель включает ракетный двигатель на топливе в виде нанопорошка алюминия размером не более 25 нм в жидкой водной фазе и совмещенный с ним прямоточный воздушно-реактивный двигатель на молекулярном водороде, образующимся при...
Тип: Изобретение
Номер охранного документа: 0002563641
Дата охранного документа: 20.09.2015
20.10.2015
№216.013.82f8

Прямоточный воздушно-реактивный двигатель на твердом горючем и способ функционирования двигателя

Изобретение относится к авиационному двигателестроению и предназначено для прямоточных воздушно-реактивных двигателей. Прямоточный воздушно-реактивный двигатель на твердом горючем содержит воздухозаборник, газогенератор с зарядом твердого горючего в отдельном корпусе, камеру дожигания и сопло....
Тип: Изобретение
Номер охранного документа: 0002565131
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8cf2

Зубчатое колесо

Изобретение относится к машиностроению и может быть использовано в высоконагруженных зубчатых передачах. Зубчатое колесо содержит обод с зубчатым венцом, ступицу, несущую диафрагму, жестко связанную с ободом и ступицей, и демпфирующий элемент, выполненный в виде лепесткового пластинчатого...
Тип: Изобретение
Номер охранного документа: 0002567689
Дата охранного документа: 10.11.2015
20.01.2016
№216.013.a339

Способ сжигания топливо-воздушной смеси и прямоточный воздушно-реактивный двигатель со спиновой детонационной волной

Способ сжигания топливовоздушной смеси для создания реактивной тяги в прямоточном воздушно-реактивном двигателе со спиновой детонационной волной заключается в том, что набегающий высокоскоростной поток тормозят до чисел Маха в диапазоне от 3 до 4 в сверхзвуковом двухступенчатом воздухозаборнике...
Тип: Изобретение
Номер охранного документа: 0002573427
Дата охранного документа: 20.01.2016
20.06.2016
№217.015.02ec

Стенд для циклических испытаний газодинамических подшипников

Изобретение относится к испытательной технике и может быть использовано при испытаниях и доводке газовых подшипников высокооборотных турбомашин. Стенд содержит вал, установленный в радиальном подшипнике, закрепленном на станине стенда, установленный на валу испытуемый газодинамический...
Тип: Изобретение
Номер охранного документа: 0002587758
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2d20

Способ конвертирования турбовального авиационного двигателя в наземную газотурбинную установку

Способ конвертирования турбовального авиационного двигателя в наземную газотурбинную установку. Удаляют лопатки из проточных частей последних ступеней компрессора и первых ступеней турбины. Заменяют сопловой аппарат первой ступени (из оставшихся) конвертированной турбины на сопловой аппарат...
Тип: Изобретение
Номер охранного документа: 0002579526
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3221

Способ функционирования турбореактивного двухконтурного двигателя летательного аппарата с выносными вентиляторными модулями

Изобретение позволяет улучшить согласование взлетного и крейсерского режимов работы двигателя и повысить топливную экономичность двигателей гражданской и транспортной авиации. Указанный технический результат достигается тем, что турбореактивный двухконтурный двигатель летательного аппарата с...
Тип: Изобретение
Номер охранного документа: 0002580608
Дата охранного документа: 10.04.2016
20.05.2016
№216.015.3f8b

Муфта составного ротора газогенератора газотурбинного двигателя

Муфта составного ротора газогенератора газотурбинного двигателя содержит средства для передачи крутящего момента и осевого сцепления двух соосных вращающихся колес в виде перемещающихся элементов, размещенных в кольцевых выемках, выполненных в цапфе центробежного колеса компрессора и цапфе...
Тип: Изобретение
Номер охранного документа: 0002584109
Дата охранного документа: 20.05.2016
12.01.2017
№217.015.5898

Насос-дозатор

Изобретение относится к системам подачи и дозирования рабочего тела с электроприводными насосами, в частности к системам топливоподачи и управления газотурбинных двигателей. Насос-дозатор содержит насос подачи рабочего тела с регулируемым электроприводом, включающим электродвигатель (ЭД), блок...
Тип: Изобретение
Номер охранного документа: 0002588315
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.713e

Способ определения тяги в полете турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к области управления турбореактивным двухконтурным двигателем со смешением потоков ТРДД и ТРДД с форсажной камерой сгорания ТРДДФ и позволяет определить с повышенной точностью тягу в полете с учетом реального истечения газа из реактивного сопла. По замерам полетной...
Тип: Изобретение
Номер охранного документа: 0002596413
Дата охранного документа: 10.09.2016
Показаны записи 11-12 из 12.
17.08.2019
№219.017.c110

Электродвигатель с внешним ротором и системой охлаждения статора

Изобретение относится к области электротехники, в частности, к охлаждению статора обращенной машины. Технический результат - повышение надежности и КПД. Электродвигатель с внешним ротором и системой охлаждения статора включает статический вал, установленный в подшипниковой опоре, концентрично...
Тип: Изобретение
Номер охранного документа: 0002697511
Дата охранного документа: 15.08.2019
23.05.2023
№223.018.6c67

Система топливопитания газотурбинного двигателя

Изобретение относится к системам топливопитания и может быть использовано для питания топливом авиационных газотурбинных двигателей. Система содержит насос подачи топлива с электроприводом, вычислительный модуль, регулятор частоты вращения насоса, систему управления высшего уровня, датчик...
Тип: Изобретение
Номер охранного документа: 0002739658
Дата охранного документа: 28.12.2020
+ добавить свой РИД