×
16.02.2019
219.016.bb79

Результат интеллектуальной деятельности: Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов. Технический результат заключается в повышении стабильности статического режима при отрицательных температурах и изменении напряжений питания, также обеспечивается возможность изменения численных значений напряжения ограничения проходной характеристики при фиксированном токопотреблении. Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики содержит первый (1) вход входного полевого транзистора (2), второй (3) вход входного полевого транзистора (4), первый (5) токовый выход, первую (6) шину источника питания, второй (7) токовый выход, первый (8) вспомогательный полевой транзистор, третий (9) токовый выход, вторую (10) шину источника питания, второй (11) вспомогательный полевой транзистор, четвертый (12) токовый выход, причем каналы первого (2) и второго (4) входных полевых транзисторов имеют первый тип проводимости, а каналы первого (8) и второго (11) вспомогательных полевых транзисторов имеют другой тип проводимости. Дифференциальный усилитель также включает первый (13), второй (14), третий (15), четвертый (16) и пятый (17) дополнительные резисторы. 8 ил.

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения, например, операционных усилителях (ОУ), компараторах, мостовых усилителях мощности и т.п., в т.ч. работающих при низких температурах и воздействии радиации.

Известны схемы классических дифференциальных усилителей (ДУ) на комплементарных транзисторах [1-61], в т.ч. на комплементарных биполярных транзисторах [1-32], на комплементарных КМОП полевых транзисторах [33-61] и комплементарных полевых транзисторах с управляющим p-n переходом (JFet) [4], которые стали основой многих серийных аналоговых микросхем. В литературе по аналоговой микроэлектронике этот класс ДУ имеет специальное обозначение – dual-input-stage [62].

Для работы при низких температурах при жестких ограничениях на уровень шумов перспективно использование JFet полевых транзисторов [63-67]. ДУ данного класса активно применяются в структуре малошумящих аналоговых интерфейсов для обработки сигналов датчиков [68-70].

Ближайшим прототипом (фиг. 1) заявляемого устройства является дифференциальный усилитель, описанный в патенте US 5.291.149, fig.4, 1994г., который содержит первый 1 вход, соединенный с затвором первого 2 входного полевого транзистора, второй 3 вход, соединенный с затвором второго 4 входного полевого транзистора, первый 5 токовый выход, соединенный со стоком первого 2 входного полевого транзистора и согласованный с первой 6 шиной источника питания, второй 7 токовый выход, соединенный со стоком второго 4 входного полевого транзистора и согласованный с первой 6 шиной источника питания, первый 8 вспомогательный полевой транзистор, сток которого соединен с третьим 9 токовым выходом и согласован со второй 10 шиной источника питания, второй 11 вспомогательный полевой транзистор, сток которого соединен с четвертым 12 токовым выходом и согласован со второй 10 шиной источника питания, причем каналы первого 2 и второго 4 входных полевых транзисторов имеют первый тип проводимости (например, n-канал), а каналы первого 8 и второго 11 вспомогательных полевых транзисторов имеют другой тип проводимости (р-канал).

Существенный недостаток известного ДУ фиг. 1 состоит, во-первых, в том, что его статический режим определяется двумя источниками опорного тока I1 (I2), которые, как правило, неидентичны, что становится источником дополнительных погрешностей усиления малых сигналов. Во-вторых, в известном ДУ при фиксированном токе потребления затруднено изменение напряжения ограничения Uгр проходной характеристики iвых=f(uвх), которое оказывает существенное влияние на максимальную скорость нарастания выходного напряжения (SR) операционного усилителя с входным ДУ фиг. 1 [71-72]

где f1 – частота единичного усиления скорректированного ОУ с входным ДУ фиг. 1, как правило, не зависящая от Uгр.

Это не позволяет управлять численными значениями SR в конкретных схемах ОУ при заданных ограничениях на токопотребление, запас устойчивости по фазе, коэффициент усиления по напряжению и т.п.

Основная задача предполагаемого изобретения состоит в создании условий, при которых в ДУ фиг. 1 обеспечивается:

- более высокая стабильность статического режима ДУ при отрицательных температурах (до -197°С) и изменении напряжений питания;

- возможность изменения напряжения ограничения проходной характеристики Uгр по усмотрению разработчика (в зависимости от заданных значений SR [71-72]) при фиксированном токопотреблении.

Поставленная задача решается тем, что в дифференциальном усилителе фиг. 1, содержащем первый 1 вход, соединенный с затвором первого 2 входного полевого транзистора, второй 3 вход, соединенный с затвором второго 4 входного полевого транзистора, первый 5 токовый выход, соединенный со стоком первого 2 входного полевого транзистора и согласованный с первой 6 шиной источника питания, второй 7 токовый выход, соединенный со стоком второго 4 входного полевого транзистора и согласованный с первой 6 шиной источника питания, первый 8 вспомогательный полевой транзистор, сток которого соединен с третьим 9 токовым выходом и согласован со второй 10 шиной источника питания, второй 11 вспомогательный полевой транзистор, сток которого соединен с четвертым 12 токовым выходом и согласован со второй 10 шиной источника питания, причем каналы первого 2 и второго 4 входных полевых транзисторов имеют первый тип проводимости, а каналы первого 8 и второго 11 вспомогательных полевых транзисторов имеют другой тип проводимости, предусмотрены новые элементы и связи – между истоками первого 2 и второго 4 входных полевых транзисторов включены два последовательно соединенных первый 13 и второй 14 дополнительные резисторы, между истоками первого 8 и второго 11 вспомогательных полевых транзисторов включен третий 15 дополнительный резистор, между истоками первого 2 входного полевого и первого 8 вспомогательного полевого транзисторов включен четвертый 16 дополнительный резистор, между истоками второго 4 входного полевого и второго 11 вспомогательного полевого транзисторов включен пятый 17 дополнительный резистор, причем объединенные затворы первого 8 и второго 11 вспомогательных полевых транзисторов соединены с общим узлом последовательно включенных первого 13 и второго 14 дополнительных резисторов.

На чертеже фиг. 1 представлена схема ДУ-прототипа, а на чертеже фиг. 2 – схема заявляемого устройства в соответствии с формулой изобретения.

На чертеже фиг. 3 в среде LTspice показан статический режим ДУ фиг. 2 при температуре -197°С для случая, когда сопротивление третьего 15 дополнительного резистора (фиг. 2) значительно превышает сопротивление четвертого 16 и пятого 17 дополнительных резисторов.

На чертеже фиг. 4 приведены проходные характеристики ДУ фиг. 3 iвых=f(uвх), при температуре -197°С и разных сопротивлениях R3*=R4*=100/1к/10к/100кОм: Iout1,V3=Vin=-3÷3В (а), Iout2,V3=Vin=-3÷3В (б), Iout3,V3=Vin=-3÷3В (в), Iout4,V3=Vin=-3÷3В (г).

На чертеже фиг. 5 представлена зависимость Uгр для первого 5 токового выхода out.1 ДУ фиг. 3 от сопротивлений резисторов R3*=R4* при различных температурах.

На чертеже фиг. 6 показаны проходные характеристики ДУ фиг. 3 для первого 5 токового выхода out.1 (ДУ фиг. 2) при разных сопротивлениях дополнительных резисторов R3*=R4*=100/1к/10к/100кОм и температуре -197°С.

На чертеже фиг. 7 в среде LTspice приведен статический режим ДУ фиг. 2 при температуре -197°С для случая, когда сопротивления первого 13 и второго 14 дополнительных резисторов (фиг.2) значительно превышают сопротивления четвертого 16 и пятого 17 дополнительных резисторов.

На чертеже фиг. 8 представлены проходные характеристики ДУ фиг. 3 при R3*=R4*=100кОм и разных сопротивлениях дополнительного резистора R5*=Rvar=100/1к/10к/100кОм: Iout1,V3=Vin=-5÷5В при -197°С (а), Iout3,V3=Vin=-5÷5В при -197°С (б).

Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики фиг. 2 содержит первый 1 вход, соединенный с затвором первого 2 входного полевого транзистора, второй 3 вход, соединенный с затвором второго 4 входного полевого транзистора, первый 5 токовый выход, соединенный со стоком первого 2 входного полевого транзистора и согласованный с первой 6 шиной источника питания, второй 7 токовый выход, соединенный со стоком второго 4 входного полевого транзистора и согласованный с первой 6 шиной источника питания, первый 8 вспомогательный полевой транзистор, сток которого соединен с третьим 9 токовым выходом и согласован со второй 10 шиной источника питания, второй 11 вспомогательный полевой транзистор, сток которого соединен с четвертым 12 токовым выходом и согласован со второй 10 шиной источника питания, причем каналы первого 2 и второго 4 входных полевых транзисторов имеют первый тип проводимости, а каналы первого 8 и второго 11 вспомогательных полевых транзисторов имеют другой тип проводимости. Между истоками первого 2 и второго 4 входных полевых транзисторов включены два последовательно соединенных первый 13 и второй 14 дополнительные резисторы, между истоками первого 8 и второго 11 вспомогательных полевых транзисторов включен третий 15 дополнительный резистор, между истоками первого 2 входного полевого и первого 8 вспомогательного полевого транзисторов включен четвертый 16 дополнительный резистор, между истоками второго 4 входного полевого и второго 11 вспомогательного полевого транзисторов включен пятый 17 дополнительный резистор, причем объединенные затворы первого 8 и второго 11 вспомогательных полевых транзисторов соединены с общим узлом последовательно включенных первого 13 и второго 14 дополнительных резисторов.

На чертеже фиг. 2 свойства нагрузок для первого 5, второго 7, третьего 9 и четвертого 12 токовых выходов моделируются соответственно двухполюсниками 18, 19, 20 и 21. В практических схемах эти двухполюсники – входные сопротивления токовых зеркал, на которых реализуется схема того или иного операционного усилителя или компаратора.

Рассмотрим работу ДУ фиг. 2.

В статическом режиме, например, при подключении первого 1 и второго 3 входов ДУ фиг. 2 к общей шине источников питания (6 и 10), первый 13, второй 14 и третий 15 дополнительные резисторы не влияют на статические токи истока всех полевых транзисторов схемы из-за ее симметрии. При этом

где Iиi – ток стока i-го полевого транзистора;

Uзи.8, Uзи.11 – напряжение затвор-исток соответствующих первого 8 и второго 11 вспомогательных полевых транзисторов в рабочей точке при токе истока, равном I0;

UR16=UR17 – падение напряжения на четвертом 16 и пятом 17 дополнительных резисторах от тока I0.

Таким образом, за счет выбора четвертого 16 и пятого 17 дополнительных резисторов обеспечивается идентичный заданный статический режим по току всех полевых транзисторов 2, 4, 8, 11 ДУ фиг. 2:

Следует заметить, что статический режим ДУ фиг. 2 практически не зависит от величины входного синфазного сигнала и изменений напряжений питания на первой 6 и второй 10 шинах. Это позволяет исключить из схемы ДУ фиг. 2 традиционные источники опорного тока, отрицательно влияющие на данные параметры.

Если на вход 1 подается положительное входное напряжение uвх относительно входа 3, то это вызывает увеличение тока через первый 13 и второй 14 дополнительные резисторы и уменьшение тока истока второго 4 входного полевого транзистора. В пределе ток истока первого 2 входного полевого транзистора может принимать удвоенное значение относительно своего статического уровня при uвх=0. Численные значения сопротивлений первого 13 и второго 14 дополнительных резисторов определяют напряжение ограничения проходной характеристики ДК фиг. 2: чем больше сопротивления дополнительных резисторов R13=R14, тем при большем входном напряжении uвх=Uгр произойдет ограничение выходного тока ДУ для первого 5 токового выхода. Об этом свидетельствуют графики фиг. 4, фиг. 5, фиг. 6, полученные для схемы фиг. 3.

Аналогичным образом на напряжение ограничения Uгр ДУ фиг. 7 влияет третий 15 дополнительный резистор (фиг. 8). Чем меньше его сопротивление, тем при меньших значениях входного напряжения uвх=Uгр произойдет ограничение выходного тока ДУ фиг. 2 для четвертого 12 токового выхода.

Таким образом, первый 13, второй 14 и третий 15 дополнительные резисторы определяют численные значения напряжения ограничения Uгр предлагаемого дифференциального усилителя для всех его токовых выходов 5, 7, 9, 12.

Графики, представленные на чертежах фиг. 4, фиг. 5, фиг. 6, фиг. 8, снятые при разных температурах и численных значениях сопротивлений первого 13, второго 14 и третьего 15 дополнительных резисторов подтверждают сделанные выше качественные выводы.

Результаты компьютерного моделирования в среде LTspice схем фиг. 3 и фиг. 7 показывают, что на основе предлагаемого ДУ фиг. 2 реализуется широкий спектр проходных характеристик с разными численными значениями напряжения ограничения Uгр для первого 5 и второго 7 токовых выходов, согласованных с первой 6 шиной источника питания, и третьего 9 и четвертого 12 токовых выходов, согласованных со второй 10 шиной источника питания. В итоге, это позволяет проектировать дифференциальные и мультидифференциальные операционные усилители с заданным (см. формулу (1)) быстродействием [71-72].

Таким образом, заявляемое устройство имеет существенные преимущества в сравнении с известными схемотехническими решениями ДУ класса dual-input-stage [1-61], что позволяет рекомендовать его для практического использования в ОУ и построения низкотемпературных и радиационно-стойких аналоговых микросхем по техпроцессу CJFet ОАО «Интеграл» (г. Минск), а также комплементарному биполярно-полевому технологическому процессу АО «НПП «Пульсар» (г. Москва).

Библиографический список

1. Патент US 5.814.953, 1995 г.

2. Патент US 5.225.791, 1993 г.

3. Патент US 6.844.781, 2005 г.

4. Патент US 5.291.149, 1994 г.

5. Патентная заявка US 2005/0024140, 2005 г.

6. Патентная заявка US 2006/0226908, 2006 г.

7. Патент US 4.636.743, 1985 г.

8. Патент SU 1220105, 1986 г.

9. Патент US 5.515.005, 1994 г.

10. Патент US 5.374.897, 1994 г.

11. Патент US 5.512.859, 1996 г.

12. Патент US 4.649.352, 1987 г.

13. Патент JP 8222972, 1996 г.

14. Патент US 6.268.769, 2001 г.

15. Патент RU 2193273, 2002 г.

16. Патент US 4.241.315, 1980 г.

17. Патент JP 2004129018, 2004 г.

18. Патент SU 530425, 1976 г.

19. Патент US 5.153.529, 1992 г.

20. Патент US 5.420.540, 1995 г.

21. Патент US 6.222.416, fig. 2, 2001 г.

22. Патент US 3.974.455, fig. 7, 1976 г.

23. Патент US 4.349.786, 1982 г.

24. Патент US 4.783.637, 1988 г.

25. Патент US 5.293.136, 1994 г.

26. Патент US 6.366.170, 2002 г.

27. Патент US 6.163.290, 2000 г.

28. Патент US 4.417.292, fig. 1, 1981 г.

29. Патент SU 1385255, 1988 г.

30. Патент US 2005/0285677, 2005 г.

31. Патент US 5.610.547, fig. 28, 1997 г.

32. Патент SU 459780, 1975 г.

33. Патентная заявка US 2003/0206060, 2003 г.

34. Патент US 6.794.940, 2004 г.

35. Патентная заявка US 2004/0174216, 2004 г.

36. Патентная заявка US 2006/0125522, 2006 г.

37. Патент US 6.433.637, 2002 г.

38. Патентная заявка US 2007/0159248, 2007 г.

39. Патент US 5.714.906, 1995 г.

40. Патент US 7.907.011, 2011 г.

41. Патент US 6.100.762, 2000 г.

42. Патент US 5.909.146, 1999 г.

43. Патент ЕР 1150423, 2001 г.

44. Патент JP 2004/222104, 2004 г.

45. Патент US 6.801.087, 2004 г.

46. Патент US 5.917.378, 1999 г.

47. Патентная заявка US 2008/0074405, 2008 г.

48. Патентная заявка US 2009/0206930, 2009 г.

49. Патент US 6.356.153, 2002 г.

50. Патент US 5.621.357, 1997 г.

51. Патент US 6.970.043, 2005 г.

52. Патент US 6.731.169, 2004 г.

53. Патент US 5.070.306, fig. 3, 1991 г.

54. Патент US 2010/001797, 2001 г.

55. Патент US 5.610.547, fig. 34, 1997 г.

56. Патент US 6.972.623, fig. 4, fig. 6, 2005 г.

57. Патент US 2008/0238546, fig. 2, 2008 г.

58. Патент US 2008/0252374, 2008 г.

59. Патент US 7.567.124, 2009 г.

60. Патент US 7.586.373, 2009 г.

61. Патент US 2006/0215787, 2006 г.

62. N. N. Prokopenko, N. V. Butyrlagin, A. V. Bugakova and A. A. Ignashin, "Method for speeding the micropower CMOS operational amplifiers with dual-input-stages," 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Batumi, 2017, pp. 78-81.

63. The Radiation-Hardened BiJFet Differential Amplifiers with Negative Current Feedback on the Common-Mode Signal / N. N. Prokopenko, O. V. Dvornikov, N. V. Butyrlagin, A. V. Bugakova // 2016 13th International conference on actual problems of electronic instrument engineering (APEIE – 2016) – 39281. Proceedings; Novosibirsk, October 3-6, 2016. In 12 Vol. Vol. 1. Part 1. Pp. 104-108 DOI: 10.1109/APEIE.2016.7802224.

64. K. O. Petrosyants, M. R. Ismail-zade, L. M. Sambursky, O. V. Dvornikov, B. G. Lvov and I. A. Kharitonov, "Automation of parameter extraction procedure for Si JFET SPICE model in the −200…+110°C temperature range," 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT), Moscow, 2018, pp. 1-5. DOI: 10.1109/MWENT.2018.8337212

65. Создание низкотемпературных аналоговых ИС для обработки импульсных сигналов датчиков. Часть 2 / О. Дворников, В. Чеховский, В. Дятлов, Н. Прокопенко // Современная электроника, 2015, № 5. С. 24-28

66. O. V. Dvornikov, N. N. Prokopenko, N. V. Butyrlagin and I. V. Pakhomov, "The differential and differential difference operational amplifiers of sensor systems based on bipolar-field technological process AGAMC," 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, 2016, pp. 1-6. DOI: 10.1109/SIBCON.2016.7491792

67. O. V. Dvornikov, N. N. Prokopenko, I. V. Pakhomov and A. V. Bugakova, "The analog array chip AC-1.3 for the tasks of tool engineering in conditions of cryogenic temperature, neutron flux and cumulative radiation dose effects," 2016 IEEE East-West Design & Test Symposium (EWDTS), Yerevan, 2016, pp. 1-4. DOI: 10.1109/EWDTS.2016.7807724

68. Дворников О.В., Чеховский В.А., Дятлов В.Л., Прокопенко Н.Н. "Малошумящий электронный модуль обработки сигналов лавинных фотодиодов" Приборы и методы измерений, no. 2 (7), 2013, pp. 42-46.

69. Дворников О. Чеховский В., Дятлов В., Прокопенко Н. Применение структурных кристаллов для создания интерфейсов датчиков //Современная электроника. – 2014. – №. 1. – С. 32-37.

70. O. V. Dvornikov, A. V. Bugakova, N. N. Prokopenko, V. L. Dziatlau and I. V. Pakhomov, "The microcircuits MH2XA010-02/03 for signal processing of optoelectronic sensors," 2017 18th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Erlagol, 2017, pp. 396-402. DOI: 10.1109/EDM.2017.7981781

71. Операционные усилители с непосредственной связью каскадов: монография / Анисимов В.И., Капитонов М.В., Прокопенко Н.Н., Соколов Ю.М. - Л.: «Энергия», 1979. - 148 с.

72. Прокопенко, Н.Н. Архитектура и схемотехника быстродействующих операционных усилителей: монография / Н.Н. Прокопенко, А.С. Будяков. – Шахты: Изд-во ЮРГУЭС, 2006. – 231 с.

Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики, содержащий первый (1) вход, соединенный с затвором первого (2) входного полевого транзистора, второй (3) вход, соединенный с затвором второго (4) входного полевого транзистора, первый (5) токовый выход, соединенный со стоком первого (2) входного полевого транзистора и согласованный с первой (6) шиной источника питания, второй (7) токовый выход, соединенный со стоком второго (4) входного полевого транзистора и согласованный с первой (6) шиной источника питания, первый (8) вспомогательный полевой транзистор, сток которого соединен с третьим (9) токовым выходом и согласован со второй (10) шиной источника питания, второй (11) вспомогательный полевой транзистор, сток которого соединен с четвертым (12) токовым выходом и согласован со второй (10) шиной источника питания, причем каналы первого (2) и второго (4) входных полевых транзисторов имеют первый тип проводимости, а каналы первого (8) и второго (11) вспомогательных полевых транзисторов имеют другой тип проводимости, отличающийся тем, что между истоками первого (2) и второго (4) входных полевых транзисторов включены два последовательно соединенных первый (13) и второй (14) дополнительные резисторы, между истоками первого (8) и второго (11) вспомогательных полевых транзисторов включен третий (15) дополнительный резистор, между истоками первого (2) входного полевого и первого (8) вспомогательного полевого транзисторов включен четвертый (16) дополнительный резистор, между истоками второго (4) входного полевого и второго (11) вспомогательного полевого транзисторов включен пятый (17) дополнительный резистор, причем объединенные затворы первого (8) и второго (11) вспомогательных полевых транзисторов соединены с общим узлом последовательно включенных первого (13) и второго (14) дополнительных резисторов.
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
Источник поступления информации: Роспатент

Показаны записи 61-70 из 186.
12.09.2018
№218.016.8661

Способ получения рельефного изображения на металлической поверхности изделия

Изобретение относится к электрохимической размерной обработке и может быть использовано для получения рельефного изображения на металлической поверхности изделий, например, при изготовлении неглубоких пресс-форм, матриц для тиснения, печатных форм, печатных плат и для маркирования деталей....
Тип: Изобретение
Номер охранного документа: 0002666658
Дата охранного документа: 11.09.2018
25.09.2018
№218.016.8b3e

Комбинезон для работ на высоте

Изобретение относится к защитным элементам одежды. Техническим результатом настоящего изобретения является лёгкость в перемещении в комбинезоне при выполнении работ на уровне земли, за счет крепления троса липучками на боковом шве комбинезона, и на высоте, за счет незначительного веса и высокой...
Тип: Изобретение
Номер охранного документа: 0002667865
Дата охранного документа: 24.09.2018
11.10.2018
№218.016.90b6

Входной каскад быстродействующего операционного усилителя

Изобретение относится к области радиотехники и электроники. Технический результат повышение быстродействия операционного усилителя. Входной каскад быстродействующего операционного усилителя, содержит: первый (1) и второй (2) входные транзисторы, первый (3) резистор местной отрицательной...
Тип: Изобретение
Номер охранного документа: 0002668983
Дата охранного документа: 05.10.2018
11.10.2018
№218.016.90c3

Быстродействующий буферный усилитель

Изобретение относится к области радиотехники и связи и может быть использовано в качестве выходного каскада для усиления быстроизменяющихся аналоговых сигналов по мощности (буферного усилителя) в структуре аналоговых микросхем различного функционального назначения, например операционных...
Тип: Изобретение
Номер охранного документа: 0002668985
Дата охранного документа: 05.10.2018
11.10.2018
№218.016.90ca

Быстродействующий дифференциальный операционный усилитель для работы при низких температурах

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в аналоговых интерфейсах и устройствах преобразования сигналов, в том числе работающих в диапазоне низких температур. Техническим результатом является повышение максимальной скорости нарастания выходного...
Тип: Изобретение
Номер охранного документа: 0002668968
Дата охранного документа: 05.10.2018
11.10.2018
№218.016.90e8

Выходной каскад bijfet операционного усилителя

Изобретение относится к области аналоговой микросхемотехники и может быть использовано в качестве биполярно-полевых (BiJFet) буферных усилителей. Техническим результатом является обеспечение двухтактного преобразования входного напряжения при высокой линейности проходной характеристики, малом...
Тип: Изобретение
Номер охранного документа: 0002668981
Дата охранного документа: 05.10.2018
15.10.2018
№218.016.925e

Устройство для удаления логотипов и субтитров с видеопоследовательностей

Изобретение относится к области вычислительной техники и может быть использовано в системах анализа и обработки изображений, цифровом телевидении. Технический результат – обеспечение реконструкции значений пикселей динамических двумерных сигналов, которые были потеряны путем наложения субтитров...
Тип: Изобретение
Номер охранного документа: 0002669470
Дата охранного документа: 12.10.2018
27.10.2018
№218.016.9776

Биполярно-полевой буферный усилитель для работы при низких температурах

Изобретение относится к области аналоговой микроэлектроники. Технический результат заключается в повышении стабильности статического режима и низком уровне шумов при работе устройства в диапазоне низких температур с высокой линейностью амплитудной характеристики. Биполярно-полевой буферный...
Тип: Изобретение
Номер охранного документа: 0002670777
Дата охранного документа: 25.10.2018
23.11.2018
№218.016.9fce

Автобалансирующее устройство для стиральных машин барабанного типа

Изобретение относится к автобалансирующим устройствам (АБУ), используемым в стиральных машинах барабанного типа, для снижения вибрации при отжиме. Для упрощения конструкции и повышения технологичности сборки автобалансирующего устройства стиральной машины при обеспечении эффективности его...
Тип: Изобретение
Номер охранного документа: 0002672950
Дата охранного документа: 21.11.2018
23.11.2018
№218.016.a066

Буферный усилитель с дифференцирующей цепью коррекции переходного процесса

Изобретение относится к буферным усилителям с дифференцирующей цепью коррекции переходного процесса. Технический результат заключается в повышении максимальной скорости нарастания выходного напряжения и уменьшении времени установления переходного процесса в БУ. В усилитель введены первый и...
Тип: Изобретение
Номер охранного документа: 0002673003
Дата охранного документа: 21.11.2018
Показаны записи 61-70 из 217.
20.12.2015
№216.013.9b61

Свч избирательный усилитель на основе планарной индуктивности с низкой добротностью

Изобретение относится к области радиотехники и связи и может использоваться в микросхемах СВЧ-фильтрации радиосигналов систем сотовой связи, спутникового телевидения, радиолокации и т.п. Техническим результатом является повышение добротности резонансной амплитудно-частотной характеристики...
Тип: Изобретение
Номер охранного документа: 0002571402
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9c08

Прецизионный операционный усилитель для радиационно-стойкого биполярно-полевого технологического процесса

Изобретение относится к области радиотехники и связи и может быть использовано также в измерительной технике в качестве прецизионного устройства усиления сигналов различных сенсоров. Технический результат: создание радиационно-стойкого симметричного (по входным цепям) операционного усилителя...
Тип: Изобретение
Номер охранного документа: 0002571569
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9c11

Входной каскад мультидифференциального операционного усилителя для радиационно-стойкого биполярно-полевого технологического процесса

Изобретение относится к области электроники и измерительной техники и может быть использовано в качестве устройства усиления сигналов различных датчиков, например, в мульдифференциальных операционных усилителях (МОУ), в структуре аналоговых микросхем различного функционального назначения,...
Тип: Изобретение
Номер охранного документа: 0002571578
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9c12

Прецизионный операционный усилитель для радиационно-стойкого биполярно-полевого техпроцесса

Изобретение относится к области радиотехники. Технический результат заключается в повышении коэффициента ослабления входного синфазного сигнала. Прецизионный операционный усилитель содержит: входной параллельно-балансный каскад, первый и второй противофазные токовые выходы которого соединены с...
Тип: Изобретение
Номер охранного документа: 0002571579
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9f22

Двойной каскодный усилитель с расширенным диапазоном рабочих частот

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения. Техническим результатом является расширение диапазона рабочих частот без ухудшения...
Тип: Изобретение
Номер охранного документа: 0002572375
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f23

Каскодный усилитель с расширенным диапазоном рабочих частот

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых ВЧ и СВЧ сигналов, в структуре аналоговых микросхем различного функционального назначения (например, широкополосных усилителях). Технический результат: расширение диапазона...
Тип: Изобретение
Номер охранного документа: 0002572376
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f27

Симметричная активная нагрузка дифференциальных усилителей для биполярно-полевых радиационно-стойких технологических процессов

Изобретение относится к применению симметричных активных нагрузок, обеспечивающих преобразование выходных токов симметричных дифференциальных каскадов и их согласование с промежуточными выходными каскадами. Технический результат заключается в создании радиационно-стойкой и низкотемпературной...
Тип: Изобретение
Номер охранного документа: 0002572380
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f2f

Транзисторный усилитель с расширенным частотным диапазоном

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых ВЧ и СВЧ сигналов, в структуре аналоговых микросхем различного функционального назначения. Технический результат заключается в расширении диапазона рабочих частот без...
Тип: Изобретение
Номер охранного документа: 0002572388
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f30

Быстродействующий драйвер коммутатора разрядного тока цифро-аналогового преобразователя на полевых транзисторах

Изобретение относится к области радиотехники и может использоваться в быстродействующих цифроаналоговых преобразователях (ЦАП), в том числе системах передачи информации. Технический результат заключается в повышении быстродействия и уменьшении искажения спектра выходного сигнала ЦАП. Устройство...
Тип: Изобретение
Номер охранного документа: 0002572389
Дата охранного документа: 10.01.2016
27.03.2016
№216.014.dbd6

Широкополосный преобразователь n-токовых входных сигналов в напряжение на основе операционного усилителя

Изобретение относится к области радиотехники и связи и может быть использовано также в измерительной технике в качестве прецизионного устройства усиления сигналов различных сенсоров с токовым выходом. Технический результат - обеспечение подавления синфазной составляющей входных дифференциальных...
Тип: Изобретение
Номер охранного документа: 0002579127
Дата охранного документа: 27.03.2016
+ добавить свой РИД