×
20.02.2019
219.016.be53

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ВЫБОРА ОБЪЕКТОВ НАБЛЮДЕНИЯ С ОРБИТАЛЬНОГО КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002346241
Дата охранного документа
10.02.2009
Аннотация: Устройство для выбора объектов наблюдения с орбитального космического аппарата (КА). Устройство для выбора объектов наблюдения с орбитального КА включает глобус с нанесенной на него картой, два охватывающих глобус кольца, первое из которых закреплено над точками полюсов глобуса с возможностью вращения кольца вокруг оси вращения глобуса, а второе из которых установлено в плоскости экватора глобуса и закреплено на первом кольце в точках пересечения первого кольца с плоскостью экватора глобуса. Дополнительно введены элемент в виде витка спирали, моделирующий виток орбиты КА, движущегося вокруг планеты, карта поверхности которой нанесена на глобус, и элемент, проекция контура которого на поверхность глобуса образует окружность, ограничивающую на поверхности глобуса сегмент с углом полураствора. Кроме этого элемент, проекция контура которого на поверхность глобуса образует окружность, выполнен в виде полупрозрачного сферического сегмента с прорезью, выполненной от края сферического сегмента к его центру. Технический результат заключается в обеспечении отображения на глобусе областей, доступных наблюдению с КА при различных положениях КА на рассматриваемом витке орбиты КА. 1 з.п. ф-лы, 5 ил.

Предлагаемое техническое решение относится к области космической техники и может быть использовано для определения и выбора объектов наблюдения с орбитального космического аппарата (КА), движущегося по околокруговой орбите.

Известен глобус (см. [1], с.93-97), который можно использовать, в частности, для определения и выбора объектов наблюдений, выполняемых с КА. Недостатком данного устройства является отсутствие элементов, позволяющих отобразить информацию об орбите и трассе КА. Известен также учебный прибор по навигации [2], включающий основание, стойку, модель планеты, которая выполнена в виде глобуса, модель орбиты КА, выполненную в виде кольца и смонтированную на подшипнике стойки. Используя данный прибор можно, в том числе, моделировать положение орбиты КА над глобусом - моделью планеты - и выбирать объекты на поверхности планеты, доступные наблюдению с КА.

Наиболее близким из аналогов, принятым за прототип, является устройство [3], включающее глобус с нанесенной на него картой звездного неба и охватывающие его два кольца, установленные с совмещением центров колец с центром глобуса. При этом одно кольцо закреплено над точками полюсов глобуса с возможностью поворота вокруг оси вращения глобуса, проходящей через полюса глобуса, а другое кольцо установлено с возможностью выставки кольца под любым задаваемым углом к экватору глобуса.

Внешний вид устройства [3] представлен на фиг.1.

Работа с устройством осуществляется следующим образом. Глобус поворачивают относительно кольца, позволяющего выставку кольца относительно глобуса под любым задаваемым углом к экватору глобуса в положение, при котором данное кольцо составляет с экватором глобуса угол, равный углу наклонения орбиты КА. Тем самым данное кольцо моделирует виток орбиты КА. Дальнейшим поворотом глобуса вокруг оси его вращения устанавливают глобус в положение, при котором данное кольцо пересекает экватор глобуса в точке экватора с долготой, равной значению долготы восходящего узла рассматриваемого витка орбиты КА. При этом данное кольцо покажет на глобусе мгновенную проекцию орбиты КА на поверхность глобуса. В качестве возможных объектов наблюдения с КА выбираются объекты, расположенные на поверхности глобуса вдоль смоделированного положения витка орбиты КА.

Если в данном устройстве на поверхности глобуса вместо карты небесной сферы отобразить карту поверхности планеты, вокруг которой обращается КА, т.е. вместо звездного глобуса использовать глобус планеты, то данное устройство позволяет отображать мгновенную проекцию орбиты КА на поверхность глобуса (планеты).

Учитывая, что орбитальные КА движутся в инерциальном пространстве, относительно которого планета (например, Земля) вращается, и при этом существует эффект прецессии орбиты КА в инерциальном пространстве, то мгновенная проекция орбиты КА на поверхность глобуса будет непрерывно меняться по мере движения КА по орбите. Следовательно, для каждого момента времени требуется устанавливать кольцо, указывающее на глобусе мгновенную проекцию орбиты КА, в новое положение, соответствующее текущему положению плоскости орбиты КА в рассматриваемый момент времени.

При этом объекты, доступные наблюдению с КА, могут располагаться на определенном расстоянии от подспутниковой точки КА, величина которого определяется высотой орбиты и характеристиками аппаратуры наблюдения (в основном - разрешающей способностью аппаратуры наблюдения).

Таким образом, устройство, принятое за прототип, имеет существенный недостаток - оно не позволяет отобразить на глобусе, на который нанесена карта поверхности планеты, области, доступные наблюдению с КА в различные последовательные моменты времени.

Задачей, стоящей перед предлагаемым устройством, является расширение функциональных возможностей устройства за счет обеспечения отображения на глобусе планеты, вокруг которой обращается КА, областей, доступных наблюдению с КА при различных положениях КА на рассматриваемом витке орбиты КА.

Технический результат достигается тем, что в устройство для выбора объектов наблюдения с орбитального космического аппарата, включающее глобус с нанесенной на него картой, два охватывающих глобус кольца, центры которых совмещены с центром глобуса, первое из которых закреплено над точками полюсов глобуса с возможностью вращения кольца вокруг оси вращения глобуса, а второе из которых установлено в плоскости экватора глобуса и закреплено на первом кольце в точках пересечения первого кольца с плоскостью экватора глобуса, дополнительно введены элемент в виде витка спирали, моделирующий виток орбиты космического аппарата, движущегося вокруг планеты, карта поверхности которой нанесена на глобус, по околокруговой орбите, закрепленный своей средней точкой в точке пересечения первого и второго колец, а своими начальной и конечной точками закрепленный в точках второго кольца, находящихся от другой точки пересечения первого и второго колец на угловом расстоянии, равном половине углового межвиткового расстояния орбиты по экваториальной шкале нанесенной на глобус карты поверхности планеты, соответственно по и против направления положительного отсчета экваториальной шкалы карты, и элемент, проекция контура которого на поверхность глобуса образует окружность, ограничивающую на поверхности глобуса сегмент с углом полураствора, измеряемым от оси, направленной из центра глобуса на центр сегмента, равным отношению ширины полосы обзора поверхности планеты с космического аппарата к диаметру планеты, закрепленный своей точкой, проекция которой на поверхность глобуса совпадает с центром указанного сегмента, на элементе в виде витка спирали с возможностью перемещения вдоль элемента в виде витка спирали.

Кроме этого, технический результат достигается тем, что в описанном выше устройстве для выбора объектов наблюдения с орбитального космического аппарата элемент, проекция контура которого на поверхность глобуса образует окружность, ограничивающую на поверхности глобуса сегмент с углом полураствора, равным отношению ширины полосы обзора поверхности планеты с космического аппарата к диаметру планеты, выполнен в виде полупрозрачного сферического сегмента с прорезью, выполненной от края сферического сегмента к его центру, закрепленный своей центральной точкой на элементе в виде витка спирали с возможностью перемещения вдоль элемента в виде витка спирали и с возможностью вращения вокруг оси, соединяющей центры глобуса и сферического сегмента при совмещении центра сферы, образующей сферический сегмент, и центра глобуса, причем радиус образующей сферический сегмент сферы равен расстоянию от центра глобуса до центра сферического сегмента, а угол полураствора сферического сегмента, измеряемый от оси, направленной из центра глобуса на центр сферического сегмента, равен отношению ширины полосы обзора поверхности планеты с космического аппарата к диаметру планеты, при этом длина дуги прорези в сферическом сегменте более или равна сумме углов полураствора сферического сегмента и наклонения орбиты космического аппарата за вычетом 90°.

Таким образом, в предлагаемое устройство, в отличие от прототипа, дополнительно введены элемент в виде витка спирали, форма которого моделирует виток орбитального перемещения КА и который закреплен предложенным образом на втором кольце, и элемент, проекция контура которого на поверхность глобуса образует окружность, ограничивающую на поверхности глобуса область, доступную наблюдению с КА в текущий момент времени, и который закреплен предложенным образом на элементе в виде витка спирали.

Кроме этого, в предлагаемом устройстве последний из введенных элементов выполнен в виде полупрозрачного сферического сегмента с прорезью, при этом сферический сегмент и прорезь выполнены предложенных размеров.

Суть предлагаемого устройства поясняется на фиг.1-5. При этом приведены: на фиг.1 - устройство-прототип; на фиг.2-3 - вид предлагаемого устройства с двух противоположных сторон; на фиг.4 - схема, поясняющая вычисление размеров введенных элементов; на фиг.5 - схема, поясняющая выбор размера прорези в сферическом сегменте.

На фиг.2 и 3 введены обозначения:

1 - глобус с нанесенной на него картой поверхности планеты;

2, 3 - первое и второе кольца соответственно;

4 - элемент в виде витка спирали;

5 - элемент в виде полупрозрачного сферического сегмента с прорезью;

6 - прорезь в сферическом сегменте (5);

7 - линия экватора глобуса;

8 - линия проекции первого кольца (2) на поверхность глобуса;

9 - линия проекции элемента (4) на поверхность глобуса;

10 - линия проекции контура сферического сегмента (5) на поверхность глобуса;

11 - элемент подставки глобуса, являющийся продолжением оси вращения глобуса;

12 - основание подставки глобуса;

А, В - полюса глобуса;

АВ - ось вращения глобуса;

С, D - точки крепления первого и второго колец (2) и (3);

Е, F - начальная и конечная точки элемента в виде витка спирали (4);

G, Н - проекции точек Е, F на экватор (7) глобуса;

К - центральная точка сферического сегмента (5).

С учетом введенных обозначений точка D - средняя точка элемента в виде витка спирали (4); HG - угловое межвитковое расстояние орбиты КА.

Виток орбиты КА, движущегося по околокруговой орбите вокруг планеты, задается в правой декартовой системе координат OXYZ с центром в центре планеты и осью OZ, направленной по оси вращения планеты, координатами, рассчитанными по формулам (см. [4], стр.18):

где - наклонение орбиты;

Ro - радиус орбиты;

λ - долгота восходящего узла орбиты;

u - текущее значение аргумента широты - параметра, принимающего на витке орбиты значения от 0 до 2π.

При движении по околокруговой орбите в течение витка орбиты КА значение λ изменяется от значения λ0, равного долготе восходящего узла рассматриваемого витка орбиты КА и соответствующего моменту u=0, до значения λ0+Δλ, равного долготе восходящего узла следующего витка орбиты КА и соответствующего моменту u=2π:

где Δλ - угловое межвитковое расстояние по экватору.

Например, величина Δλ при движении КА вокруг Земли определяется формулой (см. [5], стр.149):

где Δ Ω - витковая прецессия орбиты КА в инерциальной системе координат;

Т - период обращения КА вокруг Земли;

ω - угловая скорость вращения Земли в инерциальном пространстве;

Rэ - экваториальный радиус Земли;

р - фокальный параметр орбиты КА;

I2=-1082,2·10-6 - коэффициент потенциала гравитационного поля Земли.

Отметим, что величины Δλ и Δ Ω отрицательны.

Если ось ОХ направить в точку восходящего узла рассматриваемого витка орбиты (в этой системе координат λ0=0) и заменить Ro на радиус второго кольца r (поскольку моделирующий виток орбиты КА элемент в виде витка спирали (4) крепится на втором кольце (3), то принимаем радиус спирали, равным радиусу второго кольца), то с учетом формулы (2) формулы (1) принимают вид:

z=r sin u sin i.

H фиг.4, поясняющей вычисление размеров введенных элементов, дополнительно введены обозначения:

Z - поверхность сферы (глобуса планеты), аппроксимирующей поверхность планеты, вокруг которой обращается КА;

О - центр глобуса;

К - положение КА;

Р - подспутниковая точка КА;

P1PP2 - сегмент поверхности глобуса, являющийся мгновенной зоной обзора поверхности планеты из положения КА в точке К;

KP1 - максимальное расстояние от КА до объекта наблюдения;

M1KM2 - сферический сегмент, проекция контура которого на поверхность сферы Z совпадает с зоной обзора поверхности планеты с космического аппарата P1PP2 (К - точка центра сегмента);

Q - угол полураствора сегмента P1PP2;

ОР - радиус планеты;

P1G - плоскость местного горизонта к поверхности планеты в точке P1;

g - угол отклонения оси визирования аппаратуры наблюдения от направления в надир;

ϕ - угол между направлением Р1К и плоскостью местного горизонта в точке P1.

Сферический сегмент M1KM2 в предлагаемом устройстве реализуется введенным сегментом (5). Значение угла Q, выраженное в радианах, равно отношению длины дуги Р1Р, измеренной в линейных единицах длины, к радиусу глобуса ОР:

или

где d - ширина полосы обзора поверхности планеты с КА, равная длине дуги P1PP2, измеренной в линейных единицах длины;

D - диаметр планеты.

Ширина полосы обзора поверхности планеты с КА зависит от характеристик аппаратуры наблюдения (разрешающей способности и углов прокачки оси визирования) и определяется значением максимально возможного расстояния от КА до объекта наблюдения (максимальным значением длины отрезка L=KP1) или значением максимально возможного угла отклонения оси визирования аппаратуры наблюдения от направления в надир (максимальным значением угла g).

Расчет ширины полосы обзора d по углу g осуществляется следующим образом. Углы g и ϕ выразим из прямоугольных треугольников ОТК и ОТР1:

Сумма углов треугольника OP1K равна 180°, тогда с учетом (10):

где Ro=OK - радиус орбиты (сумма радиуса планеты и высоты орбиты);

Rz=OP1 - радиус планеты.

С учетом (7) имеем:

Расчет ширины полосы обзора d по расстоянию L осуществляется следующим образом. По теореме косинусов имеем:

С учетом (7) имеем:

Сегмент (5) выполняем максимально большого размера, соответствующего максимально возможному значению dmax, а на поверхность сегмента (5) наносим концентрические линии (окружности с центром в точке К), соответствующие другим характерным значениям d, полученным для возможных вариантов значений расстояния L и угла g (например, когда в аппаратуре наблюдения предусмотрены разные режимы работы, которые реализуются при разных значениях расстояния L и угла g).

Объекты поверхности планеты, доступные наблюдению с КА в текущий момент времени, располагаются внутри области, ограниченной линией (10), полученной при положении центра сегмента (5) в точке, соответствующей текущему положению КА на элементе (4), моделирующем положение текущего витка орбиты КА.

В случаях, когда сегмент (5) расположен в окрестности полюсов глобуса, сегмент (5) может покрывать собой точку соответствующего полюса. Учитывая, что в точках полюсов к оси глобуса закреплено первое кольцо (2), то в данных положениях сегмент (5) может пересекаться с осью вращения глобуса.

В представленном варианте выполнения предлагаемого устройства сегмент (5) может пересекаться с элементом подставки глобуса (11), являющимся продолжением оси вращения глобуса.

Для обеспечения возможности такого расположения сегмента (5) в сегменте (5) выполнена прорезь (6). В случае, когда при перемещении центра сегмента (5) вдоль элемента (4) край сегмента (5) «упирается» в элемент (11), вращением сегмента (5) мы устанавливаем прорезь (6) напротив элемента (11). При дальнейшем перемещении центра сегмента (5) вдоль элемента (4) элемент (11) вводится в прорезь (6). Дальнейшее удержание элемента (11) в прорези (6) обеспечивается посредством вращения сегмента (5) вокруг оси, проходящей через центр сегмента (5) и центр глобуса.

На фиг.5, поясняющей выбор размера прорези в сегменте (5), дополнительно обозначено:

- угол наклонения орбиты КА;

γ - длина дуги прорези (6), измеренная в угловых единицах из центра глобуса;

δ - минимальное значение угла между осью вращения глобуса и направлением из центра глобуса на центр сегмента (5), которое реализуется при перемещении сегмента (5) вдоль элемента (4).

Значение угла δ определяется формулой:

Минимально необходимая длина дуги прорези γ равна:

Данная прорезь необходима при выполнении условия:

или, с учетом (7) и (18),

Работа с устройством осуществляется следующим образом.

Обозначим точкой G точку экватора (7) со значением долготы λ0, равным долготе восходящего узла рассматриваемого витка орбиты КА. Поворачиваем кольцо (2) относительно глобуса (1) таким образом, чтобы точка Е элемента (4) и кольца (3) располагалась над точкой G. В таком положении элемент (4) моделирует расположение рассматриваемого витка орбиты КА над поверхностью глобуса - линия (9) проекции элемента (4) на поверхность глобуса указывает трассу рассматриваемого витка КА.

Далее путем перемещения сегмента (5) вдоль элемента (4) совмещаем центральную точку сегмента (5) К с точками элемента (4), соответствующими различным положениям КА вдоль рассматриваемого витка орбиты. При этом сегмент (5) покроет на поверхности глобуса область, которая в данный момент времени доступна наблюдению с КА - данная область поверхности глобуса ограничена линией (10). Дополнительные линии, нанесенные на полупрозрачный сегмент (5), укажут области на поверхности глобуса, доступные наблюдению с КА при различных условиях на удаленность объектов наблюдения от подспутниковой точки и трассы КА.

В случае, когда в результате перемещения сегмента (5) вдоль элемента (4) край сегмента «упирается» в элемент (11), вращением сегмента (5) мы устанавливаем прорезь (6) напротив элемента (11). При дальнейшем перемещении сегмента (5) вдоль элемента (4) элемент (11) вводится в прорезь (6). Далее удержание элемента (11) в прорези (6) также обеспечивается посредством вращения сегмента (5).

Опишем технический эффект предлагаемого изобретения.

Предлагаемое устройство расширяет функциональные возможности устройства-прототипа за счет обеспечения отображения на глобусе планеты, вокруг которой обращается КА, областей, доступных наблюдению с КА при различных положениях КА на рассматриваемом витке орбиты КА.

Технический результат достигается за счет введения в устройство дополнительно элемента в виде витка спирали, форма которого моделирует виток орбитального перемещения КА и который закреплен предложенным образом на втором кольце, и элемента, проекция контура которого на поверхность глобуса образует окружность, ограничивающую на поверхности глобуса область, доступную наблюдению с КА в текущий момент времени, который закреплен предложенным образом на элементе в виде витка спирали и реализован в виде полупрозрачного сферического сегмента с прорезью предложенных размеров.

ЛИТЕРАТУРА

1. Красавцев Б.И. Мореходная астрономия. М.: Транспорт, 1986.

2. Заявка на изобретение №93045113/12 от 1993.09.14.

3. Звездный глобус ЗГ-ОМ1.1.

4. Бебенин Г.Г., Скребушевский Б.С., Соколов Г.А. Системы управления полетом космических аппаратов. // М.: Машиностроение, 1978.

5. Инженерный справочник по космической технике. М.: Изд-во МО СССР, 1969.

1.Устройстводлявыбораобъектовнаблюдениясорбитальногокосмическогоаппарата,включающееглобусснанесеннойнанегокартой,дваохватывающихглобускольца,центрыкоторыхсовмещенысцентромглобусаипервоеизкоторыхзакрепленонадточкамиполюсовглобусасвозможностьювращениякольцавокругосивращенияглобуса,автороекольцоустановленовплоскостиэкватораглобусаизакрепленонапервомкольцевточкахпересеченияпервогокольцасплоскостьюэкватораглобуса,отличающеесятем,чтодополнительновведеныэлементввидевиткаспирали,моделирующийвитокорбитыкосмическогоаппарата,движущегосявокругпланеты,картаповерхностикоторойнанесенанаглобус,пооколокруговойорбите,закрепленныйсвоейсреднейточкойвточкепересеченияпервогоивторогоколец,асвоиминачальнойиконечнойточкамизакрепленныйвточкахвторогокольца,находящихсяотдругойточкипересеченияпервогоивторогоколецнаугловомрасстоянии,равномполовинеугловогомежвитковогорасстоянияорбитыпоэкваториальнойшкаленанесеннойнаглобускартыповерхностипланеты,соответственно,поипротивнаправленияположительногоотсчетаэкваториальнойшкалыкарты,иэлемент,проекцияконтуракоторогонаповерхностьглобусаобразуетокружность,ограничивающуюнаповерхностиглобусасегментсугломполураствора,измеряемымотоси,направленнойизцентраглобусанацентрсегмента,равнымотношениюшириныполосыобзораповерхностипланетыскосмическогоаппаратакдиаметрупланеты,закрепленныйсвоейточкой,проекциякоторойнаповерхностьглобусасовпадаетсцентромуказанногосегмента,наэлементеввидевиткаспиралисвозможностьюперемещениявдольэлементаввидевиткаспирали.12.Устройстводлявыбораобъектовнаблюдениясорбитальногокосмическогоаппаратапоп.1,отличающеесятем,чтоэлемент,проекцияконтуракоторогонаповерхностьглобусаобразуетокружность,ограничивающуюнаповерхностиглобусасегментсугломполураствора,равнымотношениюшириныполосыобзораповерхностипланетыскосмическогоаппаратакдиаметрупланеты,выполненввидеполупрозрачногосферическогосегментаспрорезью,выполненнойоткраясферическогосегментакегоцентру,закрепленныйсвоейцентральнойточкойнаэлементеввидевиткаспиралисвозможностьюперемещениявдольэлементаввидевиткаспиралиисвозможностьювращениявокругоси,соединяющейцентрыглобусаисферическогосегментаприсовмещениицентрасферы,образующейсферическийсегмент,ицентраглобуса,причемрадиусобразующейсферическийсегментсферыравенрасстояниюотцентраглобусадоцентрасферическогосегмента,ауголполурастворасферическогосегмента,измеряемыйотоси,направленнойизцентраглобусанацентрсферическогосегмента,равенотношениюшириныполосыобзораповерхностипланетыскосмическогоаппаратакдиаметрупланеты,приэтомдлинадугипрорезивсферическомсегментеболееилиравнасуммеугловполурастворасферическогосегментаинаклоненияорбитыкосмическогоаппаратазавычетом90°.2
Источник поступления информации: Роспатент

Показаны записи 61-70 из 370.
27.04.2014
№216.012.be57

Дублированный электронасосный агрегат

Заявленный дублированный электронасосный агрегат относится к машиностроению и может быть использован в системах терморегулирования изделий авиационной и ракетной техники. Дублированный электронасосный агрегат содержит сборный корпус, установленные в корпусе с его противоположных концов два...
Тип: Изобретение
Номер охранного документа: 0002514467
Дата охранного документа: 27.04.2014
20.05.2014
№216.012.c314

Устройство защиты пневмогидравлического соединения стыкуемых объектов и способ его контроля на герметичность

Изобретение относится к ракетно-космической технике, криогенной технике и касается пневмогидравлического соединения стыкуемых объектов. Устройство защиты пневмогидравлического соединения содержит кожух, который установлен на соединение и снабжен штуцером с заглушкой. Кожух герметично установлен...
Тип: Изобретение
Номер охранного документа: 0002515699
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c393

Терморегулирующий материал, способ его изготовления и способ его крепления к поверхности корпуса космического объекта

Изобретение относится к космической технике и касается создания терморегулирующего материала для нанесения на поверхность космического объекта (КО). Терморегулирующий материал содержит подложку в виде оптически прозрачного стекла, высокоотражающий слой из серебра, защитный слой....
Тип: Изобретение
Номер охранного документа: 0002515826
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c657

Регенеративная электрохимическая система энергоснабжения пилотируемого космического аппарата с замкнутым по воде рабочим циклом и способ ее эксплуатации

Изобретение относится к энергетике, к системе энергоснабжения космических аппаратов и напланетных станций. Электрохимическая система энергоснабжения космического аппарата с замкнутым по воде рабочим циклом включает электролизер воды и кислородо-водородный генератор, гидравлически связанные...
Тип: Изобретение
Номер охранного документа: 0002516534
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c81b

Рабочее колесо осевого вентилятора (варианты)

Заявленное рабочее колесо осевого вентилятора может быть использовано в составе систем терморегулирования изделий авиационной и ракетной техники. Рабочее колесо содержит ступицу с основаниями, снабженными пазами шириной S. В указанных пазах установлены хвостовики листовых лопаток толщиной s,...
Тип: Изобретение
Номер охранного документа: 0002516993
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c9f5

Шаровой клапан

Изобретение относится к области машиностроения, в частности к ракетно-космической технике, и предназначено в качестве запорного клапана с ручным приводом для обеспечения работоспособности в условиях биологически вредных сред, при криогенных температурах и при невесомости. Шаровой клапан состоит...
Тип: Изобретение
Номер охранного документа: 0002517467
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cd46

Разъемное соединение

Изобретение относится к устройствам разделения криогенных заправочных магистралей. Разъемное соединение состоит из стационарного и отделяемого штуцеров с двойным уплотнением между ними, поджатие которого осуществляется устройством для затяжки посредством тарельчатых пружин. Оба уплотнения между...
Тип: Изобретение
Номер охранного документа: 0002518321
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cdd8

Ионная двигательная установка космических аппаратов

Изобретение относится к двигательным системам космических аппаратов. Предлагаемая ионная двигательная установка (ДУ) включает в себя источник рабочего тела, выполненный в виде системы хранения и подачи изотопа алюминия 27 с источником паров (ИП) данного изотопа. ДУ также содержит связанные с...
Тип: Изобретение
Номер охранного документа: 0002518467
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d125

Способ имитации внешних тепловых потоков для наземной отработки теплового режима космического аппарата

Изобретение относится к тепловакуумным испытаниям космического аппарата (КА), а также может найти применение в тех областях техники, где предъявляются повышенные требования к излучательным и отражательным характеристикам изделий. Согласно изобретению до помещения КА в термовакуумную камеру...
Тип: Изобретение
Номер охранного документа: 0002519312
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d979

Посадочное устройство космического корабля

Изобретение относится к космической технике, а именно к посадочным устройствам космического корабля (КК). Посадочное устройство КК содержит опорную тарель, откидную раму, два подкоса, кронштейн, датчик угла поворота рамы, цилиндрические шарниры с замковыми элементами, четыре посадочные опоры,...
Тип: Изобретение
Номер охранного документа: 0002521451
Дата охранного документа: 27.06.2014
Показаны записи 61-70 из 94.
09.05.2019
№219.017.4e4e

Способ управления положением солнечных батарей космического аппарата и система для его осуществления

Изобретения относятся к энергоснабжению космических аппаратов (КА). Предлагаемый способ включает разворот панелей солнечных батарей (СБ) в рабочее положение, когда нормаль к освещенной поверхности СБ совмещена с плоскостью, образуемой осью вращения СБ и направлением на Солнце. При этом...
Тип: Изобретение
Номер охранного документа: 0002325311
Дата охранного документа: 27.05.2008
09.05.2019
№219.017.506a

Планшет для выбора объектов наблюдения с орбитального космического аппарата

Планшет для выбора объектов наблюдения с орбитального космического аппарата (КА) относится к космической технике. Планшет для выбора объектов наблюдения с орбитального КА включает пластину с картой земной поверхности, полупрозрачную пластину, установленную поверх карты планеты, и средство...
Тип: Изобретение
Номер охранного документа: 0002463559
Дата охранного документа: 10.10.2012
19.06.2019
№219.017.8b6c

Планшет для выбора объектов наблюдения с орбитального космического аппарата

Планшет для выбора наземного объекта наблюдения с орбитального космического аппарата (КА) относится к космической технике. Планшет для выбора наземных объектов наблюдения с орбитального КА включает в себя гибкую ленту с картой поверхности планеты, установленную над ней полупрозрачную пластину и...
Тип: Изобретение
Номер охранного документа: 0002469274
Дата охранного документа: 10.12.2012
20.06.2019
№219.017.8ce6

Способ определения деформации корпуса объекта преимущественно космического аппарата

Изобретение относится к способам технологического контроля технических средств. Способ определения деформации корпуса объекта, преимущественно космического аппарата, включает измерение острого угла α между направлением от ориентира на поверхности объекта к источнику освещения и нормалью к...
Тип: Изобретение
Номер охранного документа: 0002691776
Дата охранного документа: 18.06.2019
22.06.2019
№219.017.8e91

Устройство для ориентирования перемещаемой на борту пилотируемого корабля аппаратуры наблюдения

Изобретение относится к космической технике. Устройство для ориентирования перемещаемой на борту пилотируемого корабля аппаратуры наблюдения содержит разъемное соединение, одна из разъемных частей которого жестко соединена с аппаратурой наблюдения, штанги, на которых размещены ультразвуковые...
Тип: Изобретение
Номер охранного документа: 0002692205
Дата охранного документа: 21.06.2019
26.06.2019
№219.017.9209

Система ориентирования перемещаемой на борту пилотируемого корабля аппаратуры

Изобретение относится к аэрокосмической технике. Система ориентирования перемещаемой на борту пилотируемого корабля (ПК) аппаратуры включает блок определения текущего положения ориентира относительно ПК, ультразвуковые излучатели, датчик температуры, ультразвуковые приемники, блок...
Тип: Изобретение
Номер охранного документа: 0002692284
Дата охранного документа: 24.06.2019
05.07.2019
№219.017.a582

Способ ориентирования перемещаемой на борту пилотируемого корабля аппаратуры

Изобретение относится к аэрокосмической технике и может быть использовано для обеспечения ориентирования экипажем пилотируемого корабля аппаратуры, перемещаемой относительно движущегося корабля. Ориентирование перемещаемой на борту пилотируемого корабля (ПК) аппаратуры (1) включает определение...
Тип: Изобретение
Номер охранного документа: 0002693634
Дата охранного документа: 03.07.2019
06.07.2019
№219.017.a6d0

Способ определения деформации корпуса объекта преимущественно космического аппарата

Изобретение относится к технологическому контролю, преимущественно космических объектов (КО). Способ включает измерение угла (α) между направлением от ориентира на КО к источнику освещения (Солнцу) и нормалью к поверхности КО в точке ориентира. Измеряют также угол (β) между оптической осью...
Тип: Изобретение
Номер охранного документа: 0002693750
Дата охранного документа: 04.07.2019
10.07.2019
№219.017.aec5

Способ управления положением солнечных батарей космического аппарата и система для его осуществления

Изобретения относятся к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Предлагаемый способ включает разворот панелей СБ в рабочее положение, соответствующее совмещению нормали к их освещенной рабочей поверхности с плоскостью, образуемой осью вращения панелей СБ и...
Тип: Изобретение
Номер охранного документа: 0002325312
Дата охранного документа: 27.05.2008
10.07.2019
№219.017.aedf

Устройство для выбора объекта наблюдения с орбитального космического аппарата

Устройство относится к космической технике. Устройство включает глобус с нанесенной на него картой, два охватывающих глобус кольца, центры которых совмещены с центром глобуса, элемент в виде витка спирали, соответствующий осредненному витку орбиты движущегося по околокруговой орбите КА, начиная...
Тип: Изобретение
Номер охранного документа: 0002327112
Дата охранного документа: 20.06.2008
+ добавить свой РИД