×
20.02.2019
219.016.be53

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ВЫБОРА ОБЪЕКТОВ НАБЛЮДЕНИЯ С ОРБИТАЛЬНОГО КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002346241
Дата охранного документа
10.02.2009
Аннотация: Устройство для выбора объектов наблюдения с орбитального космического аппарата (КА). Устройство для выбора объектов наблюдения с орбитального КА включает глобус с нанесенной на него картой, два охватывающих глобус кольца, первое из которых закреплено над точками полюсов глобуса с возможностью вращения кольца вокруг оси вращения глобуса, а второе из которых установлено в плоскости экватора глобуса и закреплено на первом кольце в точках пересечения первого кольца с плоскостью экватора глобуса. Дополнительно введены элемент в виде витка спирали, моделирующий виток орбиты КА, движущегося вокруг планеты, карта поверхности которой нанесена на глобус, и элемент, проекция контура которого на поверхность глобуса образует окружность, ограничивающую на поверхности глобуса сегмент с углом полураствора. Кроме этого элемент, проекция контура которого на поверхность глобуса образует окружность, выполнен в виде полупрозрачного сферического сегмента с прорезью, выполненной от края сферического сегмента к его центру. Технический результат заключается в обеспечении отображения на глобусе областей, доступных наблюдению с КА при различных положениях КА на рассматриваемом витке орбиты КА. 1 з.п. ф-лы, 5 ил.

Предлагаемое техническое решение относится к области космической техники и может быть использовано для определения и выбора объектов наблюдения с орбитального космического аппарата (КА), движущегося по околокруговой орбите.

Известен глобус (см. [1], с.93-97), который можно использовать, в частности, для определения и выбора объектов наблюдений, выполняемых с КА. Недостатком данного устройства является отсутствие элементов, позволяющих отобразить информацию об орбите и трассе КА. Известен также учебный прибор по навигации [2], включающий основание, стойку, модель планеты, которая выполнена в виде глобуса, модель орбиты КА, выполненную в виде кольца и смонтированную на подшипнике стойки. Используя данный прибор можно, в том числе, моделировать положение орбиты КА над глобусом - моделью планеты - и выбирать объекты на поверхности планеты, доступные наблюдению с КА.

Наиболее близким из аналогов, принятым за прототип, является устройство [3], включающее глобус с нанесенной на него картой звездного неба и охватывающие его два кольца, установленные с совмещением центров колец с центром глобуса. При этом одно кольцо закреплено над точками полюсов глобуса с возможностью поворота вокруг оси вращения глобуса, проходящей через полюса глобуса, а другое кольцо установлено с возможностью выставки кольца под любым задаваемым углом к экватору глобуса.

Внешний вид устройства [3] представлен на фиг.1.

Работа с устройством осуществляется следующим образом. Глобус поворачивают относительно кольца, позволяющего выставку кольца относительно глобуса под любым задаваемым углом к экватору глобуса в положение, при котором данное кольцо составляет с экватором глобуса угол, равный углу наклонения орбиты КА. Тем самым данное кольцо моделирует виток орбиты КА. Дальнейшим поворотом глобуса вокруг оси его вращения устанавливают глобус в положение, при котором данное кольцо пересекает экватор глобуса в точке экватора с долготой, равной значению долготы восходящего узла рассматриваемого витка орбиты КА. При этом данное кольцо покажет на глобусе мгновенную проекцию орбиты КА на поверхность глобуса. В качестве возможных объектов наблюдения с КА выбираются объекты, расположенные на поверхности глобуса вдоль смоделированного положения витка орбиты КА.

Если в данном устройстве на поверхности глобуса вместо карты небесной сферы отобразить карту поверхности планеты, вокруг которой обращается КА, т.е. вместо звездного глобуса использовать глобус планеты, то данное устройство позволяет отображать мгновенную проекцию орбиты КА на поверхность глобуса (планеты).

Учитывая, что орбитальные КА движутся в инерциальном пространстве, относительно которого планета (например, Земля) вращается, и при этом существует эффект прецессии орбиты КА в инерциальном пространстве, то мгновенная проекция орбиты КА на поверхность глобуса будет непрерывно меняться по мере движения КА по орбите. Следовательно, для каждого момента времени требуется устанавливать кольцо, указывающее на глобусе мгновенную проекцию орбиты КА, в новое положение, соответствующее текущему положению плоскости орбиты КА в рассматриваемый момент времени.

При этом объекты, доступные наблюдению с КА, могут располагаться на определенном расстоянии от подспутниковой точки КА, величина которого определяется высотой орбиты и характеристиками аппаратуры наблюдения (в основном - разрешающей способностью аппаратуры наблюдения).

Таким образом, устройство, принятое за прототип, имеет существенный недостаток - оно не позволяет отобразить на глобусе, на который нанесена карта поверхности планеты, области, доступные наблюдению с КА в различные последовательные моменты времени.

Задачей, стоящей перед предлагаемым устройством, является расширение функциональных возможностей устройства за счет обеспечения отображения на глобусе планеты, вокруг которой обращается КА, областей, доступных наблюдению с КА при различных положениях КА на рассматриваемом витке орбиты КА.

Технический результат достигается тем, что в устройство для выбора объектов наблюдения с орбитального космического аппарата, включающее глобус с нанесенной на него картой, два охватывающих глобус кольца, центры которых совмещены с центром глобуса, первое из которых закреплено над точками полюсов глобуса с возможностью вращения кольца вокруг оси вращения глобуса, а второе из которых установлено в плоскости экватора глобуса и закреплено на первом кольце в точках пересечения первого кольца с плоскостью экватора глобуса, дополнительно введены элемент в виде витка спирали, моделирующий виток орбиты космического аппарата, движущегося вокруг планеты, карта поверхности которой нанесена на глобус, по околокруговой орбите, закрепленный своей средней точкой в точке пересечения первого и второго колец, а своими начальной и конечной точками закрепленный в точках второго кольца, находящихся от другой точки пересечения первого и второго колец на угловом расстоянии, равном половине углового межвиткового расстояния орбиты по экваториальной шкале нанесенной на глобус карты поверхности планеты, соответственно по и против направления положительного отсчета экваториальной шкалы карты, и элемент, проекция контура которого на поверхность глобуса образует окружность, ограничивающую на поверхности глобуса сегмент с углом полураствора, измеряемым от оси, направленной из центра глобуса на центр сегмента, равным отношению ширины полосы обзора поверхности планеты с космического аппарата к диаметру планеты, закрепленный своей точкой, проекция которой на поверхность глобуса совпадает с центром указанного сегмента, на элементе в виде витка спирали с возможностью перемещения вдоль элемента в виде витка спирали.

Кроме этого, технический результат достигается тем, что в описанном выше устройстве для выбора объектов наблюдения с орбитального космического аппарата элемент, проекция контура которого на поверхность глобуса образует окружность, ограничивающую на поверхности глобуса сегмент с углом полураствора, равным отношению ширины полосы обзора поверхности планеты с космического аппарата к диаметру планеты, выполнен в виде полупрозрачного сферического сегмента с прорезью, выполненной от края сферического сегмента к его центру, закрепленный своей центральной точкой на элементе в виде витка спирали с возможностью перемещения вдоль элемента в виде витка спирали и с возможностью вращения вокруг оси, соединяющей центры глобуса и сферического сегмента при совмещении центра сферы, образующей сферический сегмент, и центра глобуса, причем радиус образующей сферический сегмент сферы равен расстоянию от центра глобуса до центра сферического сегмента, а угол полураствора сферического сегмента, измеряемый от оси, направленной из центра глобуса на центр сферического сегмента, равен отношению ширины полосы обзора поверхности планеты с космического аппарата к диаметру планеты, при этом длина дуги прорези в сферическом сегменте более или равна сумме углов полураствора сферического сегмента и наклонения орбиты космического аппарата за вычетом 90°.

Таким образом, в предлагаемое устройство, в отличие от прототипа, дополнительно введены элемент в виде витка спирали, форма которого моделирует виток орбитального перемещения КА и который закреплен предложенным образом на втором кольце, и элемент, проекция контура которого на поверхность глобуса образует окружность, ограничивающую на поверхности глобуса область, доступную наблюдению с КА в текущий момент времени, и который закреплен предложенным образом на элементе в виде витка спирали.

Кроме этого, в предлагаемом устройстве последний из введенных элементов выполнен в виде полупрозрачного сферического сегмента с прорезью, при этом сферический сегмент и прорезь выполнены предложенных размеров.

Суть предлагаемого устройства поясняется на фиг.1-5. При этом приведены: на фиг.1 - устройство-прототип; на фиг.2-3 - вид предлагаемого устройства с двух противоположных сторон; на фиг.4 - схема, поясняющая вычисление размеров введенных элементов; на фиг.5 - схема, поясняющая выбор размера прорези в сферическом сегменте.

На фиг.2 и 3 введены обозначения:

1 - глобус с нанесенной на него картой поверхности планеты;

2, 3 - первое и второе кольца соответственно;

4 - элемент в виде витка спирали;

5 - элемент в виде полупрозрачного сферического сегмента с прорезью;

6 - прорезь в сферическом сегменте (5);

7 - линия экватора глобуса;

8 - линия проекции первого кольца (2) на поверхность глобуса;

9 - линия проекции элемента (4) на поверхность глобуса;

10 - линия проекции контура сферического сегмента (5) на поверхность глобуса;

11 - элемент подставки глобуса, являющийся продолжением оси вращения глобуса;

12 - основание подставки глобуса;

А, В - полюса глобуса;

АВ - ось вращения глобуса;

С, D - точки крепления первого и второго колец (2) и (3);

Е, F - начальная и конечная точки элемента в виде витка спирали (4);

G, Н - проекции точек Е, F на экватор (7) глобуса;

К - центральная точка сферического сегмента (5).

С учетом введенных обозначений точка D - средняя точка элемента в виде витка спирали (4); HG - угловое межвитковое расстояние орбиты КА.

Виток орбиты КА, движущегося по околокруговой орбите вокруг планеты, задается в правой декартовой системе координат OXYZ с центром в центре планеты и осью OZ, направленной по оси вращения планеты, координатами, рассчитанными по формулам (см. [4], стр.18):

где - наклонение орбиты;

Ro - радиус орбиты;

λ - долгота восходящего узла орбиты;

u - текущее значение аргумента широты - параметра, принимающего на витке орбиты значения от 0 до 2π.

При движении по околокруговой орбите в течение витка орбиты КА значение λ изменяется от значения λ0, равного долготе восходящего узла рассматриваемого витка орбиты КА и соответствующего моменту u=0, до значения λ0+Δλ, равного долготе восходящего узла следующего витка орбиты КА и соответствующего моменту u=2π:

где Δλ - угловое межвитковое расстояние по экватору.

Например, величина Δλ при движении КА вокруг Земли определяется формулой (см. [5], стр.149):

где Δ Ω - витковая прецессия орбиты КА в инерциальной системе координат;

Т - период обращения КА вокруг Земли;

ω - угловая скорость вращения Земли в инерциальном пространстве;

Rэ - экваториальный радиус Земли;

р - фокальный параметр орбиты КА;

I2=-1082,2·10-6 - коэффициент потенциала гравитационного поля Земли.

Отметим, что величины Δλ и Δ Ω отрицательны.

Если ось ОХ направить в точку восходящего узла рассматриваемого витка орбиты (в этой системе координат λ0=0) и заменить Ro на радиус второго кольца r (поскольку моделирующий виток орбиты КА элемент в виде витка спирали (4) крепится на втором кольце (3), то принимаем радиус спирали, равным радиусу второго кольца), то с учетом формулы (2) формулы (1) принимают вид:

z=r sin u sin i.

H фиг.4, поясняющей вычисление размеров введенных элементов, дополнительно введены обозначения:

Z - поверхность сферы (глобуса планеты), аппроксимирующей поверхность планеты, вокруг которой обращается КА;

О - центр глобуса;

К - положение КА;

Р - подспутниковая точка КА;

P1PP2 - сегмент поверхности глобуса, являющийся мгновенной зоной обзора поверхности планеты из положения КА в точке К;

KP1 - максимальное расстояние от КА до объекта наблюдения;

M1KM2 - сферический сегмент, проекция контура которого на поверхность сферы Z совпадает с зоной обзора поверхности планеты с космического аппарата P1PP2 (К - точка центра сегмента);

Q - угол полураствора сегмента P1PP2;

ОР - радиус планеты;

P1G - плоскость местного горизонта к поверхности планеты в точке P1;

g - угол отклонения оси визирования аппаратуры наблюдения от направления в надир;

ϕ - угол между направлением Р1К и плоскостью местного горизонта в точке P1.

Сферический сегмент M1KM2 в предлагаемом устройстве реализуется введенным сегментом (5). Значение угла Q, выраженное в радианах, равно отношению длины дуги Р1Р, измеренной в линейных единицах длины, к радиусу глобуса ОР:

или

где d - ширина полосы обзора поверхности планеты с КА, равная длине дуги P1PP2, измеренной в линейных единицах длины;

D - диаметр планеты.

Ширина полосы обзора поверхности планеты с КА зависит от характеристик аппаратуры наблюдения (разрешающей способности и углов прокачки оси визирования) и определяется значением максимально возможного расстояния от КА до объекта наблюдения (максимальным значением длины отрезка L=KP1) или значением максимально возможного угла отклонения оси визирования аппаратуры наблюдения от направления в надир (максимальным значением угла g).

Расчет ширины полосы обзора d по углу g осуществляется следующим образом. Углы g и ϕ выразим из прямоугольных треугольников ОТК и ОТР1:

Сумма углов треугольника OP1K равна 180°, тогда с учетом (10):

где Ro=OK - радиус орбиты (сумма радиуса планеты и высоты орбиты);

Rz=OP1 - радиус планеты.

С учетом (7) имеем:

Расчет ширины полосы обзора d по расстоянию L осуществляется следующим образом. По теореме косинусов имеем:

С учетом (7) имеем:

Сегмент (5) выполняем максимально большого размера, соответствующего максимально возможному значению dmax, а на поверхность сегмента (5) наносим концентрические линии (окружности с центром в точке К), соответствующие другим характерным значениям d, полученным для возможных вариантов значений расстояния L и угла g (например, когда в аппаратуре наблюдения предусмотрены разные режимы работы, которые реализуются при разных значениях расстояния L и угла g).

Объекты поверхности планеты, доступные наблюдению с КА в текущий момент времени, располагаются внутри области, ограниченной линией (10), полученной при положении центра сегмента (5) в точке, соответствующей текущему положению КА на элементе (4), моделирующем положение текущего витка орбиты КА.

В случаях, когда сегмент (5) расположен в окрестности полюсов глобуса, сегмент (5) может покрывать собой точку соответствующего полюса. Учитывая, что в точках полюсов к оси глобуса закреплено первое кольцо (2), то в данных положениях сегмент (5) может пересекаться с осью вращения глобуса.

В представленном варианте выполнения предлагаемого устройства сегмент (5) может пересекаться с элементом подставки глобуса (11), являющимся продолжением оси вращения глобуса.

Для обеспечения возможности такого расположения сегмента (5) в сегменте (5) выполнена прорезь (6). В случае, когда при перемещении центра сегмента (5) вдоль элемента (4) край сегмента (5) «упирается» в элемент (11), вращением сегмента (5) мы устанавливаем прорезь (6) напротив элемента (11). При дальнейшем перемещении центра сегмента (5) вдоль элемента (4) элемент (11) вводится в прорезь (6). Дальнейшее удержание элемента (11) в прорези (6) обеспечивается посредством вращения сегмента (5) вокруг оси, проходящей через центр сегмента (5) и центр глобуса.

На фиг.5, поясняющей выбор размера прорези в сегменте (5), дополнительно обозначено:

- угол наклонения орбиты КА;

γ - длина дуги прорези (6), измеренная в угловых единицах из центра глобуса;

δ - минимальное значение угла между осью вращения глобуса и направлением из центра глобуса на центр сегмента (5), которое реализуется при перемещении сегмента (5) вдоль элемента (4).

Значение угла δ определяется формулой:

Минимально необходимая длина дуги прорези γ равна:

Данная прорезь необходима при выполнении условия:

или, с учетом (7) и (18),

Работа с устройством осуществляется следующим образом.

Обозначим точкой G точку экватора (7) со значением долготы λ0, равным долготе восходящего узла рассматриваемого витка орбиты КА. Поворачиваем кольцо (2) относительно глобуса (1) таким образом, чтобы точка Е элемента (4) и кольца (3) располагалась над точкой G. В таком положении элемент (4) моделирует расположение рассматриваемого витка орбиты КА над поверхностью глобуса - линия (9) проекции элемента (4) на поверхность глобуса указывает трассу рассматриваемого витка КА.

Далее путем перемещения сегмента (5) вдоль элемента (4) совмещаем центральную точку сегмента (5) К с точками элемента (4), соответствующими различным положениям КА вдоль рассматриваемого витка орбиты. При этом сегмент (5) покроет на поверхности глобуса область, которая в данный момент времени доступна наблюдению с КА - данная область поверхности глобуса ограничена линией (10). Дополнительные линии, нанесенные на полупрозрачный сегмент (5), укажут области на поверхности глобуса, доступные наблюдению с КА при различных условиях на удаленность объектов наблюдения от подспутниковой точки и трассы КА.

В случае, когда в результате перемещения сегмента (5) вдоль элемента (4) край сегмента «упирается» в элемент (11), вращением сегмента (5) мы устанавливаем прорезь (6) напротив элемента (11). При дальнейшем перемещении сегмента (5) вдоль элемента (4) элемент (11) вводится в прорезь (6). Далее удержание элемента (11) в прорези (6) также обеспечивается посредством вращения сегмента (5).

Опишем технический эффект предлагаемого изобретения.

Предлагаемое устройство расширяет функциональные возможности устройства-прототипа за счет обеспечения отображения на глобусе планеты, вокруг которой обращается КА, областей, доступных наблюдению с КА при различных положениях КА на рассматриваемом витке орбиты КА.

Технический результат достигается за счет введения в устройство дополнительно элемента в виде витка спирали, форма которого моделирует виток орбитального перемещения КА и который закреплен предложенным образом на втором кольце, и элемента, проекция контура которого на поверхность глобуса образует окружность, ограничивающую на поверхности глобуса область, доступную наблюдению с КА в текущий момент времени, который закреплен предложенным образом на элементе в виде витка спирали и реализован в виде полупрозрачного сферического сегмента с прорезью предложенных размеров.

ЛИТЕРАТУРА

1. Красавцев Б.И. Мореходная астрономия. М.: Транспорт, 1986.

2. Заявка на изобретение №93045113/12 от 1993.09.14.

3. Звездный глобус ЗГ-ОМ1.1.

4. Бебенин Г.Г., Скребушевский Б.С., Соколов Г.А. Системы управления полетом космических аппаратов. // М.: Машиностроение, 1978.

5. Инженерный справочник по космической технике. М.: Изд-во МО СССР, 1969.

1.Устройстводлявыбораобъектовнаблюдениясорбитальногокосмическогоаппарата,включающееглобусснанесеннойнанегокартой,дваохватывающихглобускольца,центрыкоторыхсовмещенысцентромглобусаипервоеизкоторыхзакрепленонадточкамиполюсовглобусасвозможностьювращениякольцавокругосивращенияглобуса,автороекольцоустановленовплоскостиэкватораглобусаизакрепленонапервомкольцевточкахпересеченияпервогокольцасплоскостьюэкватораглобуса,отличающеесятем,чтодополнительновведеныэлементввидевиткаспирали,моделирующийвитокорбитыкосмическогоаппарата,движущегосявокругпланеты,картаповерхностикоторойнанесенанаглобус,пооколокруговойорбите,закрепленныйсвоейсреднейточкойвточкепересеченияпервогоивторогоколец,асвоиминачальнойиконечнойточкамизакрепленныйвточкахвторогокольца,находящихсяотдругойточкипересеченияпервогоивторогоколецнаугловомрасстоянии,равномполовинеугловогомежвитковогорасстоянияорбитыпоэкваториальнойшкаленанесеннойнаглобускартыповерхностипланеты,соответственно,поипротивнаправленияположительногоотсчетаэкваториальнойшкалыкарты,иэлемент,проекцияконтуракоторогонаповерхностьглобусаобразуетокружность,ограничивающуюнаповерхностиглобусасегментсугломполураствора,измеряемымотоси,направленнойизцентраглобусанацентрсегмента,равнымотношениюшириныполосыобзораповерхностипланетыскосмическогоаппаратакдиаметрупланеты,закрепленныйсвоейточкой,проекциякоторойнаповерхностьглобусасовпадаетсцентромуказанногосегмента,наэлементеввидевиткаспиралисвозможностьюперемещениявдольэлементаввидевиткаспирали.12.Устройстводлявыбораобъектовнаблюдениясорбитальногокосмическогоаппаратапоп.1,отличающеесятем,чтоэлемент,проекцияконтуракоторогонаповерхностьглобусаобразуетокружность,ограничивающуюнаповерхностиглобусасегментсугломполураствора,равнымотношениюшириныполосыобзораповерхностипланетыскосмическогоаппаратакдиаметрупланеты,выполненввидеполупрозрачногосферическогосегментаспрорезью,выполненнойоткраясферическогосегментакегоцентру,закрепленныйсвоейцентральнойточкойнаэлементеввидевиткаспиралисвозможностьюперемещениявдольэлементаввидевиткаспиралиисвозможностьювращениявокругоси,соединяющейцентрыглобусаисферическогосегментаприсовмещениицентрасферы,образующейсферическийсегмент,ицентраглобуса,причемрадиусобразующейсферическийсегментсферыравенрасстояниюотцентраглобусадоцентрасферическогосегмента,ауголполурастворасферическогосегмента,измеряемыйотоси,направленнойизцентраглобусанацентрсферическогосегмента,равенотношениюшириныполосыобзораповерхностипланетыскосмическогоаппаратакдиаметрупланеты,приэтомдлинадугипрорезивсферическомсегментеболееилиравнасуммеугловполурастворасферическогосегментаинаклоненияорбитыкосмическогоаппаратазавычетом90°.2
Источник поступления информации: Роспатент

Показаны записи 21-30 из 370.
27.06.2013
№216.012.5285

Установка для плазменно-дуговой плавки

Изобретение относится к области вакуумных установок для плазменной дуговой плавки металлов и сплавов в космосе и предназначена для проведения экспериментов преимущественно по плавке наиболее перспективных металлов (вольфрам, ниобий) и композитов на металлической основе в условиях...
Тип: Изобретение
Номер охранного документа: 0002486718
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.54e0

Способ определения местоположения негерметичного участка замкнутой гидравлической магистрали, снабженной побудителем расхода и гидропневматическим компенсатором температурного изменения объема рабочего тела

Изобретение относится к области испытательной техники и направлено на создание простого и безопасного для операторов, работающих в герметично изолированных от внешних сред обитаемых помещениях, оперативного способа определения местонахождения негерметичного участка гидравлической магистрали...
Тип: Изобретение
Номер охранного документа: 0002487331
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.554b

Фотоэлемент приемника-преобразователя лазерного излучения в космосе

Изобретение относится к области беспроводной передачи электрической энергии между космическими аппаратами (КА) на основе направленного электромагнитного излучения с одного КА на приемник-преобразователь, на основе фотоэлектрического преобразователя (ФЭП), второго КА. Фотоэлемент...
Тип: Изобретение
Номер охранного документа: 0002487438
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.57c5

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата

Устройство для выбора астрономических объектов наблюдения с орбитального космического аппарата (КА) относится к космической технике. Устройство для выбора астрономических объектов наблюдения с орбитального КА, включает глобус с нанесенной на него картой звездного неба, два охватывающих глобус...
Тип: Изобретение
Номер охранного документа: 0002488077
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.597a

Орбитальная космическая система

Изобретение относится к системам космических объектов (КО) с передачей между ними энергии и импульса посредством лазерного излучения и может быть использовано для КО, на борту которых создаются условия микрогравитации на уровне ~10…10 ускорения на поверхности Земли. Система включает в себя...
Тип: Изобретение
Номер охранного документа: 0002488527
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a4d

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств (термокомпрессоров). Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, устройство для...
Тип: Изобретение
Номер охранного документа: 0002488738
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a7a

Способ определения уровня диэлектрического вещества

Изобретение относится к электроизмерительной технике, в частности к системам измерения уровня заправки ракетно-космической техники. Сущность: формируют синусоидальное напряжение на емкостном датчике уровня, измеряют комплексный ток через сухой емкостной датчик уровня и измеряют комплексный ток...
Тип: Изобретение
Номер охранного документа: 0002488783
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a80

Герметизированное устройство и способ подвода текучей среды в полость герметизированного устройства с ее герметизацией

Группа изобретений относится к области испытательной техники и направлена на повышение технологичности и увеличение ресурса использования, что обеспечивается за счет того, что герметизированное устройство содержит корпус с расточкой, сообщенной с внутренней полостью корпуса, установленный в...
Тип: Изобретение
Номер охранного документа: 0002488789
Дата охранного документа: 27.07.2013
20.08.2013
№216.012.5fe5

Способ управления движением активного космического объекта, стыкуемого с пассивным космическим объектом

Изобретение относится к космической технике и может быть использовано для стыковки двух космических объектов, один из которых активный, а другой - пассивный. На опорную орбиту выводят активный космический объект (АКО), определяют характеристики импульсов сближения (ХИС) по номинальным...
Тип: Изобретение
Номер охранного документа: 0002490181
Дата охранного документа: 20.08.2013
20.09.2013
№216.012.6bf9

Устройство для электролиза воды и способ его эксплуатации

Группа изобретений относится к энергетике, и может использоваться в автономных энергоустановках. Устройство для электролиза воды содержит электролизер с пневматически изолированными полостями для водорода и кислорода, подключенный к блоку питания, который электрически связан с системой контроля...
Тип: Изобретение
Номер охранного документа: 0002493292
Дата охранного документа: 20.09.2013
Показаны записи 21-30 из 94.
20.06.2016
№216.015.48ae

Способ управления спуском космического аппарата при проведении наблюдений

Изобретение относится к управлению подготовкой и осуществлением спуска космического аппарата (КА). Способ включает построение требуемой для проведения наблюдений ориентации КА, определение остатка топлива на борту КА, а также орбиты спуска, проходящей максимальное число раз над заданными...
Тип: Изобретение
Номер охранного документа: 0002587763
Дата охранного документа: 20.06.2016
10.08.2016
№216.015.5234

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594056
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.526e

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594054
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.52e2

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594057
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.7cf4

Способ определения положения объекта преимущественно относительно космического аппарата и система для его осуществления

Группа изобретений относится к космической технике. В способе определения положения объекта преимущественно относительно КА определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, осуществляют формирование управляющих воздействий на излучатели, осуществляют...
Тип: Изобретение
Номер охранного документа: 0002600039
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.870e

Способ контроля нештатных ситуаций на пилотируемом космическом аппарате и система для его осуществления

Группа изобретений относится к космической технике. В способе контроля нештатных ситуаций на пилотируемом КА определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, размещенных на подвижных частях космонавтов, осуществляют измерение параметров, определяют...
Тип: Изобретение
Номер охранного документа: 0002603814
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8cc1

Способ контроля передвижения космонавта относительно космического аппарата и система для его осуществления

Изобретение относится к области авиационно-космического приборостроения и может быть использовано в системах контроля передвижения космонавта относительно космического аппарата (КА). Технический результат - расширение функциональных возможностей. Для этого обеспечивают измерение, сбор и...
Тип: Изобретение
Номер охранного документа: 0002604892
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f42

Способ контроля готовности экипажа космического аппарата к нештатным ситуациям и система для его осуществления

Группа изобретений относится к способу и системе контроля готовности экипажа космического аппарата (КА) к внештатным ситуациям. Для контроля готовности экипажа к внештатным ситуациям моделируют внештатную ситуацию, определяют готовность космонавтов к внештатной ситуации путем сравнения...
Тип: Изобретение
Номер охранного документа: 0002605230
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.c77a

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электрогенерирующим системам космического аппарата (КА). Способ включает разворот панелей солнечных батарей (СБ) КА их рабочими поверхностями на Солнце. Максимальную выходную мощность СБ определяют путём измерения тока и напряжения от СБ в моменты, когда отраженное от...
Тип: Изобретение
Номер охранного документа: 0002618844
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.d2ff

Способ определения выходной мощности солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ), имеющих положительную выходную мощность своей тыльной поверхности. Способ включает измерение высоты (Н) околокруговой орбиты КА и угол (ε) между направлением на Солнце и геоцентрическим...
Тип: Изобретение
Номер охранного документа: 0002621816
Дата охранного документа: 07.06.2017
+ добавить свой РИД