×
21.02.2019
219.016.c51c

Результат интеллектуальной деятельности: Способ запуска газотурбинного двигателя

Вид РИД

Изобретение

Аннотация: Изобретение относится к стартер-генераторным устройствам для авиационных газотурбинных двигателей и способу их запуска, может быть использовано в системах электроснабжения, применяемых в летательных аппаратах, судах, других транспортных средствах и автономных объектах. Основная электрическая машина включает в себя: бесщеточный синхронный генератор с демпферной клеткой, возбудитель, подвозбудитель и вращающийся выпрямитель. На корпусе закреплены якорь основной электрической машины с якорной обмоткой, индуктор возбудителя с обмоткой возбуждения, якорь синхронного подвозбудителя с якорной обмоткой. На общем для трех машин валу закреплены явно выраженные полюса индуктора основной электрической машины с обмоткой возбуждения, блок вращающегося выпрямителя, якорь синхронного возбудителя с обмоткой и система постоянных магнитов синхронного подвозбудителя. Технический результат направлен на реализацию запуска ГТД с помощью основной электрической машины. 2 ил.

Предлагаемое изобретение относится к области авиационной техники, а именно к стартер-генераторным устройствам для авиационных газотурбинных двигателей и способу их запуска и может быть использовано в системах электроснабжения, применяемых в летательных аппаратах, судах, других транспортных средствах и автономных объектах.

Запуск газотурбинного двигателя представляет одну из основных операций предполетной подготовки летательного аппарата. Для функционирования газотурбинного двигателя (ГТД) необходимо создать условия для подачи топлива в камеру сгорания, такие как расход воздуха и давление. Для создания этих условий ротор ГТД необходимо раскрутить до оборотов необходимых для выхода на режим малого газа.

Известен способ запуска ГТД, который запуск осуществляется сравнительно небольшим газотурбинным пусковым двигателем (турбостартером) [Авиационное оборудование. / Ю.А. Андриевский, Ю.Е. Воскресенский, Ю.П. Доброленский и др.; Под ред. Ю.П. Доброленского. - М: Воениздат, 1989, стр. 62]. Данный способ наиболее применим для запуска мощных авиадвигателей. К недостаткам этого способа можно отнести необходимость дополнительного двигателя для запуска турбостартера, что приводит к увеличению общего времени запуска, усложнению производства и эксплуатации газотурбинного двигателя.

Известны электрические способы запуска ГТД, которые осуществляется либо непосредственно стартером, либо стартер-генератором. При этом в качестве источника электрической энергии используются бортовые аккумуляторные батареи или аэродромный источник электрической энергии.

Способ запуска непосредственно от электростартера, который является отдельной конструктивной единицей относительно большой массы и габаритов и выполняет только функции запуска, а в дальнейшем является неиспользуемым грузом, увеличивает полетную массу летательного аппарата, что является основным его недостатком.

Наибольшее распространение для запуска современных газотурбинных двигателей получили способы, использующие совмещенный стартер-генератора.

Известен способ запуска ГТД от стартер-генератора постоянного тока, имеющего щеточно-коллекторный узел [Электрооборудование летательных аппаратов: учебник для вузов. В двух томах / Под редакцией С.А. Грузкова. Том 1. Системы электроснабжения летательных аппаратов. - М.: Издательство МЭИ, 2005., стр. 194-195]. Основным недостатком данного способа запуска ГТД является низкая надежность, обусловленная наличием щеточно-коллекторного узла.

Известен ГТД, который содержит бесконтактный синхронный генератор с вращающимся выпрямителем, состоящий из трех электрических машин: основной электрической машины - генератора, возбудителя, подвозбудителя, имеющих общий корпус и вал [Электрооборудование летательных аппаратов: учебник для вузов. В двух томах / Под редакцией С.А. Грузкова. Том 1. Системы электроснабжения летательных аппаратов. - М.: Издательство МЭИ, 2005., стр. 184-185] и способ его запуска в стартерном режиме.

Известен способ запуска ГТД [патент РФ №2524776 С1], осуществляемый бесконтактным стартер-генератором, при котором в начальный момент запуска газотурбинного двигателя обмотку якоря основной электрической машины и обмотку возбуждения возбудителя через блок управления подключают к источнику питания, при этом блок управления обеспечивает опережение вектора магнитного потока основного генератора относительно оси полюса ротора, и начальная раскрутка газотурбинного двигателя осуществляется реактивным моментом. С увеличением частоты вращения индуцированная электродвижущая сила в обмотке якоря возбудителя, выпрямленная блоком вращающегося выпрямителя, питает обмотку возбуждения основной электрической машины, создавая активный вращающий момент. При достижении заданной частоты вращения блок управления отключают от обмотки якоря основной электрической машины. Тем самым, основную электрическую машину переводят в генераторный режим. Данный способ наиболее близок к заявляемому техническому решению и является прототипом.

Основным недостатком способа запуска ГТД, реализуемого по техническому предложению прототипа, является необходимость датчика положения ротора синхронного генератора для реализации двигательного (стартерного) режима работы. Это влечет за собой усложнение конструкции электромашинного агрегата. Кроме того, на начальном этапе процесса запуска раскрутка осуществляется за счет реактивного момента. Для создания максимального реактивного момента требуется регулировка положения вектора тока обмотки якоря основной электрической машины относительно оси полюсов ротора по сложному закону, зависящему как от индуктивных параметров, так и от частоты вращения ротора, тока обмотки возбуждения основной электрической машины и напряжения обмотки возбуждения возбудителя. В связи со сказанным, техническое решение для реализации запуска газотурбинного двигателя по способу, предложенному в прототипе, не является оптимальным из-за усложнения управляющих устройств.

Технический результатом, который достигается при использовании предлагаемого способа, является реализация запуска ГТД с помощью основной электрической машины с демпферной клеткой в составе трехкаскадного синхронного генератора без использования датчика положения ротора и формирования реактивного момента, то есть без изменения конструкции синхронного генератора и усложнения управляющих устройств.

Технический результат достигается тем, что в известном способе запуска газотурбинного двигателя, осуществляемом трехкаскадным бесконтактным синхронным генератором, содержащим основную электрическую машину с демпферной клеткой, возбудитель, подвозбудитель, представляющий собой магнитоэлектрический генератор, и вращающийся выпрямитель в начальный момент запуска газотурбинного двигателя реализуется асинхронный режим работы основной электрической машины, электромагнитный момент которой создается демпферной клеткой, с увеличением частоты вращения до величины, при которой становится возможным использование напряжений подвозбудителя для вычисления угла положения ротора, с одновременной подачей питания на обмотку возбуждения, основная электрическая машина переводится в синхронный режим работы, а при достижении заданной частоты вращения, определяемой числом оборотов малого газа газотурбинного двигателя, основная электрическая машина переводится в генераторный режим.

На Фиг. 1 приведена схема размещения электрических машин в корпусе генератора ГТД. На Фиг. 2 - схема соединения обмоток машин с управляющими устройствами, реализующая предлагаемый способ.

Основная электрическая машина - бесщеточный синхронный генератор с демпферной клеткой, возбудитель, подвозбудитель и вращающийся выпрямитель расположены в общем корпусе 1 (Фиг. 1). На корпусе закреплены якорь основной электрической машины 2 с якорной обмоткой 3, индуктор возбудителя 4 с обмоткой возбуждения 5, якорь синхронного подвозбудителя 6 с якорной обмоткой 7. На общем для трех машин валу 8 закреплены явно выраженные полюса индуктора 9 основной электрической машины с обмоткой возбуждения 10, блок вращающегося выпрямителя 11, якорь синхронного возбудителя 12 с обмоткой 13 и система постоянных магнитов 14 синхронного подвозбудителя.

В соответствии с Фиг. 2 обмотка возбуждения возбудителя 5 и якорная обмотка подвозбудителя 7 соединены с блоком регулирования возбуждением 15, который, в свою очередь, соединен с блоком 16 формирования режимов работы основной электрической машины в двигательном режиме (в процессе запуска ГТД). Обмотка возбуждения 10 основной электрической машины через вращающийся выпрямитель 11 соединена с обмоткой якоря возбудителя 13. Обмотка якоря 3 основной электрической машины в двигательном режиме через линейный контактор 17 соединена с блоком 16, а в генераторном режиме через линейный контактор 18 с бортовой сетью электропитания летательного аппарата. Блок 15 содержит два входа, один из которых служит для подключения обмотки якоря 7 подвозбудителя, а второй - для подключения к бортовой цепи питания, и два выхода, один из которых служит для передачи информации о положении ротора на блок 16 в двигательном режиме, а второй - для соединения с обмоткой возбуждения возбудителя 5 на втором этапе фазы запуска и в генераторном режиме. Блок 15 состоит из трехфазного выпрямителя, который предназначен для питания постоянным током обмотки возбуждения 5 возбудителя и управляющей части.

Блок 16 состоит из силовой и управляющей части. Силовая часть блока представляет собой классический трехфазный инвертор, который коммутирует фазы якорной обмотки 3 основной электрической машины бесконтактного явнополюсного синхронного генератора в двигательном режиме. Питание силовой части осуществляется либо от бортового источника постоянного тока, либо через выпрямитель от источника переменного тока.

Способ запуска газотурбинного двигателя в соответствии с предлагаемым изобретением осуществляется следующим образом. Для запуска используется бортовой трехкаскадный бесконтактный синхронный генератор, содержащий вращающийся выпрямитель и три электрические машины, имеющие общий корпус и вал: основная электрическая машина с демпферной клеткой, возбудитель и подвозбудитель. Весь процесс запуска разбивается на два этапа. Во время первого этапа фазы запуска первоначально газотурбинный двигатель не работает, главную электрическую машину переводят в режим асинхронного двигателя посредством подачи трехфазной системы токов в статорные обмотки главной электрической машины. Трехфазную систему токов генерирует на первом этапе пуска инвертор блока управления 16, питание силовой части которого осуществляется от бортовой сети. С выхода блока 16 трехфазная система напряжений через линейный контактор 17 подается на обмотку якоря 3 основной электрической машины. Обмотка возбуждения 10 основной электрической машины на этой фазе запуска питание не получает. Взаимодействие магнитного потока обмотки якоря с токами, наведенными в короткозамкнутых клетках, образованных демпфирующими стержнями индуктора основной электрической машины, создает асинхронный электромагнитный момент. За счет этого момента осуществляется первоначальная раскрутка вала газотурбинного двигателя.

Как известно, при работе в режиме синхронного генератора демпфирующие стержни должны обеспечивать механическую прочность ротора, повышать коэффициент синусоидальной формы с одновременным обеспечением равномерности магнитного поля в рабочем пространстве, уменьшать последствия плохо распределенных трехфазных нагрузок и демпфировать вибрации во время переходных нагрузок.

Основной момент сопротивления, который необходимо преодолеть стартер-генератору в процессе запуска газотурбинного двигателя, создает компрессор. Этот момент пропорционален квадрату частоты вращения п компрессора:

где Ак - постоянная, характеризующая параметры компрессора.

Таким образом, в начальный момент пуска стартер-генератор должен развить момент, необходимый для преодоления только инерции вращающихся частей [К.С. Бобов, В.А. Винокуров, B.C. Аскерко, М.В. Кравчук, Г.И. Панасюк. Авиационные электрические машины. Часть 1. Машины постоянного и переменного тока. Трансформаторы. / Под ред. К.С. Бобова. - ВВИА им. проф. Н.Е. Жуковского; 1960, стр. 199]. Поэтому асинхронный момент, создаваемый демпферной клеткой основной электрической машины при подключении ее статорной обмотки к трехфазной системе токов, оказывается достаточным для осуществления начальной раскрутки вала газотурбинного двигателя. По мере увеличения частоты вращения в обмотке якоря 7 подвозбудителя, который представляет собой трехфазный синхронный генератор с возбуждением от постоянных магнитов 14, индуцируется трехфазная система ЭДС.

На втором этапе запуска газотурбинного двигателя основную электрическую машину переводят в режим синхронного двигателя, для чего подают питание на ее обмотку возбуждения, а для синхронизации осей магнитных потоков ротора и статора используют информацию о положении вала машины, в соответствии с которой реализуют поле ориентированную векторную систему управления [] F. Blaschke. The principle of field-orientation as applied to the transvector closed loop control system for rotating-fleld machines: Siemens Rev., vol. 34, no. 1, pp. 217-220, 1972.]. Ко второму этапу фазы запуска переходят, когда скорость вращения вала достигает величины, при которой становится возможным вычисление угла положения ротора по величинам ЭДС, индуцируемых в обмотке якоря 7 подвозбудителя. При этом блок регулирования 15 формирует команду на переход ко второму этапу фазы запуска. По этой команде обмотка якоря 7 подвозбудителя, через выпрямитель, располагаемый в блоке 15, подключается к обмотке возбуждения 5 возбудителя, питая ее постоянным током. Обмотка якоря синхронного возбудителя 13 соединяется через блок вращающегося выпрямителя 11 с обмоткой возбуждения 10 основного генератора. В результате обмотка возбуждения основной электрической машины так же получает питание постоянным током. По этой же команде (перехода ко второму этапу фазы запуска) блок регулирования 15 на основании напряжений обмотки якоря 7 подвозбудителя формирует сигналы, определяющие угловое положение ротора относительно полюсов обмотки статора 3 основной электрической машины. Эти сигналы поступают на вход блока 16. На основании этих сигналов в блоке 16 формируется закон управления силовыми ключами инвертора, обеспечивающий оптимальную ориентацию полюсов обмотки статора 3 основной электрической машины относительно магнитного потока обмотки возбуждения 10. В результате во втором этапе фазы запуска основная электрическая машина переводится в режим синхронного двигателя с коммутацией фаз обмотки статора 3, зависящей от их положения относительно магнитного поля индуктора 9. Для синхронизации осей магнитных потоков ротора и статора используется полученная информация о положении вала машины, в соответствии с которой реализуется поле ориентированная векторная система управления [F. Blaschke. The principle of field-orientation as applied to the transvector closed loop control system for rotating-field machines: Siemens Rev., vol. 34, no. 1, pp. 217-220, 1972.].

(Синхронные двигатели, работающие с зависимой коммутацией фаз, часто называют вентильными двигателями, в англоязычной литературе BLDC или PMSM).

Второй этап запуск заканчивают, когда частота вращения роторного модуля оказывается достаточной для запуска и зажигания газотурбинного двигателя. После запуска и зажигания газотурбинного двигателя линейный контактор 17 размыкается. Главная электрическая переходит в режим бесконтактного синхронного генератора, трехфазное электрическое напряжение которого через линейный переключатель 18 подают в бортовую сеть самолета.

Предлагаемое техническое решение реализует функции двигательного режима бесконтактного синхронного генератора с демпферной обмоткой без изменения конструкции, увеличения массы и усложнения управляющих устройств, сохраняя достоинств бесконтактного явнополюсного синхронного генератора с вращающимся выпрямителем [Вентильные генераторы автономных систем электроснабжения. / Н.М. Рожнов, A.M. Русаков, A.M. Сугробов, П.А. Тыричев; Под ред. П.А. стр. 14], который в настоящее время является основным типом источника электрической энергии на борту большинства эксплуатируемых самолетов.

Способ запуска газотурбинного двигателя, осуществляемый трехкаскадным бесконтактным синхронным генератором, содержащим основную электрическую машину с демпферной клеткой, возбудитель, подвозбудитель, представляющий собой магнитоэлектрический генератор, и вращающийся выпрямитель, отличающийся тем, что в начальный момент запуска газотурбинного двигателя реализуется асинхронный режим работы основной электрической машины, электромагнитный момент которой создается демпферной клеткой, с увеличением частоты вращения до величины, при которой становится возможным использование напряжений подвозбудителя для вычисления угла положения ротора, с одновременной подачей питания на обмотку возбуждения, основная электрическая машина переводится в синхронный режим работы, а при достижении заданной частоты вращения, определяемой числом оборотов малого газа газотурбинного двигателя, основная электрическая машина переводится в генераторный режим.
Способ запуска газотурбинного двигателя
Способ запуска газотурбинного двигателя
Источник поступления информации: Роспатент

Показаны записи 81-90 из 92.
27.03.2020
№220.018.10dc

Способ производства мучного кондитерского изделия "полуфабрикат творожный с гречишной клетчаткой, со свекольным пюре и с сахаром"

Изобретение относится к пищевой промышленности, в частности к мучному кондитерскому производству. Предложен способ производства мучного кондитерского изделия, который предусматривает замес теста путем взбивания меланжа с сахаром-песком и сливочным маслом в течение от 20 до 40 мин, взбивание...
Тип: Изобретение
Номер охранного документа: 0002717649
Дата охранного документа: 24.03.2020
28.03.2020
№220.018.116e

Кумулятивный заряд перфоратора

Изобретение относится к области добычи нефти и газа, может быть использовано при скважинной перфорации и чистке перфорационных каналов. Кумулятивный заряд перфоратора содержит корпус, заряд взрывчатого вещества с V-образной кольцевой кумулятивной выемкой с облицовкой. Корпус кумулятивного...
Тип: Изобретение
Номер охранного документа: 0002717853
Дата охранного документа: 26.03.2020
17.04.2020
№220.018.14ed

Способ диагностики психоэмоционального состояния по голосу

Изобретение относится к средствам распознавания эмоциональных состояний человека по анализу голосового сигнала. Технический результат заключается в повышении точности определения психоэмоционального состояния человека. Обнаруживают интенсивности голоса и темпа, определяемого скоростью, с...
Тип: Изобретение
Номер охранного документа: 0002718868
Дата охранного документа: 15.04.2020
11.07.2020
№220.018.31da

Устройство для повышения пропускной способности дальней электропередачи

Изобретение относится к технике передачи электроэнергии переменным током, а именно к дальним электропередачам. Технический результат заключается в увеличении пропускной способности линии электропередачи за счет компенсации индуктивного сопротивления. Сущность изобретения состоит в том, что в...
Тип: Изобретение
Номер охранного документа: 0002726174
Дата охранного документа: 09.07.2020
15.07.2020
№220.018.3272

Электромагнитный двигатель возвратно-поступательного движения

Изобретение относится к электротехнике, в частности к электромагнитным ударным машинам с возвратно-поступательным движением рабочих органов. Технический результат - увеличение производительности электромагнитного двигателя, повышение его надежности. Электромагнитный двигатель...
Тип: Изобретение
Номер охранного документа: 0002726336
Дата охранного документа: 13.07.2020
16.07.2020
№220.018.32bd

Способ обеспечения баланса накопленной энергии в устройстве автоматической компенсации реактивной мощности

Изобретение относится к устройствам компенсации реактивной мощности. Способ обеспечения баланса накопленной энергии в устройстве автоматической компенсации реактивной мощности заключается в следующем. Измеряют напряжение сети, формируют значение амплитуды желаемого гармонического тока и для...
Тип: Изобретение
Номер охранного документа: 0002726474
Дата охранного документа: 14.07.2020
26.07.2020
№220.018.385f

Способ адаптивного однофазного автоматического повторного включения линий электропередачи

Использование: в области электротехники. Технический результат - обеспечение высокой надежности однофазного автоматического повторного включения линий электропередачи при любом числе шунтирующих реакторов на линии за счет надежной идентификации дугового повреждения, которое невозможно...
Тип: Изобретение
Номер охранного документа: 0002727792
Дата охранного документа: 24.07.2020
31.07.2020
№220.018.38ed

Способ определения собственных частот и форм колебаний свободной конструкции по результатам испытаний этой конструкции с наложенными связями

Изобретение относится к области классического экспериментального модального анализа конструкций. При реализации способа строят расчетную динамическую модель свободной конструкции, которую корректируют по результатам наземных модальных испытаний. На время испытаний объект исследований фиксируют...
Тип: Изобретение
Номер охранного документа: 0002728329
Дата охранного документа: 29.07.2020
02.08.2020
№220.018.3b58

Способ картографирования с помощью кольцевой антенной решётки

Предлагаемое изобретение относится к области ближней локации и может быть использовано для томографии на акустических волнах при монохроматическом зондировании окружающего пространства. В способе картографирования с помощью кольцевой антенной решетки излучают монохроматический зондирующий...
Тип: Изобретение
Номер охранного документа: 0002728512
Дата охранного документа: 30.07.2020
02.08.2020
№220.018.3c5a

Ветроэнергетическая установка

Изобретение относится к ветроэнергетическим установкам. Ветроэнергетическая установка содержит ветроколесо, на выходе которого расположен датчик скорости вращения вала, который является входом для ветрогенератора, выход которого соединен с датчиком активной мощности, после которого подключается...
Тип: Изобретение
Номер охранного документа: 0002728668
Дата охранного документа: 31.07.2020
Показаны записи 31-36 из 36.
19.01.2019
№219.016.b227

Энергопреобразующая аппаратура для систем электропитания постоянного тока аэрокосмических аппаратов

Изобретение относится к области электротехники и силовой электроники, может быть использовано в системах бесперебойного электропитания автономных объектов постоянным током с двумя источниками электрической энергии, один из которых может накапливать электрическую энергию. В предложенной...
Тип: Изобретение
Номер охранного документа: 0002677629
Дата охранного документа: 18.01.2019
20.03.2019
№219.016.e6dc

Способ управления ветроэлектрической установкой

Изобретение относится к области электротехники и может быть использовано при проектировании источников электроэнергии. На выходе преобразователя частоты, соединенного с магнитоэлектрическим генератором переменного тока, работающим от ветроколеса, формируют переменное напряжение стабильной...
Тип: Изобретение
Номер охранного документа: 0002306663
Дата охранного документа: 20.09.2007
15.08.2019
№219.017.bfe3

Способ управления инвертором напряжения в системах бесперебойного питания и системах накопления электрической энергии при резкопеременной нагрузке

Изобретение относится к области электротехники и силовой электроники, может быть использовано при построении систем генерирования электрической энергии трехфазного переменного тока или систем гарантированного электропитания переменного тока. Техническим результатом является повышение...
Тип: Изобретение
Номер охранного документа: 0002697262
Дата охранного документа: 13.08.2019
06.02.2020
№220.017.feb6

Адаптивная стартер-генераторная система для летательных аппаратов

Изобретение относится к области электротехники и силовой электроники и может быть использовано при построении стартер-генераторных систем для летательных аппаратов, в которых для достижения качественных показателей выходной энергии применяются статические преобразователи электрической энергии....
Тип: Изобретение
Номер охранного документа: 0002713390
Дата охранного документа: 05.02.2020
25.03.2020
№220.018.0fe6

Способ запуска газотурбинного двигателя

Изобретение относится к стартер-генераторным устройствам для авиационных газотурбинных двигателей и способу их запуска и может быть использовано в системах электроснабжения, применяемых в летательных аппаратах, судах, других транспортных средствах и автономных объектах. Основная электрическая...
Тип: Изобретение
Номер охранного документа: 0002717477
Дата охранного документа: 23.03.2020
30.05.2020
№220.018.2270

Способ обеспечения динамической устойчивости энергосистемы, включающей электрогенератор, нагрузку и систему накопления электрической энергии

Изобретение относится к области электротехники, в частности к способам обеспечения динамической устойчивости энергосистемы. Технический результат заключается в повышении эффективности и в повышении ресурса генераторных установок. Достигается тем, что система управления контролирует скорость...
Тип: Изобретение
Номер охранного документа: 0002722215
Дата охранного документа: 28.05.2020
+ добавить свой РИД