×
17.02.2019
219.016.bbca

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ИСТИННОГО СОПРОТИВЛЕНИЯ РАЗРЫВУ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области определения прочностных свойств конструкционных материалов и может быть использовано для определения истинного сопротивления разрыву. Сущность: испытуемый материал нагружают посредством индентора диаметром D нагрузкой Р, находящейся в диапазоне, соответствующем измерению твердости, измеряют размеры отпечатка и определяют истинное сопротивление разрыву, при этом используют индентор сферической формы. Измеряют остаточную h и упругую α части полного сближения сферического индентора с поверхностью испытуемого материала, по которым определяют радиус кривизны поверхности отпечатка сферического индентора под нагрузкой, с учетом которого определяют величину истинного давления q под нагрузкой на поверхности отпечатка, по которому определяют истинное сопротивление разрыву. Технический результат: возможность определения истинного сопротивления разрыву без разрушения материала деталей. 3 табл.

Изобретение относится к области определения прочностных свойств металлов и может быть использовано для определения истинного сопротивления разрыву при растяжении.

Известен способ определения истинного сопротивления разрыву (ГОСТ 1497-84, ИСО 6892-84 «Металлы. Методы испытания на растяжение"), который предусматривает вырезку из детали заготовок для образцов и последующее изготовление образцов для испытания на растяжение. Для определения истинного сопротивления разрыву Sk образец подвергают растяжению до разрушения под действием плавно приложенной нагрузки. Истинное сопротивление разрыву вычисляют по формуле

Sk=Pk/Fk,

где Pk - нагрузка в момент разрыва образца,

Fk - площадь минимального поперечного сечения образца после разрыва.

Недостатком этого способа является то, что он требует изготовления специальных образцов, вырезанных из готовой детали, что очевидно, приводит к частичному или полному разрушению испытуемой детали. Таким образом, этот способ не позволяет оперативно и без разрушения производить определение истинного сопротивления разрыву материала.

Известен способ определения максимальных истинных напряжений и деформаций (патент №2319944 РФ G01N 3/32, заявл. 19.09.2006, опубл. 20.03.2008, бюл. №8). Способ реализуется путем периодического в процессе испытания ступенчатого нагружения образца вплоть до его разрыва с получением на каждой ступени нагружения заданной величины диаметра, при котором изменение коэффициента жесткости напряженного состояния в минимальном сечении не превышает 3%, производят обточку берегов шейки образца до получения по обе стороны от минимального сечения двух соосных с осью образца конических поверхностей, направленных навстречу друг другу и сопряженных по поверхности, сформированной в области шейки, определяют угол наклона образующих при вершине конусов из условия наименьшей его величины, обеспечивающей закрепление деформации в области шейки, по результатам испытания строят истинную диаграмму растяжения, и по точке, соответствующей моменту разрыва образца, судят о максимальных истинных напряжениях и деформациях.

Недостатком этого способа является то, что он также требует изготовления специальных образцов, вырезанных из готовой детали, что очевидно, приводит к частичному или полному разрушению испытуемой детали. Таким образом, и этот способ не позволяет оперативно и без разрушения производить определение истинного сопротивления разрыву материала. Кроме того, тот способ имеет большую трудоемкость из-за необходимости изготовления и последующего испытания образца; его невозможно использовать при стопроцентном контроле деталей, а также при малых размерах деталей.

Наиболее близким по технической сущности является способ определения истинного сопротивления разрыву (описанный в книге В.М. Матюнина "Индентирование в диагностике механических свойств материалов". - М.: Издательский дом МЭИ, 2015. - 288 с, на стр. 185), который предусматривает нанесение царапины алмазным конусом под действием нагрузки на испытуемой поверхности, измерение глубины заглубления индентора в испытуемый материал, определение значения твердости царапаньем HG, по которой определяют истинное сопротивление разрыву Sk по формуле

Sk=0,142HG.

Недостатком этого способа является то, что он предусматривает построение диаграммы царапания с регистрацией максимальной нагрузки, при которой заглубление индентора составляет 5 мкм. В связи с этим этот способ может быть реализован только на тщательно подготовленных плоских образцах с полированной поверхностью и с использованием специального оборудования. Кроме того, глубина царапины очень мала, что неизбежно вызывает дополнительные ошибки при ее измерении.

Таким образом, известные способы имеют низкий технический уровень, поскольку не позволяют оперативно и без разрушения определять истинное сопротивление разрыву.

В этой связи важнейшей задачей является создание нового способа определения истинного сопротивления разрыву, который позволял бы оперативно и без разрушения производить определение истинного сопротивления разрыву.

Техническим результатом заявленного способа является создание нового способа определения истинного сопротивления разрыву, который позволяет повысить точность и оперативно без разрушения производить определение истинного сопротивления разрыву. Указанный технический результат заключается в том, что испытуемый материал нагружают посредством индентора диаметром D нагрузкой Р, находящейся в диапазоне, соответствующем измерению твердости, измеряют размеры отпечатка и определяют истинное сопротивление разрыву, при этом используют индентор сферической формы, измеряют остаточную h и упругую αу части полного сближения сферического индентора с поверхностью испытуемого материала, по которым определяют радиус кривизны поверхности отпечатка сферического индентора под нагрузкой

с учетом которого определяют величину истинного давления q под нагрузкой на поверхности отпечатка

а истинное сопротивление разрыву Sk определяют по формуле

где Р - нагрузка на сферический индентор (Н),

D - диаметр сферического индентора (мм),

RH - радиус кривизны поверхности отпечатка под нагрузкой (мм),

q - истинное давление под нагрузкой на поверхности контакта (МПа),

h - остаточная часть полного сближения (глубина остаточного отпечатка), мм,

αу - упругая часть полного сближения в контакте (мм),

π=3,14,

Sk - истинное сопротивление разрыву (МПа),

a, b - коэффициенты, зависящие от химического состава материала детали

Существенным отличием предлагаемого способа является то, что используют индентор сферической формы и измеряют остаточную h и упругую αу части полного сближения сферического индентора с поверхностью испытуемого материала. Это позволяет оценить как пластические, так и упругие свойства испытуемого материала, от которых зависит способность испытуемого материала сопротивляться деформации и разрушению.

Существенным отличием является и то, что определяют радиус кривизны поверхности отпечатка сферического индентора под нагрузкой и с его учетом определяют величину истинного давления q под нагрузкой на поверхности отпечатка. Это позволяет неразрушающим способом получить значение истинного давления q под нагрузкой на поверхности отпечатка, которое позволяет количественно оценить способность испытуемого материала сопротивляться разрушению.

Существенным отличием способа является предложение при определении истинного сопротивления разрыву Sk учитывать коэффициенты а и b, что позволяет повысить точность определения истинного сопротивления разрыву, поскольку его значение зависит от химического состава испытуемого материала.

Совокупность отличительных признаков предлагаемого способа и новые взаимосвязи, установленные авторами между ними, позволили предложить новые зависимости для определения радиуса кривизны поверхности отпечатка сферического индентора под нагрузкой, истинного давления q под нагрузкой на поверхности отпечатка и истинного сопротивления разрыву. Последняя зависимость в новой форме устанавливает взаимосвязи между всеми существенными параметрами, определяющими величину истинного сопротивления разрыву: пластические и упругие свойства испытуемого материала (от них зависят остаточная h и упругая αу части полного сближения сферического индентора с поверхностью испытуемого материала и, следовательно, радиус кривизны поверхности отпечатка сферического индентора под нагрузкой), величина истинного давления q под нагрузкой на поверхности отпечатка, а также коэффициенты а и b, значения которых зависит от химического состава испытуемого материала. Это позволяет оперативно с высокой точностью определять истинное сопротивление разрыву испытуемого материала без разрушения детали.

Способ определения истинного сопротивления разрыву испытуемого материала реализуется следующим образом.

Испытуемый материал нагружают посредством индентора диаметром D нагрузкой Р, находящейся в диапазоне, соответствующем измерению твердости. Диапазон нагрузок может быть выбран, например, согласно ГОСТ 9012-59 (ИСО 6506-81) "Металлы. Метод измерения твердости по Бринеллю". Например, для сталей с твердостью до 140 НВ отношение P/D2=10, а для более твердых сталей - P/D2=30 (см. ГОСТ 9012-59, табл. 3). Таким образом, если диаметр сферического индентора D=5 мм, а твердость больше 140 НВ, то нагрузка Р=30*25=750 кгс (7358 Н). Нагружение может быть выполнено с использованием пресса Бринелля.

Измеряют остаточную h и упругую αу части полного сближения сферического индентора с поверхностью испытуемого материала. Эту операцию можно выполнить с помощью прибора для измерения контактных деформаций (см. книгу Н.Б. Демкина, Э.В. Рыжова "Качество поверхности и контакт деталей машин" - М: Машиностроение, 1981. - 244 с., на стр. 214, рис. 5.1)

По формуле (1) определяют радиус кривизны поверхности отпечатка сферического индентора под нагрузкой

с учетом которого по формуле (2) определяют величину истинного давления q под нагрузкой на поверхности отпечатка

а истинное сопротивление разрыву Sk определяют по формуле (3)

Sk=a⋅q+b,

Для определения числовых значений коэффициентов а и b используют вспомогательные образцы с известной величиной истинного сопротивления разрыву; материал вспомогательного образца (черный или цветной металл выбирают в зависимости от того истинное сопротивление разрыву какого материала предполагается определять). Истинное сопротивление разрыву вспомогательных образцов определяют согласно ГОСТ 1497-84, ИСО 6892-84 «Металлы. Методы испытания на растяжение"; для вспомогательных образцов - Sk1 и Sk2.

Каждый из двух вспомогательных образцов нагружают посредством индентора диаметром D нагрузкой Р, находящейся в диапазоне, соответствующем измерению твердости. Измеряют остаточную h и упругую αу части полного сближения сферического индентора с поверхностью каждого вспомогательного образца. По формуле (1) определяют для каждого вспомогательного образца радиус кривизны поверхности отпечатка сферического индентора под нагрузкой

По формуле (2) определяют величину истинного давления q под нагрузкой на поверхности отпечатка каждого вспомогательного образца

Вычисляют значения коэффициентов а и b по следующим формулам

Пример. Проведена экспериментальная проверка предложенного способа.

Определение истинного сопротивления разрыву проводили на образцах, изготовленных из углеродистых и легированных конструкционных сталей различного уровня прочности.

В качестве индентора использовали стальной закаленный шарик диаметром 5 мм.

Для определения коэффициентов а и b использовали вспомогательные образцы, изготовленные из стали 20 с известным истинным сопротивлением разрыву, равном Sk1=1000 МПа, и из стали 30ХГСА с известным истинным сопротивлением разрыву, равном Sk2=1520 МПа. Внедрение сферического индентора в поверхность вспомогательных образцом проводили с использованием пресса Бринелля при нагрузке Р=7358 Н.

С помощью прибора для измерения контактных деформаций измеряли остаточную h и упругую αу части полного сближения сферического индентора с поверхностью каждого вспомогательного образца

для первого вспомогательного образца h1=0,310 мм, αу1=0,039 мм;

для второго вспомогательного образца h2=0,106 мм, αу2=0,060 мм.

По формулам (4) и (5) определяют для каждого вспомогательного образца радиус кривизны поверхности отпечатка сферического индентора под нагрузкой

По формулам (6) и (7) определяют величину истинного давления q под нагрузкой на поверхности отпечатка каждого вспомогательного образца

По формулам (8) и (9) вычисляют значения коэффициентов а и b

b=1000-0,257⋅1422=635 МПа.

Таким образом, полученные значения коэффициентов а и b позволяют определять истинное сопротивление разрыву испытуемых материалов из сталей. При этом формула (3) с учетом числовых значений коэффициентов а и b примет вид

В таблице 1 представлены механические свойства испытанных материалов. При этом истинное сопротивление разрыву определяли по ГОСТ 1497-84, ИСО 6892-84 «Металлы. Методы испытания на растяжение" Испытания на растяжение проводили с помощью программно-технического комплекса для испытания металлов (оснащенного персональным IBM совместимым компьютером) ИР 5143-200, принятому в качестве эталонного способа.

В таблице 2 приведены результаты определения истинного давления под нагрузкой на поверхности отпечатка. Результаты сравнительных испытаний приведены в таблице 3. Как видно из таблицы 3, при использовании предлагаемого способа погрешность определения истинного сопротивления разрыву по сравнению со способом по ГОСТ 1497-84 не превышает (5…6)% и имеет характер двухстороннего разброса.

Таким образом, результаты экспериментальной проверки свидетельствуют о пригодности предлагаемого способа для практического использования.

Использование предлагаемого способа по сравнению с известными обеспечивает следующие преимущества.

Способ обладает достаточно высокой точностью: погрешность определения истинного сопротивления разрыву не превышает (5…6)% в широком диапазоне изменения прочностных свойств материала, что для оценки прочностных свойств материала деталей вполне удовлетворительно.

В связи с этим предлагаемый способ позволяет повысить точность определения истинного сопротивления разрыву без разрушения материала и может быть использован для контроля прочности материала различных деталей (болты, стержни, элементы металлоконструкций, балки и т.п.).

Таким образом, способ, воплощающий заявленное изобретение, предусматривает, что испытуемый материал нагружают посредством индентора диаметром D нагрузкой Р, находящейся в диапазоне, соответствующем измерению твердости, измеряют размеры отпечатка и определяют истинное сопротивление разрыву, при этом используют индентор сферической формы, измеряют остаточную h и упругую αу части полного сближения сферического индентора с поверхностью испытуемого материала, по которым определяют радиус кривизны поверхности отпечатка сферического индентора под нагрузкой, с учетом которого определяют величину истинного давления q под нагрузкой на поверхности отпечатка, по которому определяют истинное сопротивление разрыву.

Способ предназначен для использования в промышленности для определения истинного сопротивления разрыву без разрушения материала деталей.


СПОСОБ ОПРЕДЕЛЕНИЯ ИСТИННОГО СОПРОТИВЛЕНИЯ РАЗРЫВУ
СПОСОБ ОПРЕДЕЛЕНИЯ ИСТИННОГО СОПРОТИВЛЕНИЯ РАЗРЫВУ
СПОСОБ ОПРЕДЕЛЕНИЯ ИСТИННОГО СОПРОТИВЛЕНИЯ РАЗРЫВУ
Источник поступления информации: Роспатент

Показаны записи 291-300 из 362.
21.07.2020
№220.018.34da

Система защиты гидропривода

Изобретение относится к машиностроению и может быть использовано для защиты от несанкционированного выброса рабочей жидкости из гидросистем. Система включает гидробак, насос, распределитель, линию слива в гидробак и запорное устройство, во входной полости корпуса которого размещён...
Тип: Изобретение
Номер охранного документа: 0002726976
Дата охранного документа: 17.07.2020
21.07.2020
№220.018.3527

Способ определения предельного равномерного сужения

Изобретение относится к области определения пластичных свойств металлов и может быть использовано для определения предельного равномерного сужения без разрушения материала деталей. Сущность: испытуемый материал нагружают посредством сферического индентора нагрузкой, находящейся в диапазоне,...
Тип: Изобретение
Номер охранного документа: 0002727068
Дата охранного документа: 17.07.2020
24.07.2020
№220.018.36ce

Аппарат с теплообменной рубашкой

Изобретение относится к области конструкций обогреваемых емкостных аппаратов периодического действия и может найти применение в химической, пищевой, нефтехимической, микробиологической, целлюлозно-бумажной и других отраслях промышленности. Аппарат содержит корпус, крышку, патрубки для подвода...
Тип: Изобретение
Номер охранного документа: 0002727403
Дата охранного документа: 21.07.2020
24.07.2020
№220.018.3704

Электродное покрытие

Изобретение может быть использовано при изготовлении электродов для ручной дуговой сварки низкоуглеродистых высокопрочных низколегированных сталей. Электродное покрытие содержит мрамор, плавиковый шпат, каолин, полевой шпат, ферромарганец, ферросилиций, ферротитан, пластификатор, железный...
Тип: Изобретение
Номер охранного документа: 0002727383
Дата охранного документа: 21.07.2020
12.04.2023
№223.018.425d

Сорбент на основе модифицированного хитозана

Изобретение относится к сорбенту на основе модифицированного хитозана, причем он представляет собой хитозановый губчатый материал, модифицированный 3 масс.% раствором сополимера глицидилметакрилата с производным метакрилата, выбранным из ряда гексилметакрилат, децилметакрилат, лаурилметакрилат,...
Тип: Изобретение
Номер охранного документа: 0002768701
Дата охранного документа: 24.03.2022
12.04.2023
№223.018.4313

Рецептурная композиция паштета с нутом

Изобретение относится к пищевой промышленности, в частности к производству мясных продуктов, и может использоваться на мясоперерабатывающих предприятиях. Предложена композиция для приготовления запеченного паштета с нутом, которая содержит свинину кусковую, печень говяжью, бекон свиной, лук...
Тип: Изобретение
Номер охранного документа: 0002793470
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.432e

Способ получения углеграфитового композиционного материала

Изобретение относится к области металлургии, а именно к созданию композиционных материалов пропиткой пористого каркаса, имеющих высокую электропроводность, антифрикционные свойства, стойкость в агрессивных средах Технический результат достигается в способе получения углеграфитового...
Тип: Изобретение
Номер охранного документа: 0002793591
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.4336

Полиимиды и сополиимиды как диэлектрические материалы с повышенной термоокислительной устойчивостью

Настоящее изобретение относится к к полиимидам и сополиимидам, предназначенным для изготовления термически устойчивых диэлектрических материалов, обладающих комплексом высоких эксплуатационных характеристик, которые могут быть использованы в микроэлектронике. Полиимид представляет собой...
Тип: Изобретение
Номер охранного документа: 0002793576
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.439a

2-замещенные 5-(гетеро)алкил-6-гидроксипиримидин-4(1h)-оны, обладающие анксиолитической активностью

Изобретение относится к фармацевтике, а именно к применению 2-замещенных 5-(гетеро)алкил-6-гидроксипиримидин-4(1Н)-онов общей формулы , где R=i-Pr, s-Pen, i-Pen, MeSCHCH, R=SCHCHN(CH), SCHCHN(CHСH), SCHCHN(СH), SCHCHN(СH), SCHCHSCH, тиоморфолин-4-ил, или их солянокислых солей в качестве...
Тип: Изобретение
Номер охранного документа: 0002793570
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.43bb

Способ обработки внутренних поверхностей типа тел вращения

Изобретение относится к абразивной обработке внутренних поверхностей заготовок типа тел вращения. Осуществляют горизонтальное расположение оси обрабатываемой поверхности заготовки и вращение заготовки с частично заполненной абразивным материалом внутренней полостью. Размещают неподвижный...
Тип: Изобретение
Номер охранного документа: 0002793666
Дата охранного документа: 04.04.2023
Показаны записи 11-12 из 12.
15.05.2023
№223.018.5b04

Способ определения предела выносливости материала цилиндрической детали при кручении

Изобретение относится к области определения прочностных свойств металлов и может быть использовано для определения предела выносливости при кручении без разрушения материала деталей, работающих в условиях нагружения переменным во времени крутящим моментом. Сущность: осуществляют измерение...
Тип: Изобретение
Номер охранного документа: 0002765340
Дата охранного документа: 28.01.2022
15.05.2023
№223.018.5b0c

Способ определения предела текучести материала цилиндрической детали при кручении

Изобретение относится к области определения предела текучести при кручении без разрушения материала деталей, работающих в условиях нагружения крутящим моментом. Сущность: осуществляют нагружение поверхности испытуемого материала посредством индентора под углом скрещивания 90° оси...
Тип: Изобретение
Номер охранного документа: 0002765342
Дата охранного документа: 28.01.2022
+ добавить свой РИД