×
20.02.2019
219.016.bc1d

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ НЕЛЕТУЧИХ СОЕДИНЕНИЙ В НЕВОДНЫХ СРЕДАХ

Вид РИД

Изобретение

№ охранного документа
0002680163
Дата охранного документа
18.02.2019
Аннотация: Изобретение относится к аналитической химии и предназначено для экспрессного определения массового содержания нелетучих соединений в летучих органических растворителях, растворах, экстрактах на основе летучих соединений. Способ определения содержания нелетучих соединений в неводных средах заключается в применении в качестве весов пьезокварцевых резонаторов, нанесении на электроды резонаторов микрообъема анализируемой пробы, высушивании пробы и определении массы нелетучего осадка по разности частот колебаний резонатора до нанесения и после высушивания пробы, при этом согласно изобретению формируют контур из поливинилацетатного клея толщиной 1-2 мм на кварцевой пластине вокруг электрода, не захватывая электрод, высушивают контур и определяют частоту колебаний пьезокварцевого резонатора до нанесения на электроды анализируемой пробы. Способ согласно изобретению позволяет сократить продолжительность анализа до 30 мин; повысить производительность анализа - 4 пробы/час; уменьшить объем пробы для анализа до 1 мкл; повысить долговечность измерительных элементов - 1 сенсор не менее 10 измерений; существенно снизить габариты приборов для измерения нелетучих соединений. 2 ил., 2 пр.

Изобретение относится к аналитической химии и предназначено для экспрессного определения массового содержания нелетучих соединений в летучих органических растворителях, растворах, экстрактах на основе летучих соединений.

Известны методики определения фактических смол (нелетучих соединений)в неводных растворах, например, топливах: бензины, керосины [ГОСТ 8489-85 Топливо моторное. Метод определения фактических смол (по Бударову)], [ГОСТ Р 53714-2009 Топлива моторные, авиационные и дистилляты низкокипящие. Метод определения фактических смол выпариванием струей], заключающиеся в испарении определенного объема топлива при заданных температурах в статических или динамических условиях - при заданном расходе воздуха и пара с последующим определением массы остатка промытого растворителем.

Недостатком известных методик является длительность (не менее 1 часа), требуют наличия сложного, дорогостоящего и громоздкого оборудования, создания высокой температуры (не менее 300°С), большого объема пробы.

Наиболее близким по технической сущности и достигаемому результату является способ определения содержания солей в лечебно-столовых минеральных водах [Патент РФ №2015136757, МПК G01N 51/04. - Заявл. 31.08.2015: опубл. 10.01.2017], заключающийся в применении в качестве весов пьезокварцевых резонаторов, нанесении на электроды которых микрообъем раствора воды, высушивании пробы и определениимассы нелетучего осадка и содержания солей в пробе по разности частот колебаний резонатора до нанесения и после высушивания пробы.

Недостатком существующего способа является невозможность анализа неводных растворов, вследствие растекания пробы за границы тензочувствительной области электрода из-за малого поверхностного натяжения и отсутствие сходимости результатов измерения.

Техническая задача изобретения заключается в обеспечении возможности определении содержания нелетучих соединений в неводных растворах и средах, снижении стоимости и продолжительности анализа, электрозатратности, исключении сложного и дорогостоящего оборудования.

Сущность изобретения заключается в том, что в способе определения содержания нелетучих соединений в неводных средах, заключающемся в применении в качестве весов пьезокварцевых резонаторов, нанесении на электроды которых микрообъема анализируемой пробы, высушивании пробы и определении массы нелетучего осадка по разности частот колебаний резонатора до нанесения и после высушивания пробы, формируют контур из поливинилацетатного клея толщиной 1-2 мм на кварцевой пластине вокруг электрода, не захватывая электрод, высушивают контур и определяют частоту колебаний пьезокварцевого резонатора до нанесения на электроды анализируемой пробы.

На Фиг. 1 представлен пьезокварцевый резонатор без контура.

На Фиг. 2 - пьезокварцевый резонатор с ограничивающим контуром.

Способ определения содержания нелетучих соединений в неводных средах осуществляется следующим образом.

Измерение содержания нелетучих соединений в неводных средах после удаления летучих соединений проводят на масс-чувствительном резонаторе объемно-акустических волн с базовой частотой колебаний 10,0 МГц и серебряными электродами диаметром 5 мм на кварцевой пластине (Фиг. 1), который выполняет функцию микровесов. Для предотвращения растекания неводных проб за границы тензочувствительной области (наибольшая чувствительность по массе), вследствие малого поверхностного натяжения и высокой смачиваемости поверхности, формируют на кварцевой пластине контур вокруг электрода, не захватывая электрод, толщиной 1-2 мм (Фиг. 2). Для этого с помощью капилляра диаметром 1 мм наносят окружность из поливинилацетатного клея. Сушат при температуре 95-100°С в течение 20 мин. Устанавливают резонатор в частотомер так, чтобы электрод с контуром были расположены горизонтально. Измеряют исходную частоту колебаний резонатора F0 (МГц). Закрепляют в переносной держатель. Наносят внутрь контура, на электрод, микрошприцем анализируемую пробу объемом Vn=1 мкл без взвесей. Высушивают пробу в сушильном шкафу при температуре 95°С в течение 15 мин. Охлаждают резонатор в течение 5 мин в эксикаторе. Устанавливают, держа за ножки, в частотомер, измеряют повторно частоту колебаний Fc (МГц). Рассчитывают изменение частоты колебаний кварцевой пластины до нанесения пробы и после высушивания ΔF (МГц): ΔF=(F0-Fc) и содержание нелетучих соединений S (мг/мл) по уравнению: , где 88105 - коэффициент чувствительности, мкг⋅МГц, Vn - объем пробы, мкл, После каждого анализа поводится механическая очистка, удаление нелетучих соединений с помощью ватного аппликатора, смоченного в спирте и прогрев очищенного резонатора в течение 5 мин при температуре 95°С. После чего резонатор вновь может быть использован.

Способ поясняется следующими примерами определения фактических смол - нелетучих соединений топлив.

Пример 1. Определение фактических смол на масс-чувствительном резонаторе без применения контура (Фиг. 1) на примере анализа бензина с октановым числом 92.

Обезжиренный этиловым спиртом резонатор объемно-акустических волн с базовой частотой колебаний 10,0 МГц и серебряными электродами диаметром 5 мм помещали в частотомер так, чтобы электроды были расположены горизонтально. Фиксировали исходную частоту колебаний резонатора, которая в примере составляет F0=9,994127 МГц. Закрепляли резонатор в переносной держатель. На верхний электрод микрошприцем наносили анализируемую пробу объемом Vn=1 мкл. Высушивали пробу в сушильном шкафу при температуре 95°С в течение 15 мин. Охлаждали резонатор в течение 5 мин в эксикаторе и закрепляли в частотомер, не касаясь поверхности кварцевой пластины и электродов. Измеряли повторно частоту колебаний резонатора, которая составляет Fc=9,994120 МГц. Рассчитывали изменение частоты колебаний кварцевой пластины до нанесения пробы и после высушивания ΔF=(F0-Fc)=(9,994127-9,994120)=0,000007 МГц. Содержание нелетучих соединений составляет:

Рассчитанное значение S не соответствует нормируемым содержаниям фактических смол в топливе, относительная погрешность определения для n=3 и p=0,95 составляет не менее 80%, что не приемлемо для анализа. Это объясняется растеканием пробы за пределы серебряного электрода, выполняющего функцию чаши весов при взвешивании.

Способ неосуществим.

Пример 2. Определение фактических смол с применением масс-чувствительного резонатора с контуром (Фиг. 2) на примере анализа бензина с октановым числом 92.

На обезжиренный этиловым спиртом резонатор объемно-акустических волн с базовой частотой колебаний 10,0 МГц, серебряными электродами диаметром 5 мм на кварцевой пластине, для предотвращения растекания неводных проб за границы тензочувствительной области, формировали на кварцевой пластине контур вокруг электрода, не захватывая область электрода, диаметром 1-2 мм (Фиг. 2). Для чего с помощью капилляра диаметром 1 мм наносили окружность из поливинилацетатного клея. Сушили при температуре 95-100°С в течение 20 мин. Устанавливали резонатор в частотомер так, чтобы электрод с контуром были расположены горизонтально. Фиксировали исходную частоту колебаний, которая в примере составляет F0=9,996724 МГц. Закрепляли в переносной держатель. Наносили внутрь контура, на электрод, микрошприцем анализируемую пробу объемом Vn=1 мкл без взвесей. Высушивали пробу в сушильном шкафу при температуре 95°С в течение 15 мин. Охлаждали резонатор в течение 5 мин в эксикаторе и закрепляли в частотомер, не касаясь поверхности кварцевой пластины и электродов. Измеряли повторно частоту колебаний резонатора, которая составила Fc=9,996391 МГц. Рассчитывали изменение частоты колебаний кварцевой пластины до нанесения пробы и после высушивания ΔF=(F0-Fc)=(9,996724-9,996391)=0,000333 МГц, и содержание нелетучих соединений S (мг/мл) в бензине:

После анализа поводят механическую очистку, удаление нелетучих соединений с помощью ватного аппликатора, смоченного в спирте и прогрев очищенного резонатора. Рассчитанное содержание нелетучих соединений соответствует возможным содержаниям фактических смол в бензине, относительная погрешность определения для n=3 и p=0,95 составляет не более 20%, что приемлемо для анализа.

Способ осуществим.

Как видно из примеров и фигуры, положительный эффект по способу определения содержания нелетучих соединений в неводных средах достигается при применении масс-чувствительного резонатора объемно-акустических волн с базовой частотой колебаний 10,0 МГц и серебряными электродами диаметром 5 мм на кварцевой пластине (Фиг. 1), формированием контура на кварцевой пластине вокруг электрода, не захватывая электрод, толщиной 1-2 мм (Фиг. 2), сформированного с помощью капилляра диаметром 1 мм поливинилацетатным клеем, который сушат при температуре 95-100°С в течение 20 мин.

Способ определения содержания нелетучих соединений в неводных средах позволяет:

- определять нелетучий остаток в неводных растворах и средах (топлива, летучие органические растворители, растворы, экстракты на основе летучих растворителей и т.д.);

- сократить продолжительность анализа до 30 мин;

- повысить производительность анализа - 4 пробы/час;

- уменьшить объем пробы для анализа до 1 мкл;

- повысить долговечность измерительных элементов - 1 сенсор не менее 10 измерений;

- существенно снизить габариты приборов для измерения нелетучих соединений.

Способ определения содержания нелетучих соединений в неводных средах, заключающийся в применении в качестве весов пьезокварцевых резонаторов, нанесении на электроды резонаторов микрообъема анализируемой пробы, высушивании пробы и определении массы нелетучего осадка по разности частот колебаний резонатора до нанесения и после высушивания пробы, отличающийся тем, что формируют контур из поливинилацетатного клея толщиной 1-2 мм на кварцевой пластине вокруг электрода, не захватывая электрод, высушивают контур и определяют частоту колебаний пьезокварцевого резонатора до нанесения на электроды анализируемой пробы.
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ НЕЛЕТУЧИХ СОЕДИНЕНИЙ В НЕВОДНЫХ СРЕДАХ
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ НЕЛЕТУЧИХ СОЕДИНЕНИЙ В НЕВОДНЫХ СРЕДАХ
Источник поступления информации: Роспатент

Показаны записи 21-28 из 28.
25.08.2017
№217.015.cc51

Экспрессный способ установления фальсификации молока разбавлением его водой по сигналам массива пьезосенсоров

Изобретение относится к аналитической химии пищевых продуктов и может быть использовано для установления фальсификации молока водой. Способ предусматривает использование детектирующего устройства типа «электронный нос», матрицу которого формируют на основе четырех пьезосенсоров резонансного...
Тип: Изобретение
Номер охранного документа: 0002620343
Дата охранного документа: 24.05.2017
26.08.2017
№217.015.ea6b

Способ определения качества виноградного вина

Изобретение относится к анализу качества пищевых продуктов, а именно способу определения качества виноградного вина. Для этого проводят отбор проб, оценку показателей качества, отличающийся тем, что получают равновесную газовую фазу вина, преобразуют ее состав в электрический сигнал с...
Тип: Изобретение
Номер охранного документа: 0002628029
Дата охранного документа: 14.08.2017
20.01.2018
№218.016.1479

Устройство для экспресс-анализа качества продуктов

Изобретение предназначено для экспрессного анализа «на месте» жидких и твердых продуктов по концентрации их газов-маркеров. Устройство для экспресс-анализа качества продуктов включает один пьезосенсор с чувствительным пленочным покрытием для сорбции газов-маркеров, встроенный в держатель крышки...
Тип: Изобретение
Номер охранного документа: 0002634803
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1c4d

Способ органолептической оценки детских игрушек на основе пластизоля из поливинилхлорида

Изобретение относится к области аналитической химии и может быть использовано для установления безопасности детских игрушек из пластизоля на основе поливинилхлорида (ПВХ) по анализу равновесной газовой фазы над пробами игрушек и оцифровке запаха изделия с помощью химических сенсоров. Способ...
Тип: Изобретение
Номер охранного документа: 0002640507
Дата охранного документа: 09.01.2018
26.10.2018
№218.016.9636

Способ установления идентичности проб гранулированного хмеля по запаху с применением химических сенсоров

Изобретение относится к аналитической химии и может быть использовано для оценки идентичности или аутентичности пищевых продуктов, а именно проб гранулированного хмеля из разных партий. Для этого проводят подготовку пробы и отбирают равновесную газовую фазу. Легколетучие компоненты запаха...
Тип: Изобретение
Номер охранного документа: 0002670651
Дата охранного документа: 24.10.2018
25.01.2019
№219.016.b3e7

Устройство для определения сухого остатка, нелетучих соединений в питьевых, сточных, природных водах, топливах, пищевых продуктах

Изобретение относится к аналитической химии и предназначено для определения показателей качества объектов. Устройство содержит корпус, внутри которого расположен частотомер для оценки измерения частоты колебаний пьезорезонатора до и после нагрузки, соединенный с двумя микросхемами для...
Тип: Изобретение
Номер охранного документа: 0002678091
Дата охранного документа: 23.01.2019
15.05.2023
№223.018.58a0

Мобильное устройство на основе массива сенсоров для анализа биопроб малого объема

Изобретение относится к измерительной технике, а именно для экспресс-анализа газовых смесей, выделяемых человеком и животными. Мобильное устройство на основе массива сенсоров для анализа биопроб малого объема включает трехкамерный корпус, внутри которого в первой неразборной камере, соединенной...
Тип: Изобретение
Номер охранного документа: 0002764964
Дата охранного документа: 24.01.2022
15.05.2023
№223.018.58b5

Одноканальный анализатор выделяемых кожей легколетучих биомолекул

Изобретение относится к измерительной технике, а именно к проведению экспресс-анализа смесей газов, выделяемых кожей. Одноканальный анализатор выделяемых кожей легколетучих биомолекул включает пластмассовый двухкамерный корпус, внутри которого в первой неразборной камере расположены...
Тип: Изобретение
Номер охранного документа: 0002764965
Дата охранного документа: 24.01.2022
Показаны записи 31-36 из 36.
02.10.2019
№219.017.d0df

Устройство для определения утечек топлива

Изобретение относится к измерительной технике и может быть применено для непрерывного мониторинга утечек топлива (бензина, керосина, дизельного топлива, а также других легколетучих взрывоопасных жидкостей) и обнаружения повышения концентраций паров топлива в воздухе закрытых помещений,...
Тип: Изобретение
Номер охранного документа: 0002700740
Дата охранного документа: 19.09.2019
21.11.2019
№219.017.e437

Способ определения искусственных ароматизаторов в спиртосодержащих растворах

Изобретение относится к аналитической химии растворов и может быть использовано для определения искусственных ароматизаторов в спиртосодержащих растворах. Способ определения искусственных ароматизаторов в спиртосодержащих растворах включает пробоотбор, определение наличия искусственных...
Тип: Изобретение
Номер охранного документа: 0002706438
Дата охранного документа: 19.11.2019
25.03.2020
№220.018.0fc5

Способ определения качества питьевой, природной воды и водной жидкости

Изобретение относится к аналитической химии и предназначено для определения некоторых показателей качества питьевой и природной воды и водной жидкости в домашних условиях с применением простых и доступных систем. Заявленный способ определения качества питьевой, природной воды и водной жидкости...
Тип: Изобретение
Номер охранного документа: 0002717392
Дата охранного документа: 23.03.2020
06.08.2020
№220.018.3d82

Способ неинвазивного мониторинга состояния верхних дыхательных путей у телят

Изобретение относится к области биотехнологии. Изобретение представляет собой способ мониторинга состояния верхних дыхательных путей у телят, включающий отбор стерильными ватными или ватно-марлевыми тампонами мазков из левого и правого носовых отверстий, помещение их в стерильные пробирки и...
Тип: Изобретение
Номер охранного документа: 0002729106
Дата охранного документа: 04.08.2020
15.05.2023
№223.018.58a0

Мобильное устройство на основе массива сенсоров для анализа биопроб малого объема

Изобретение относится к измерительной технике, а именно для экспресс-анализа газовых смесей, выделяемых человеком и животными. Мобильное устройство на основе массива сенсоров для анализа биопроб малого объема включает трехкамерный корпус, внутри которого в первой неразборной камере, соединенной...
Тип: Изобретение
Номер охранного документа: 0002764964
Дата охранного документа: 24.01.2022
15.05.2023
№223.018.58b5

Одноканальный анализатор выделяемых кожей легколетучих биомолекул

Изобретение относится к измерительной технике, а именно к проведению экспресс-анализа смесей газов, выделяемых кожей. Одноканальный анализатор выделяемых кожей легколетучих биомолекул включает пластмассовый двухкамерный корпус, внутри которого в первой неразборной камере расположены...
Тип: Изобретение
Номер охранного документа: 0002764965
Дата охранного документа: 24.01.2022
+ добавить свой РИД