×
15.02.2019
219.016.ba94

Результат интеллектуальной деятельности: Способ автоматической обработки крупногабаритных тонкостенных изделий

Вид РИД

Изобретение

Аннотация: Изобретение относится к области обработки, а именно обрезки технологических припусков, краев, заусенцев, вскрытию технологических окон и др., крупногабаритных тонкостенных изделий из металлов, конструкционных материалов, пластмасс и др. Изобретение позволяет сократить время на выполнение операций базирования и фиксации деталей, а также на формирование скорректированных траекторий их обработки с использованием эталонных CAD-моделей. Технический результат изобретения заключается в автоматизации процессов формирования скорректированных траекторий движения режущих инструментов после базирования и фиксации обрабатываемых изделий. При этом задание траекторий движения режущего инструмента выполняется на основе комплексирования данных, получаемых от используемой системы технического зрения и эталонных CAD-моделей изделий. 1 ил.

Изобретение относится к области обработки (обрезки технологических припусков, краев, заусенцев, вскрытию технологических окон и др.) крупногабаритных тонкостенных изделий из металлов, конструкционных материалов, пластмасс и др.

Известно устройство слежения за траекторией в реальном масштабе времени при лазерной сварке с помощью робота, которое содержит программируемый логический контроллер, робот, устройство управления лазерной сваркой и сенсор, содержащий видеокамеру и устройство для обработки видеоданных. Сенсор расположен на устройстве лазерной сварки, он получает данные о положении и форме заготовки с помощью видеокамеры и корректирует траекторию движения устройства для лазерной сварки в реальном масштабе времени (см. CN 204413407 (U), МПК B23K26/21, 24.06.2015).

Недостатком этого устройства является то, что для качественной сварки видеосистема всегда должна точно определять изображение стыка свариваемых изделий. По CAD-моделям сваривать две детали нельзя, так как их точное базирование в рабочей области робота в рассматриваемом устройстве не предусмотрено.

Известен способ базирования крупногабаритных обводообразующих деталей, их механической обработки и сборки, включающий автоматическую настройку дискретных опор подвижных секций, ориентирование обводообразующей детали и фиксацию ее на опорах с помощью вакуумных прихватов, а также механическую обработку детали, использующий стойку с упорами и приводами, связанными с системой ЧПУ, перед автоматической настройкой дискретных опор на основе математической модели обводообразующей детали определяют координаты по оси OY в ортогональной системе координат XYZ осей подвижных секций и углы их поворота, а также координаты по оси OX стойки в соответствующих позициях и координаты упоров по оси OY в указанных позициях, автоматическую настройку дискретных опор подвижных секций осуществляют путем установки в указанные позиции и поворота подвижных секций, последовательной установки в соответствующие позиции и поворота стойки, выдвижения упоров стойки по оси OY на расчетные значения, а также централизованного подвода к ним в каждой позиции и фиксации опор подвижных секций, ориентирование обводообразующей детали производят по двум базовым отверстиям, для механической обработки детали используют робототехнический комплекс, включающий промышленный робот с многофункциональной головкой, в процессе механической обработки производят обработку детали по контуру и сверление сборочных отверстий многофункциональной головкой по программе при последовательном позиционировании промышленного робота в заданных позициях, после чего осуществляют операции по сборке панели с использованием упомянутых сборочных отверстий обводообразующей детали и сверление отверстий в полученной в результате сборки панели с использованием многофункциональной головки (см. RU 2165836 (С2), МПК B23P21/00, 27.04.2001).

Этот способ по своей технической сущности является наиболее близким к предлагаемому изобретению. Однако при фиксации тонкостенных крупногабаритных изделий описанным выше способом очень часто происходит смещение их положения и изменение ориентации в рабочей зоне многостепенного манипулятора. В результате реальное положение и ориентация изделия после фиксации не совпадет с ее математической моделью. Поэтому при точной обработке каждой такой детали потребуется дополнительно осуществлять коррекцию управляющей программы робота, на которую будет затрачено значительное время.

Задачей изобретения является устранение указанного выше недостатка и, в частности, сокращение времени на выполнение операций базирования и фиксации деталей, а также на формирование скорректированных траекторий их обработки с использованием эталонных CAD-моделей.

Технический результат изобретения заключается в автоматизации процессов формирования скорректированных траекторий движения режущих инструментов после базирования и фиксации обрабатываемых изделий. При этом задание траекторий движения режущего инструмента выполняется на основе комплексирования данных, получаемых от используемой системы технического зрения и эталонных CAD-моделей изделий.

Поставленная задача решается тем, что способ автоматической обработки тонкостенных крупногабаритных изделий, включающий автоматическую настройку опор устройства фиксации на основе эталонной полигональной CAD-модели изделия, заданной в первой системе координат и содержащей траекторию обработки, которая представляет собой интерполяционную кривую, проходящую через базовые точки, загрузку этой модели в управляющую манипулятором ЭВМ, содержащую систему управления, с системой технического зрения, работающую в первой системе координат, ориентирование обрабатываемого изделия и фиксацию его с помощью вакуумных присосок опор в рабочей зоне манипулятора, задание посредством системы управления манипулятором режима движения рабочего инструмента, установленного на манипуляторе, с обеспечением заданной обработки изделия отличается тем, что посредством системы технического зрения получают трехмерную модель зафиксированного изделия в виде облака точек во второй системе координат, в которой работает система технического зрения, и пересчитывают координаты каждой точки полученного облака из второй системы координат в первую систему координат, в каждом полигоне эталонной полигональной CAD-модели после загрузки в управляющую ЭВМ находят его геометрический центр, который делит этот треугольник на три новых, в каждом новом треугольнике находят геометрический центр, который делит его еще на три новых и так до тех пор пока общее количество точек на эталонной полигональной CAD-модели не станет сопоставимо с количеством точек в облаке, полученном от системы технического зрения, затем координаты вершин всех исходных и полученных треугольников сохраняют, формируя уплотненное облако точек, затем выполняют совмещение исходного и уплотненного облаков точек с помощью стандартного итеративного метода ICP (Iterative Closest Points) поиска ближайших точек, по итогам совмещения получают функцию с оптимальным параметром функции трансформации, применяют ее к координатам базовых точек траектории обработки и получают координаты базовых точек траектории обработки на зафиксированном крупногабаритном тонкостенном изделии, выполняют интерполяцию траектории по базовым точкам.

Сопоставительный анализ признаков заявляемого способа с признаками аналога и прототипа свидетельствует о его соответствии критерию «новизна».

При этом отличительные признаки формулы изобретения предназначены для решения следующих функциональных задач.

Признак «…посредством системы технического зрения получают трехмерную модель зафиксированного изделия в виде облака точек во второй системе координат, в которой работает система технического зрения, и пересчитывают координаты каждой точки полученного облака из второй системы координат в первую систему координат …» обеспечивает автоматическое получение трехмерной модели обрабатываемого изделия и пересчет координат каждой точки из этого облака из системы координат, связанной с системой технического зрения, в систему координат, связанную с манипулятором. Если система технического зрения (оптический или лазерный сканеры, стереокамера и др.) не может захватить в один кадр все изделие сразу, то требуется линейное перемещение этой системы относительно этого изделия.

Признак «…в каждом полигоне эталонной полигональной CAD-модели после загрузки в управляющую ЭВМ находят его геометрический центр, который делит этот треугольник на три новых, в каждом новом треугольнике находят геометрический центр, который делит его еще на три новых и так до тех пор пока общее количество точек на эталонной полигональной CAD-модели не станет сопоставимо с количеством точек в облаке, полученном от системы технического зрения, затем координаты вершин всех исходных и полученных треугольников сохраняют, формируя уплотненное облако точек…» обеспечивает автоматическую подготовку эталонной CAD-модели изделия к последующей обработке.

Признак «…выполняют совмещение исходного и уплотненного облаков точек с помощью стандартного итеративного метода ICP (Iterative Closest Points) поиска ближайших точек, по итогам совмещения получают функцию с оптимальным параметром функции трансформации, применяют ее к координатам базовых точек траектории обработки и получают координаты базовых точек траектории обработки на зафиксированном крупногабаритном тонкостенном изделии, выполняют интерполяцию траектории по базовым точкам…» обеспечивает автоматическое формирование точной траектории движения рабочего инструмента манипулятора после закрепления изделия с возможным изменением его положения и ориентации.

На фиг. схематически показан способ автоматической обработки крупногабаритных тонкостенных изделий, где введены следующие обозначения: 1 – обрабатываемое изделие; 2 – опоры; 3 – устройство фиксации; 4 – первая система координат, в которой работает манипулятор; 5 – управляющая ЭВМ; 6 – многостепенной манипулятор; 7 – система управления манипулятора 6; 8 – вакуумные присоски; 9 – рабочий инструмент (лазер, устройство для гидроабразивного реза и др.); 10 – система технического зрения; 11 – вторая система координат, в которой работает система технического зрения 10.

Заявленный способ реализуется следующим образом.

С помощью системы 10 технического зрения сканируют закрепленное обрабатываемое изделие 1 и его координаты, полученные во второй системе 11 координат, запоминают в управляющей ЭВМ 5 в виде облака точек M. Если система 10 технического зрения не может сканировать крупногабаритное обрабатываемое изделие 1 одним кадром, то обеспечивают перемещение системы 10 технического зрения относительно изделия и делают несколько кадров, которые затем сшивают в управляющей ЭВМ 5, формируя единое облако М. После этого координаты каждой точки облака М, заданные во второй системе 11 координат, в управляющей ЭВМ 5 пересчитывают в первую систему 4 координат многостепенного манипулятора 6.

Затем с помощью управляющей ЭВМ 5 из базы данных выбирают полигональную CAD-модель обрабатываемого изделия 1, содержащую траекторию обработки, которая представляет собой интерполяционную кривую, проходящую через базовые точки. Эта полигональная модель представляет собой совокупность сегментов (поверхностей), описываемых набором треугольников, и содержит координаты всех вершин этих треугольников. Если оставить только координаты этих вершин, то полученное таким образом облако точек будет «разреженным». Его точки будут сосредоточены на изгибах модели и будут отсутствовать на более плоских участках. Это приведет к тому, что при последующем совмещении облака точек будут совмещаться с большими погрешностями.

Для уменьшения этих погрешностей требуется уплотнить облако точек, соответствующее CAD-модели. Для этого в каждом треугольнике, входящем в исходную полигональную CAD-модель, в зависимости от его площади генерируют дополнительные точки. Чем больше площадь треугольника, тем больше дополнительных точек генерируют. Для генерации дополнительных точек в каждом полигоне (треугольнике) CAD–модели выполняют следующие действия: находят его геометрический центр, который делит этот треугольник на три новых, в каждом новом треугольнике находят геометрический центр, который делит его еще на три новых и т.д. Затем координаты вершин всех (исходных и полученных) треугольников сохраняют, формируя, таким образом, уплотненное облако точек D. Количество точек в нем должно быть сопоставимо с количеством точек в облаке М, полученном от системы 10 технического зрения.

Затем трехмерную модель закрепленного обрабатываемого изделия 1, полученную в виде облака точек М в первой системе 4 координат, сопоставляют с облаком точек D и, соответственно, с траекторией обработки. При этом для сопоставления (совмещения) двух указанных облаков точек используют типовую процедуру компьютерной графики. Для этого используют локализацию заданного объекта в трехмерной сцене, применяя метод ICP (Iterative Closest Points) совмещения двух трехмерных моделей, представленных в виде облаков точек. Входными данными для работы этого метода являются два облака точек. Первое (передвигаемое) - уплотненное облако точек D, полученное из эталонной CAD-модели, а второе - облако M, полученное при сканировании.

Математически задачу совмещения двух облаков точек с помощью метода ICP формулируют в виде:

, (1)

, (2)

где E – ошибка совмещения облаков точек;

- квадрат расстояния между точками в k-ой паре ближайших точек из облаков D и M;

и – точки из облаков D и M, соответственно;

Nd, Nm - количество точек в облаках D и M, соответственно, которое может быть различным;

T(a, D) – функция трансформации облака точек D в облако точек M;

a – параметр функции трансформации;

a* – оптимальный параметр функции трансформации, который минимизирует функционал (1).

Для определенности передвигаемым облаком является облако D и Nm ≤ Nd.

Как видно из (1) и (2), задача совмещения двух облаков точек формулируется как задача минимизации среднеквадратичного расстояния между точками в парах ближайших точек этих облаков. При этом в параметр a функции T(a, D) входят элементы матрицы поворота и вектора смещения. Последовательность выполнения ICP на каждой итерации состоит из следующих шагов.

Для каждой точки , ищется ближайшая точка . Облака точек M и D при их построении часто содержат различное количество точек. При этом одной точке одного облака может соответствовать несколько ближайших к ней точек другого облака. В этом случае для одной точки одного облака формируется столько пар точек сколько ближайших к ней точек расположено в другом облаке, то есть Nd ≤ Nk.

Затем выполняется новый расчет параметра a функции T(a, D) с помощью известных способов численной оптимизации. После этого преобразование T(a, D) с новым параметром a применяется к облаку точек D. На следующем шаге с помощью выражения (1) рассчитывается ошибка E совмещения указанных облаков точек и сравнивается с предельным значением. Если полученное значение E для совмещаемых облаков точек М и D становится меньше предельного значения, то расчеты прекращаются. В противном случае указанные выше шаги расчетов продолжаются.

По итогам совмещения двух облаков получают функцию T(a*, D) трансформации облака точек D в облако точек M. Затем ее применяют к координатам базовых точек траектории обработки, заданной на исходной CAD-модели, и получают координаты базовых точек траектории обработки на зафиксированном в устройстве фиксации 3 обрабатываемого изделия 1, положение и ориентация которого отличается от исходной CAD-модели.

После интерполяции траектории по базовым точкам управляющая ЭВМ 5 включает режущий рабочий инструмент 9 и система управления 7 манипулятора 6 задает необходимый режим движения этого рабочего инструмента 9, обеспечивая обработку зафиксированного обрабатываемого изделия 1 с требуемой точностью по полученной траектории.

Реализация предложенного способа обработки крупногабаритных тонкостенных изделий из любых материалов не вызывает принципиальных затруднений, поскольку при его реализации используют только типовые системы и устройства.

Способ автоматической обработки тонкостенных крупногабаритных изделий, включающий автоматическую настройку опор устройства фиксации изделия на основе эталонной полигональной CAD-модели изделия, заданной в первой системе координат и содержащей траекторию обработки, которая представляет собой интерполяционную кривую, проходящую через базовые точки, загрузку этой модели в управляющую ЭВМ, содержащую систему управления манипулятором, с системой технического зрения, работающую в первой системе координат, ориентирование обрабатываемого изделия и фиксацию его с помощью вакуумных присосок упомянутых опор в рабочей зоне манипулятора, задание посредством системы управления манипулятором режима движения рабочего инструмента, установленного на манипуляторе, с обеспечением заданной обработки изделия, отличающийся тем, что посредством системы технического зрения получают трехмерную модель зафиксированного изделия в виде облака точек во второй системе координат, в которой работает система технического зрения, и пересчитывают координаты каждой точки полученного облака из второй системы координат в первую систему координат, в каждом полигоне эталонной полигональной CAD-модели после загрузки в управляющую ЭВМ находят его геометрический центр, который делит полигон в виде треугольника на три новых, в каждом новом треугольнике находят геометрический центр, который делит его еще на три новых и так до тех пор пока общее количество точек на эталонной полигональной CAD-модели не станет сопоставимо с количеством точек в облаке, полученном от системы технического зрения, координаты вершин всех исходных и полученных треугольников сохраняют с формированием уплотненного облака точек, выполняют совмещение исходного и уплотненного облаков точек с помощью стандартного итеративного метода поиска ближайших точек ICP, по итогам совмещения получают функцию с оптимальным параметром функции трансформации, применяют ее к координатам базовых точек траектории обработки, получают координаты базовых точек траектории обработки на зафиксированном крупногабаритном тонкостенном изделии и выполняют интерполяцию траектории по базовым точкам.
Способ автоматической обработки крупногабаритных тонкостенных изделий
Источник поступления информации: Роспатент

Показаны записи 51-60 из 171.
20.01.2018
№218.016.11d0

Способ производства хлебобулочных изделий

Изобретение относится к пищевой промышленности, в частности к хлебопекарной отрасли. Способ производства хлебобулочных изделий включает приготовление закваски на основе большой густой ржаной закваски (БГРЗ), муки ржаной и воды, приготовление полуфабриката на основе растительного сырья и воды,...
Тип: Изобретение
Номер охранного документа: 0002634002
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.11fe

Морская ледостойкая платформа

Изобретение относится к морским мобильным платформам. Морская ледостойкая платформа содержит плиту основания, выполненную с возможностью регулирования ее плавучести, соосно сопряженную с опорной оболочкой, на которой установлено верхнее строение с возможностью вертикального перемещения вдоль...
Тип: Изобретение
Номер охранного документа: 0002634143
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1cc1

Способ определения удельной энергии механического разрушения льда

Изобретение относится к области исследования механических свойств материалов, а точнее к способам (нагружения материала образца) определения энергетических характеристик разрушения льда. Сущность изобретения: осуществляют изготовление образца в виде осесимметричного тела с параллельными верхней...
Тип: Изобретение
Номер охранного документа: 0002640452
Дата охранного документа: 09.01.2018
13.02.2018
№218.016.2091

Способ резки заготовки, выполненной из магния или магниевого сплава

Способ резки материалов лазерным лучом может быть использован в машиностроении для резки магниевых сплавов. В процессе резки из области реза удаляют продукты разрушения посредством газа. В качестве технологического газа используют инертный газ высокой чистоты. Технологический газ подводят...
Тип: Изобретение
Номер охранного документа: 0002641443
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.209b

Способ измерения абсолютного положения конечного звена многозвенного механизма промышленного робота

Изобретение относится к способам управления положением конечного звена многозвенного механизма промышленного робота. При осуществлении способа используют две неподвижные видеокамеры и вычисляют положение звена механизма с использованием уравнений обратной кинематики. При этом за пределами...
Тип: Изобретение
Номер охранного документа: 0002641604
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.20c3

Полуфабрикат мясорастительный рубленый

Изобретение относится к пищевой промышленности, в частности к производству комбинированных продуктов, включающих сырье животного и растительного происхождения, и может быть использовано для приготовления полуфабрикатов мясорастительных рубленых. Полуфабрикат содержит мясо котлетное говяжье и...
Тип: Изобретение
Номер охранного документа: 0002641529
Дата охранного документа: 18.01.2018
17.02.2018
№218.016.2bd2

Катушка дифференцирующего индукционного преобразователя тока

Изобретение относится к электротехнике, а именно к конструкции дифференцирующих индукционных преобразователей тока (ДИПТ), и предназначено для измерения тока в проводниках высоковольтных электроэнергетических систем. Катушка охватывает изолятор ввода в какое-либо электрооборудование:...
Тип: Изобретение
Номер охранного документа: 0002643160
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2d69

Тепловая система газоохлаждаемого реактора атомной энергетической установки

Изобретение относится к области энергетики и, в частности, к атомным энергетическим установкам, работающим по комбинированному циклу. Тепловая система включает газотурбинный и паротурбинный циклы утилизации тепла, при использовании гелия в качестве рабочего тела газотурбинного цикла и пара в...
Тип: Изобретение
Номер охранного документа: 0002643510
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.334b

Состав для производства леденцовой карамели

Изобретение относится к пищевой промышленности, к кондитерской отрасли и может быть использовано при производстве карамели. Предложен состав для производства леденцовой карамели, содержащий подсластитель, патоку, лимонную кислоту, воду питьевую и добавку из растительного сырья, причем в...
Тип: Изобретение
Номер охранного документа: 0002645348
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.35c8

Вяжущее

Изобретение относится к строительной индустрии, а именно к производству вяжущих. Вяжущее содержит, мас.%: портландцемент – 45-55; туф вулканический – 9-19; нитробензойная кислота либо полиакриловая кислота – 1,23-2,38; вода дистиллированная – остальное, при этом для затворения применяют...
Тип: Изобретение
Номер охранного документа: 0002646281
Дата охранного документа: 02.03.2018
Показаны записи 51-60 из 62.
26.06.2019
№219.017.92d0

Способ управления манипулятором

Изобретение относится к робототехнике и, в частности, к системам управления манипуляторами, имеющими избыточную степень подвижности и конструктивные ограничения перемещения во вращательных степенях подвижности. Изобретение обеспечивает сохранение заданной точности выполнения всех предписанных...
Тип: Изобретение
Номер охранного документа: 0002692360
Дата охранного документа: 24.06.2019
10.07.2019
№219.017.ad6e

Устройство для управления приводом робота

Изобретение относится к робототехнике и может быть использовано для создания систем управления приводами робота. Электропривод робота содержит последовательно соединенные первый сумматор, первый блок умножения, второй сумматор, усилитель и электродвигатель. Через редуктор электродвигатель...
Тип: Изобретение
Номер охранного документа: 0002355563
Дата охранного документа: 20.05.2009
14.07.2019
№219.017.b4d9

Система коррекции траектории движения манипулятора

Изобретение относится к области автоматического управления динамическими объектами и может быть использовано при автоматическом управлении многозвенными манипуляторами, устанавливаемыми на подводных аппаратах (ПА). Технический результат заключается в обеспечении высокой точности перемещения...
Тип: Изобретение
Номер охранного документа: 0002462745
Дата охранного документа: 27.09.2012
13.11.2019
№219.017.e09f

Самонастраивающийся электропривод манипулятора

Изобретение относится к робототехнике и может быть использовано при создании приводов манипуляторов. Задачей изобретения является обеспечение полной инвариантности динамических свойств электропривода третьей степени подвижности манипулятора к непрерывным и быстрым изменениям его динамических...
Тип: Изобретение
Номер охранного документа: 0002705734
Дата охранного документа: 11.11.2019
13.11.2019
№219.017.e0c2

Самонастраивающийся электропривод манипулятора

Изобретение относится к робототехнике и может быть использовано при создании приводов манипуляторов. Задачей изобретения является обеспечение полной инвариантности динамических свойств электропривода третьей степени подвижности манипулятора к непрерывным и быстрым изменениям его динамических...
Тип: Изобретение
Номер охранного документа: 0002705739
Дата охранного документа: 11.11.2019
13.11.2019
№219.017.e129

Самонастраивающийся электропривод манипулятора

Изобретение относится к робототехнике и может быть использовано при создании приводов манипуляторов. Задача изобретения заключается в обеспечении полной инвариантности динамических свойств электропривода второй степени подвижности манипулятора к непрерывным и быстрым изменениям его динамических...
Тип: Изобретение
Номер охранного документа: 0002705737
Дата охранного документа: 11.11.2019
15.11.2019
№219.017.e230

Самонастраивающийся электропривод манипулятора

Изобретение относится к робототехнике и может быть использовано при создании электроприводов манипуляторов. Задачей изобретения является обеспечение полной инвариантности динамических свойств рассматриваемого электропривода поворота при произвольном линейном перемещения манипулятора в...
Тип: Изобретение
Номер охранного документа: 0002706079
Дата охранного документа: 13.11.2019
16.11.2019
№219.017.e31b

Устройство для очистки корпусов судов

Изобретение относится к робототехнике и может быть использовано при создании приводов манипуляторов. Конструктивные особенности заявленного устройства позволяют перемещать рабочий инструмент, предназначенный для очистки, в любом направлении вдоль очищаемой поверхности корпуса судна с...
Тип: Изобретение
Номер охранного документа: 0002706267
Дата охранного документа: 15.11.2019
20.04.2020
№220.018.1647

Способ калибровки кинематических параметров многостепенных манипуляторов

Изобретение относится к области робототехники и может быть использовано при уточнении геометрических параметров звеньев многостепенных манипуляторов, в частности промышленных, подводных, коллаборативных. Для оценки параметров ручным путем выводят инструмент с разной ориентацией в произвольную...
Тип: Изобретение
Номер охранного документа: 0002719207
Дата охранного документа: 17.04.2020
03.06.2020
№220.018.2367

Способ перемещения конвейером объектов

Способ перемещения конвейером объектов, направляемых к обрабатывающей изображение видеокамере, размещенной в направлении движения конвейера с возможностью определения формы объектов и передачи полученных изображений для регистрации и записи в запоминающее устройство, а затем – к рабочей зоне...
Тип: Изобретение
Номер охранного документа: 0002722556
Дата охранного документа: 01.06.2020
+ добавить свой РИД