×
20.02.2019
219.016.bd3d

Результат интеллектуальной деятельности: КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ ДЛЯ ВНУТРИКОРПУСНЫХ УСТРОЙСТВ И ТЕПЛООБМЕННОГО ОБОРУДОВАНИЯ АЭС

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии легированных сталей и сплавов, которые предназначены для использования в атомном энергетическом машиностроении при производстве основного и вспомогательного оборудования АЭС, отвечающего требованиям эксплуатации и промышленной безопасности ядерной энергетики. Техническим результатом данного изобретения является создание коррозионно-стойкой аустенитной стали с улучшенным комплексом основных механических, технологических и служебных свойств, меньшей склонностью к росту зерна при горячей пластической и термической обработке и сварочных нагревах, что обеспечивает эксплуатационную надежность и требуемый ресурс работы внутрикорпусных устройств и теплообменного оборудования АЭС. Предложена сталь, содержащая в мас.%: углерод 0,05-0,08, кремний 0,20-0,45, марганец 0,50-0,75, хром 17,00-19,00, никель 9,50-10,50, титан 0,30-0,60, ванадий 0,03-0,09, ниобий 0,03-0,10, алюминий 0,05-0,15, сера 0,005-0,015, фосфор 0,005-0,030, железо остальное, при этом: суммарное содержание ванадия и ниобия не должно превышать 0,15%; суммарное содержание серы и фосфора не должно превышать 0,04%; суммарное содержание кремния, марганца и алюминия не должно превышать 1,25%. 2 табл.

Изобретение относится к металлургии легированных сталей и сплавов, содержащих в качестве основы железо с заданным соотношением легирующих элементов, и предназначено для использования в атомном энергетическом машиностроении при производстве основного и вспомогательного оборудования АЭС, отвечающего требованиям эксплуатации и промышленной безопасности ядерной энергетики.

Известны коррозионно-стойкие стали и сплавы, применяемые в машиностроительных отраслях промышленности (например, стали марок 12Х18Н9, 08Х18Н10Т, 12Х18Н10Т, а также другие аналоги, указанные в научно-технической и патентной литературе [1-6]). Однако известные материалы не обеспечивают требуемого уровня и стабильности основных механических и служебных характеристик, что снижает работоспособность и эксплуатационную надежность используемого реакторного оборудования и не отвечает современным требованиям ядерной безопасности.

Наиболее близкой к заявляемой композиции по назначению и составу компонентов является хромоникелевая сталь аустенитного класса марки 08Х18Н10Т по ГОСТ 5632-72, табл.1, стр.17-18, поз.6-30 [2], содержащая в своем составе легирующие элементы в следующем соотношении, в мас.%:

углерод ≤0,08
кремний ≤0,8
марганец ≤2,0
хром 17,0-19,0
никель 9,0-11,0
титан 5С-0,7
сера ≤0,020
фосфор ≤0,035
железо остальное

Данная марка стали характеризуется пониженным уровнем механических свойств, повышенной склонностью к росту зерна при термической обработке и сварке, пониженной технологической пластичностью на стадии металлургического передела.

Техническим результатом настоящего изобретения является создание коррозионно-стойкой высокотехнологичной стали, обладающей улучшенным комплексом основных физико-механических свойств, меньшей склонностью к росту зерна при термической обработке и сварочных нагревах, а также повышенной технологической пластичностью на стадии металлургического передела, что обеспечивает эксплуатационную надежность и требуемый ресурс работы внутриреакторных устройств и теплообменного оборудования АЭС.

Технический результат достигается за счет того, что в состав известной стали, содержащей углерод, кремний, марганец, хром, никель, титан, серу, фосфор и железо, дополнительно введены ванадий, ниобий и алюминий при следующем соотношении компонентов, в мас.%:

углерод 0,05-0,08
кремний 0,20-0,45
марганец 0,50-0,75
хром 17,00-19,00
никель 9,50-10,50
титан 0,30-0,60
ванадий 0,03-0,09
ниобий 0,03-0,10
алюминий 0,05-0,15
сера 0,005-0,015
фосфор 0,005-0,030
железо остальное

при этом:

- суммарное содержание ванадия и ниобия не должно превышать 0,15%;

- суммарное содержание серы и фосфора не должно превышать 0,04%;

- суммарное содержание кремния, марганца и алюминия не должно превышать 1,25%.

Введено ограничение суммарного содержания ванадия и ниобия, так как превышение его отрицательно влияет на формирование наиболее оптимального структурного состояния и в значительной мере снижает заданный уровень основных физико-механических характеристик материала.

Соотношение указанных легирующих и модифицирующих добавок выбрано таким, чтобы заявляемая композиция обеспечивала требуемый уровень и стабильность важнейших структурно-чувствительных характеристик материала, во многом определяющих высокую работоспособность и эксплуатационную надежность внутриреакторных устройств и теплообменного оборудования АЭС.

Введение в заявляемую сталь микролегирующих и модифицирующих добавок ванадия и ниобия в указанном соотношении с другими легирующими элементами, и в первую очередь - с углеродом и титаном, улучшает ее структурное состояние и, как следствие, весь комплекс основных механических и служебных свойств, положительно влияющих на технологическую пластичность и деформационную способность металла на стадии металлургического передела, а также повышает работу зарождения и развития межзеренной трещины в условиях статического и динамического нагружений. При этом, как показали исследования [4, 5], происходит эффективное измельчение зерна как при затвердевании жидкого металла, благодаря созданию дополнительных центров кристаллизации, так и при различных технологических нагревах в процессах горячей деформации и термической обработки за счет сдерживания роста зерна благодаря оптимальному содержанию карбонитридных фаз. Увеличение содержания ванадия и ниобия вне указанных в формуле изобретения пределов снижает эффективность их положительного влияния и не приводит к заметному улучшению структурно-чувствительных характеристик работоспособности материала в составе реакторного оборудования энергетических установок.

Модифицирование стали алюминием в указанном соотношении с кремнием и марганцем способствует более глубокому раскислению металла в процессе выплавки и снижает его загрязненность по неметаллическим включениям и газам. При этом также обеспечивается существенное замедление роста зерна при высокотемпературных нагревах и снижается склонность стали к структурной анизотропии. Введение алюминия в указанном соотношении с кремнием и марганцем вне указанных в формуле изобретения пределов снижает эффективность его положительного влияния на структурное состояние получаемого металла.

Выбор системы комплексного легирования заявляемой композиции предусматривает также ограничение суммарного содержания серы и фосфора, во многом определяющих динамику образования зернограничных сегрегаций при рабочих температурах и снижающих когезионную прочность между зернами, что отрицательно влияет на деформационную способность металла в процессе длительной эксплуатации реакторного оборудования.

Полученный более высокий уровень механических, сварочно-технологических и служебных характеристик стали обеспечивается комплексным легированием заявляемой композиции в указанном соотношении с другими элементами, сбалансированным химическим и фазовым составом, нормированным содержанием вводимых микролегирующих и модифицирующих добавок, а также контролированием чистоты металла по сере и фосфору.

В ЦНИИ КМ "Прометей" совместно с другими предприятиями отрасли в соответствии с планом проводимых научно-исследовательских разработок выполнен необходимый комплекс лабораторных, расчетных и опытно-промышленных работ по выплавке, пластической и термической обработкам создаваемой марки стали. Металл выплавлялся в электродуговых металлургических печах с обработкой на установке внепечного рафинирования и вакуумирования (УВРВ) с последующей обработкой давлением на промышленном кузнечно-прессовом оборудовании с получением полуфабрикатов требуемого сортамента. Металл был подвергнут испытаниям для определения комплекса основных механических и технологических свойств.

Химический состав исследованных материалов, а также результаты определения всего комплекса наиболее важных свойств и характеристик представлены в таблицах 1 и 2.

Ожидаемый технико-экономический эффект применения разработанной марки стали в народном хозяйстве выразится в повышении эксплуатационной надежности и ресурса работы создаваемого реакторного оборудования.

ЛИТЕРАТУРА

1. Ф.Ф. Химушин. "Жаропрочные стали и сплавы". - М.: Металлургия, 1969.

2. ГОСТ 5632-72. "Стали высоколегированные и сплавы коррозионно-стойкие, жаростойкие и жаропрочные" (марки и технические требования). - М.: Стандарт, 1977 - прототип.

3. Ф.Б. Пикеринг. "Физическое металловедение и разработка сталей". - М.: Металлургия, 1982.

4. В.Г. Азбукин, Ю.Ф. Баландин, В.Н. Павлов и др. "Коррозионно-стойкие стали и сплавы для оборудования и трубопроводов АЭС". - Киев: Наукова думка, 1983.

5. В.Г. Азбукин, В.И. Горынин, В.Н. Павлов. "Перспективные коррозионно-стойкие материалы для оборудования и трубопроводов АЭС". - СПб, 1998.

6. И.В. Горынин, А.Д. Амаев, В.А. Николаев и др. "Радиационные повреждения стали для водо-водяных реакторов". - М.: Энергоиздат, 1981.

7. М.В. Добрынина. "Влияние химического состава и режимов термомеханической обработки на величину зерна в крупногабаритных поковках из стали марки 08Х18Н10Т". - Материалы 4-й отраслевой научно-технической конференции по проблемам материаловедения, СПб, ЦНИИ КМ "Прометей", 2004.

8. В.Н. Павлов, В.П. Логинов и др. Материалы 5-й международной научно-технической конференции "Проблемы материаловедения при проектировании, изготовлении и эксплуатации АЭС". - СПб, 1998.

Таблица 1
Химический состав исследованных материалов
СоставУсловный № составаСодержание элементов, мас.%
СSiMnCrNiTiVNbAlSРV+NbS+РAl+Si+MnFe
Заявляемый10,050,200,5017,009,500,300,030,100,150,0050,0300,130,0350,85остальное
20,070,300,6018,5010,000,500,090,060,100,0100,0050,150,0151,00-//-
30,080,450,7519,0010,500,600,060,030,050,0150,0250,090,0401,25-//-
Известный40,080,701,5018,0010,000,60---0,0200,035-------//

Коррозионно-стойкаястальдлявнутрикорпусныхустройствитеплообменногооборудованияАЭС,содержащаяуглерод,кремний,марганец,хром,никель,титан,серу,фосфор,железо,отличающаясятем,чтоонадополнительносодержитванадий,ниобийиалюминийприследующемсоотношениикомпонентов,мас.%:Углерод0,05-0,08Кремний0,20-0,45Марганец0,50-0,75Хром17,00-19,00Никель9,50-10,50Титан0,30-0,60Ванадий0,03-0,09Ниобий0,03-0,10Алюминий0,05-0,15Сера0,005-0,015Фосфор0,005-0,030ЖелезоОстальноеc0c1211none739приэтомсуммарноесодержаниеванадияиниобиянедолжнопревышать0,15%;суммарноесодержаниесерыифосфоранедолжнопревышать0,04%;суммарноесодержаниекремния,марганцаиалюминиянедолжнопревышать1,25%.
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
20.03.2019
№219.016.e72e

Трехслойная корпусная конструкция

Изобретение относится к технологии машиностроения и касается изготовления трехслойных конструкций из металлов и композиционных материалов, например из стеклопластика, с гофрированным заполнителем. Трехслойная конструкция имеет два несущих слоя, один из которых выполнен из стеклопластика, и...
Тип: Изобретение
Номер охранного документа: 0002321516
Дата охранного документа: 10.04.2008
Показаны записи 11-20 из 26.
20.02.2019
№219.016.bce7

Аустенитная коррозионно-стойкая сталь

Изобретение относится к металлургии, в частности к разработке составов легированных аустенитных сталей, используемых в различных отраслях промышленности для деталей ответственного назначения. Аустенитная коррозионно-стойкая сталь, содержит компоненты в следующем соотношении, в мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002284366
Дата охранного документа: 27.09.2006
20.02.2019
№219.016.be84

Коррозионно-стойкая высокопрочная немагнитная сталь и способ ее термодеформационной обработки

Изобретение относится к металлургии конструкционных сталей и сплавов, содержащих в качестве основы железо с заданным соотношением легирующих и примесных элементов и предназначено для использования в различных областях промышленности. Нагревают слиток из коррозионно-стойкой высокопрочной...
Тип: Изобретение
Номер охранного документа: 0002392348
Дата охранного документа: 20.06.2010
20.02.2019
№219.016.c092

Способ получения бездефектных поковок для длинномерных изделий типа роторов или валов

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении поковок для длинномерных изделий типа роторов или валов. Полученный из отлитого кузнечного слитка блок подвергают осадке. Из осаженного блока удаляют центральную дефектную зону путем его прошивки...
Тип: Изобретение
Номер охранного документа: 0002302921
Дата охранного документа: 20.07.2007
23.02.2019
№219.016.c75e

Титановый сплав для силовых крепежных элементов

Изобретение относиться к металлургии, а именно к титановым сплавам, и предназначено для использования в атомном энергомашиностроении при производстве силовых крепежных элементов фланцевых соединений и разъемов различных технологических систем реакторного оборудования атомных и термоядерных...
Тип: Изобретение
Номер охранного документа: 0002391426
Дата охранного документа: 10.06.2010
23.02.2019
№219.016.c79d

Титановый сплав для реакторного оборудования атомной и термоядерной энергетики

Изобретение относится к металлургии титановых сплавов, предназначенных для использования при производстве оборудования и в корпусных конструкциях стационарных и транспортных ядерных энергетических установок. Техническим результатом является создание сплава с улучшенным комплексом механических и...
Тип: Изобретение
Номер охранного документа: 0002367697
Дата охранного документа: 20.09.2009
29.04.2019
№219.017.4428

Способ производства шестигранных труб -заготовок размером 257+2,0/-3,0×6,0+2,0/-1,0×4300+80/-30 мм для уплотненного хранения и транспортировки отработанного ядерного топлива

Изобретение предназначено для повышения качества изделий и снижения расхода металла при их изготовлении. Снижение доли технологических отходов и исключение брака по рванинам обеспечивается за счет того, что способ включает отливку электрошлаковым переплавом полых слитков размером...
Тип: Изобретение
Номер охранного документа: 0002470726
Дата охранного документа: 27.12.2012
29.04.2019
№219.017.4429

Способ производства передельных труб размером 290×12 мм из сплошных слитков-заготовок электрошлакового переплава низкопластичной стали марки 04×14t5p2"ф-ш"

Изобретение предназначено для повышения качества изделий и снижения расхода металла при их изготовлении. Снижение доли технологических отходов и исключение брака по рванинам обеспечивается за счет того, что способ включает отливку электрошлаковым переплавом слитков из низкопластичной стали...
Тип: Изобретение
Номер охранного документа: 0002470725
Дата охранного документа: 27.12.2012
29.04.2019
№219.017.4432

Способ производства шестигранных труб-заготовок размером 257+2,0/-3,0×6,0+2,0/-1,0×4300+80/-30 мм для хранения и транспортировки отработанного ядерного топлива

Изобретение предназначено для повышения качества изделий и снижения расхода металла при их изготовлении. Снижение доли технологических отходов и исключение брака по рванинам обеспечивается за счет того, что способ включает отливку электрошлаковым переплавом полых слитков из низкопластичной...
Тип: Изобретение
Номер охранного документа: 0002470724
Дата охранного документа: 27.12.2012
29.04.2019
№219.017.443c

Способ производства шестигранных труб-заготовок размером 257+2,0/-3,0×6,0+2,0/-1,0×4300+80/-30 мм

Изобретение предназначено для повышения качества труб, изготовленных из малопластичных сталей. Способ характеризуется отливкой слитков электрошлаковым переплавом, обточкой их наружной поверхности до удаления дефектов литейного происхождения в слитки-заготовки, сверлением центрального отверстия...
Тип: Изобретение
Номер охранного документа: 0002470723
Дата охранного документа: 27.12.2012
29.04.2019
№219.017.4616

Сталь

Изобретение относится к металлургии, а именно к сталям, используемым при изготовлении крупногабаритных сварных сосудов давления, например корпусов парогенераторов, гидроемкостей, компенсаторов объема, паропроводов. Сталь содержит углерод, кремний, марганец, никель, молибден, ванадий, хром,...
Тип: Изобретение
Номер охранного документа: 0002441939
Дата охранного документа: 10.02.2012
+ добавить свой РИД