×
14.02.2019
219.016.ba44

Способ учета перетоков газа по техногенным флюидопроводящим каналам между двумя газоконденсатными пластами

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002679773
Дата охранного документа
12.02.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к нефтегазовой промышленности, а именно к способам учета межпластовых перетоков газа, образующихся вследствие проведения мероприятия по гидравлическому разрыву пласта (ГРП) в близлежащих пластах, являющихся самостоятельными объектами подсчета запасов. Технический результат заключается в повышении точности оценки извлекаемых запасов с учетом количества пластового газа, мигрирующего из одного пласта в другой, вследствие образования техногенного флюидопроводящего канала при проведении ГРП. Способ учета межпластовых перетоков газа, образующихся вследствии проведения мероприятия по гидравлическому разрыву пласта в двух близлежащих пластах, являющихся самостоятельными объектами подсчета запасов, при этом исходной информацией для осуществления учета межпластовых перетоков являются утвержденные величины содержания компонентов С пластов и утвержденные плотности пластового газа и результаты газоконденсатных исследований (ГКИ), в результате которых определяют текущее потенциальное содержание конденсата и дебит пластового газа. При этом на основе закона сохранения массы определяют дебит пластового газа пласта, из которого осуществлялся переток, согласно выражению:, где Q - дебит пластового газа по результатам ГКИ, тыс.м /сут; - содержание компонентов С в пластовом газе по результатам ГКИ, г/м; Q - дебит пластового газа пласта, из которого осуществлялся переток, тыс.м/сут; ρ - утвержденная плотность газа пласта, из которого осуществлялся переток, кг/м; ρ - утвержденная плотность газа пласта, в который осуществляется переток, кг/м; - утвержденная величина содержания компонентов C пласта, из которого осуществлялся переток, кг/м; - утвержденная величина содержания компонентов С пласта, в который осуществлялся переток, г/м. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к нефтегазовой промышленности, а именно к способам учета межпластовых перетоков газа, образующихся вследствие проведения мероприятия по гидравлическому разрыву пласта (ГРП) в близлежащих пластах, являющихся самостоятельными объектами подсчета запасов, и может быть использовано для корректного списания запасов в разрабатываемых газоконденсатных пластах.

Важным элементом контроля за разработкой месторождения является учет добычи пластового газа с каждого пласта, разрабатываемого одной скважиной. Посредством контроля за добычей газа с каждого пласта, производится списание запасов газа с государственного баланса, а достоверные сведения по вкладу пластов, являющихся самостоятельными объектами подсчета запасов, позволяют наиболее точно производить списание запасов.

Так в случае, если каждый пласт, который вторично вскрыт (перфорирован) в скважине, является самостоятельным объектом подсчета запасов, недропользователю необходимо производить списание запасов добытого газа на основании определения вклада каждого пласта в суммарный дебит скважины. В большинстве случаев это реализуется путем проведения механической расходометрии и аналогичных методов позволяющих установить дебит газа с каждого пласта. Однако на практике встречаются случаи, когда показания механического расходомера вызывают сомнения в достоверности данных, в частности при высоких значениях водного фактора в скважинах или невозможностью спуска расходомера до искусственного забоя скважины.

Помимо вышеизложенного существуют сложности списания запасов с многопластовых объектов, в которых был проведен гидроразрыв (ГРП) пласта. Так, в скважинах, вскрывающих низкопроницаемые газоконденсатные залежи, являющиеся самостоятельными объектами подсчета запасов, рентабельная разработка пластов без применения интенсификации притока методом ГРП невозможна. После проведения ГРП на каждый пласт, существует риск формирования техногенного флюидопроводящего канала, по которому возможен межпластовый переток газа из одного объекта подсчета запасов в другой. При этом по данным механической расходометрии после интенсификации притока из двух перфорированных пластов может работать только один (по причинам перекрытия пласта проппантной пробкой либо иным причинам), а по результатам симуляции ГРП (или по данным микросейсмического мониторинга ГРП) прогнозируется наличие прорыва одной из трещин в соседний пласт. Помимо этого при проведении газоконденсатных исследований (ГКИ) после интенсификации притока отмечается повышенное содержание компонентов С5+ в добываемой продукции работающего пласта, которое не соответствует утвержденному значению по работающему пласту. Эти факторы указывают на возможную работу пласта, который по данным механической расходометрии не работает. Данные обстоятельства могут затруднить правильную оценку добычи газа с каждого самостоятельного объекта подсчета запасов.

В настоящий момент существует множество примеров одновременной эксплуатации двух и более пластов газовых месторождений. Для решения основных проблем - регулирование притока и синхронизации выработки многими исследователями разработаны и обоснованы такие способы как: одновременно-раздельная эксплуатация нескольких продуктивных пластов (ОРРЭНЭО) [Юдаков А.Н. Эффективность применения одновременно раздельной закачки на Южной лицензионной территории Приобского месторождения / И.Б. Дубив, С.Ф. Мулявин // Бурение и нефть. - 2009. - №5. - С. 36-39; Барышников А.В., Поляков Д.Б., Шаймарданов Р.Ф. Внедрение и совершенствование технологии одновременно-раздельной эксплуатации скважин на Южной лицензионной территории Приобского месторождения // Нефтяное хозяйство. 2010. - №5. - С. 121-123; Афанасьев В.А. Оптимизация компоновки и насосного оборудования ОРЭ скважин / В.А. Афанасьев // Инженерная практика. 2012. - №2. - С. 36-39]; Применение скважин с разным заканчиванием [Герасименко С.А. Результаты вычислительных экспериментов по проектированию разработки многопластовых объектов (статья) / С.А. Герасименко, Д.Н. Глумов, В.В. Журавлев, А.С. Самойлов. // Территория нефтегаз. - 2012. - №12. - С. 16-23; Самойлов А.С.Разработка технологических решений по повышению эффективности эксплуатации многопластового объекта Южно-Хадырьяхинского месторождения (статья) / А.С. Самойлов, Д.Н. Глумов, С.А. Герасименко, В.В. Журавлев // Нефтегазовое дело. - 2013. - №4. - С. 124-149]; Проведение избирательных методов увеличения компонентоотдачи [Грачев С.И. Обоснование технологии разработки многопластовых залежей (статья) / С.И. Грачев, А.В. Стрекалов, А.Б. Рублев, И.В. Захаров, С.М. Стрикун // Известия высших учебных заведений. Нефть и Газ. - 2012. - №3 - С. 44-49]. Однако в отмеченных работах контроль выработки запасов затруднителен и не имел решения.

Известен способ одновременно-раздельного исследования и разработки многопластовых месторождений, включающий спуск в нагнетательную скважину подземной компоновки, для исследования гидродинамической связи между пластами и целенаправленной закачки по ним индикатор-трассера, замер в скважине забойного давления и определение наличия межпластовых перетоков по появлению индикатора-трассера в добывающих скважинах [RU 2371576 С1, МПК Е21В 47/10 (2006.01), опубл. 27.10.2009].

Известный способ позволяет определить в прискважинной зоне наличие межпластовых перетоков, однако исключает возможность оценить количественную характеристику межпластового перетока.

Технической проблемой является корректная оценка извлекаемых запасов, учитывающая определение количества газоконденсатной смеси (пластового газа), мигрирующей из одного пласта в другой, вследствие образования техногенного флюидопроводящего канала при проведении ГРП. Установление объемов межпластовых перетоков в свою очередь позволит производить списание запасов с пластов, в которых контроль за выработкой запасов затруднителен.

При осуществлении заявляемого технического решения поставленная проблема решается за счет достижения технического результата, который заключается в повышении достоверности количественного определения добытого газа на основании определения вклада каждого пласта в суммарный дебит скважины за счет учета определения объема межпластовых перетоков пластового газа, дренируемых одной скважиной.

В предложенном изобретении решается задача учета объема перетоков по техногенным флюидопроводящим каналам. Использование данного изобретения позволит провести количественную оценку межпластового перетока из одного пласта в другой и тем самым обеспечить наиболее достоверное списание запасов с подсчетных объектов (пластов). Новизной предложенного способа является использование потенциального содержания конденсата, как и его изменения, для оценки величины перетока из одного газоконденсатного пласта в другой.

Установлено, что в скважинах, разрабатывающих два газоконденсатных пласта при отсутствии вклада одного из них (по данным расходометрии), наблюдалось изменение потенциального содержания конденсата (по результатам газоконденсатных исследований скважины) для работающего пласта, которое указывало на то, что данное изменение обусловлено притоком с неработающего соседнего пласта. Вероятность гидродинамического сообщения между пластами устанавливалась по данным моделирования ГРП (где оценивается вероятность прорыва трещины в соседний пласт) или по данным микросейсмического мониторинга, где фиксация источников акустической эмиссии также позволяет установить вероятность прорыва трещины в соседний пласт.

После установления факта перетока по техногенным флюидопроводящим каналам по результатам симуляции ГРП, либо по данным проведения микросейсмического мониторинга процесса ГРП, с учетом геомеханических свойств пород, или иными известными способами, с использованием утвержденных в проектном документе физико-химических свойств пластового флюида, насыщающего каждый пласт, а также результатов газоконденсатных исследований, выполненных в ходе эксплуатации скважины, на основе закона сохранения массы определяют величину перетока пластового газа по техногенным флюидопроводящим каналам между двумя газоконденсатными пластами согласно выражению:

где Qпл. газа - дебит пластового газа по результатам ГКИ, тыс.м3/сут;

- содержание компонентов С5+ в пластовом газе по результатам ГКИ, г/м3;

QA - дебит пластового газа пласта, из которого осуществлялся переток (неработающий пласт), тыс.м3/сут;

ρА - утвержденная плотность газа пласта, из которого осуществлялся переток, кг/м3;

ρБ - утвержденная плотность газа пласта, в который осуществляется переток (работающий пласт), кг/м3;

ρсмеси - плотность пластового газа по результатам ГКИ, кг/м3;

- утвержденная величина содержание компонентов С5+ пласта, из которого осуществлялся переток, кг/м3;

- утвержденная величина содержание компонентов С5+ пласта, в который осуществлялся переток, кг/м3.

Заявляемый способ учета перетоков пластового газа между двумя пластами позволит осуществлять более корректный учет извлекаемых запасов, при этом учитываются известные физико-химическими свойства пластового газа, насыщающего каждый из пластов, а также потенциальное содержание конденсата и плотность пластового газа.

Основной исходной информацией для осуществления способа являются результаты ГКИ (с использованием сепарационного оборудования), в результате которых определяют следующие величины:

- дебит пластового газа, тыс.м3/сут;;

- плотность пластового газа (по результатам лабораторного анализа проб газа и конденсата), кг/м3;

- потенциальное содержание компонентов С5+, г/м3;

Помимо этого, согласно принятой в проектном документе на разработку месторождения модели пластового флюида и утвержденных свойств добываемого флюида, рассматриваемых пластов используются следующие параметры:

- плотность пластового газа, кг/м3 (проектное значение);

- потенциальное содержание компонентов С5+, г/м3 (проектное значение);

Имеющиеся результаты газоконденсатных исследований и утвержденные проектным документом значения потенциального содержания конденсата и плотности газа, используют в формуле (1), вывод которой представлен ниже.

Известен закон сохранения массы [Б.М. Яворский, А.А. Детлаф. Справочник по физике для инженеров и студентов вузов / Издательство «Наука». - М. 1979] для газа:

где

QБ - дебит пластового газа пласта в который осуществлялся переток, тыс.м3/сут;

Закон сохранения массы [Б.М. Яворский, А.А. Детлаф. Справочник по физике для инженеров и студентов вузов / Издательство «Наука». - М. 1979] для дегазированного конденсата будет иметь вид:

Решая систему двух уравнений относительно QA, получают соотношение, определяющее величину перетока по техногенным флюидопроводящим каналам по формуле (1).

Сущность заявляемого технического решения поясняется примером и иллюстративными материалами, где на фиг. 1 схематично показан возможный вариант образования техногенного флюидопроводящего канала 3 между подсчетными объектами: пласт 4 (работающий) и пласт 5 (неработающий), обозначено: 1 - ствол скважины, 2 - развитие трещин ГРП, 6 - глинистая перемычка, на фиг. 2 представлена визуализация результатов микросейсмического мониторинга ГРП двух пластов 4 и 5, по данным которого установлен прорыв трещины ГРП в соседний пласт, цифрами обозначено -7 - интервал перфорации, 8 - источник акустической эмиссии при ГРП. Следует отметить, что образование техногенного флюидопроводящего канала между подсчетными объектами возможно как в нижележащим пласте, так и выше лежащим.

Способ осуществляют следующим образом.

На скважине 1, эксплуатирующей два пласта 4 и 5, разделенных, например, глинистой перемычкой 6, проведено мероприятие по интенсификации притока ГРП на каждый пласт с образованием трещин ГРП 2. Пласт 4 вторично вскрыт (перфорирован), с образованием интервала перфорации 7. По результатам механической расходометрии отработка нижележащего пласта 5 не отмечается. Таким образом, списание запасов ведется на основании результатов механической расходометрии, а именно по одному пласту 4 (работающему). По результатам симуляции ГРП, в частности, в примере использовали данные микросейсмического мониторинга ГРП с применением источника акустической эмиссии 8, прогнозируется наличие техногенного флюидопроводящего канала 3. Помимо этого также при проведении ГКИ отмечается повышенное содержание компонентов фракции C5+ в добываемой продукции (пластового газа) работающего пласта 4.

По результатам ГКИ скважины, выполненные с использованием сепарационного оборудования, определяют дебит пластового газа, м3/сут.; плотность пластового газа, кг/м3 (по результатам лабораторного анализа проб газа и конденсата); потенциальное содержание в пластовом газе фракции компонентов C5+ (по данным хроматографического анализа).

Согласно принятой в проектном документе на разработку месторождения модели пластового флюида и утвержденных свойств добываемого флюида рассматриваемых пластов, используют проектные значения плотности пластового газа, потенциального содержания фракции С5+ в пластовом газе.

Определяют величину перетока по техногенному флюидопроводящему каналу - дебит пластового газа пласта, из которого осуществляется переток (неработающий пласт), тыс.м3/сут по формуле (1).

Пример.

По результатам ГКИ скважины, выполненные с использованием сепарационного оборудования перед проведением учета величины перетока пластового газа, определяют следующие данные:

дебит пластового газа - 320,0 тыс.м3/сут.;

плотность пластового газа - 1,17 кг/м3;

потенциальное содержание в пластовом газе фракции компонентов C5+ - 330,0 г/м3;

Зная утвержденные проектные значения, соответствующие принятой модели пластового флюида (согласно проектному документу на разработку месторождения): ρА=1,20 кг/м3; ρБ=1,15 кг/м3; определяют величину перетока по техногенному флюидопроводящему каналу - дебит пластового газа пласта, из которого осуществляется переток (неработающий пласт), тыс.м3/сут;

Таким образом, заявляемый способ обеспечивает достоверность количественной оценки межпластовых перетоков при списании запасов газоконденсатных пластов, дренируемых одной скважиной, более точную адаптацию цифровой фильтрационной модели и способствует выработке рекомендаций по повышению технологической эффективности гидравлического разрыва пласта.


Способ учета перетоков газа по техногенным флюидопроводящим каналам между двумя газоконденсатными пластами
Способ учета перетоков газа по техногенным флюидопроводящим каналам между двумя газоконденсатными пластами
Способ учета перетоков газа по техногенным флюидопроводящим каналам между двумя газоконденсатными пластами
Способ учета перетоков газа по техногенным флюидопроводящим каналам между двумя газоконденсатными пластами
Способ учета перетоков газа по техногенным флюидопроводящим каналам между двумя газоконденсатными пластами
Способ учета перетоков газа по техногенным флюидопроводящим каналам между двумя газоконденсатными пластами
Способ учета перетоков газа по техногенным флюидопроводящим каналам между двумя газоконденсатными пластами
Способ учета перетоков газа по техногенным флюидопроводящим каналам между двумя газоконденсатными пластами
Способ учета перетоков газа по техногенным флюидопроводящим каналам между двумя газоконденсатными пластами
Источник поступления информации: Роспатент

Показаны записи 1-10 из 18.
19.01.2018
№218.016.0776

Провод для воздушных линий электропередачи

Изобретение относится к области электротехники, а частности к конструкции неизолированных многопроволочных проводов, для воздушных линий электропередачи. Неизолированный провод для воздушных линий электропередачи содержит стальной сердечник (1), выполненный из одной или нескольких проволок (2),...
Тип: Изобретение
Номер охранного документа: 0002631421
Дата охранного документа: 22.09.2017
10.05.2018
№218.016.4a62

Способ перевооружения газоконденсатной скважины

Изобретение относится к нефтегазодобывающей промышленности и может быть применено при техническом перевооружении газоконденсатных скважин. Способ включает глушение скважины, демонтаж елки фонтанной арматуры, установку противовыбросового оборудования на трубную головку фонтанной арматуры,...
Тип: Изобретение
Номер охранного документа: 0002651716
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4ab8

Способ эксплуатации самозадавливающейся газовой скважины

Изобретение относится к нефтегазодобывающей промышленности, в частности к эксплуатации газовых скважин на завершающей стадии разработки, в режиме самозадавливания. Способ эксплуатации самозадавливающейся газовой скважины, характеризующийся тем, что включает введение пенообразующего состава на...
Тип: Изобретение
Номер охранного документа: 0002651688
Дата охранного документа: 23.04.2018
09.06.2018
№218.016.5c20

Способ обогащения гелием гелийсодержащего природного газа

Изобретение относится к нефтегазовой и химической промышленности и касается способа обогащения гелием гелийсодержащего природного газа. Способ содержит этапы, на которых обеспечивают канал, выполненный в виде, по меньшей мере, одной винтообразной однообъёмной спирали, состоящей из, по меньшей...
Тип: Изобретение
Номер охранного документа: 0002655905
Дата охранного документа: 29.05.2018
21.07.2018
№218.016.739b

Способ измерения дебита газовой скважины

Изобретение относится к газодобывающей промышленности, в частности к технологии измерения дебита (расхода) по газу для газовых скважин при проведении газодинамических исследований на установленных режимах фильтрации с использованием типового диафрагменного измерителя критического течения...
Тип: Изобретение
Номер охранного документа: 0002661777
Дата охранного документа: 20.07.2018
02.08.2018
№218.016.7761

Способ крепления скважины направлением в разрезе многолетнемерзлых пород с высокой льдистостью

Изобретение относится к строительству скважин и может быть использовано при оборудовании скважин направлением в многолетнемерзлых породах с высокой льдистостью. Технический результат – повышение качества крепления скважины и обеспечение ее эксплуатационной надежности. По способу предусматривают...
Тип: Изобретение
Номер охранного документа: 0002662830
Дата охранного документа: 31.07.2018
25.09.2018
№218.016.8b05

Способ ремонта трубопровода

Изобретение относится к трубопроводному транспорту и может быть использовано при ремонте эксплуатируемых трубопроводов. На дефектном участке вскрывают трубопровод, подготавливают дефектное место для проведения диагностики. Уточняют тип, линейные размеры и глубину дефекта стенки трубы методами...
Тип: Изобретение
Номер охранного документа: 0002667730
Дата охранного документа: 24.09.2018
03.10.2018
№218.016.8cbe

Способ локализации участков трубопроводов, подверженных влиянию геомагнитно-индуцированных блуждающих токов

Изобретение относится к области защиты подземных металлических сооружений от коррозии, вызванной источниками геомагнитно-индуцированных блуждающих токов. Сущность: по максимальным колебаниям разности потенциала «труба-земля» определяется начальная точка на трассе трубопровода, где...
Тип: Изобретение
Номер охранного документа: 0002668352
Дата охранного документа: 28.09.2018
26.12.2018
№218.016.abaa

Установка мобильная для исследования и освоения скважин

Изобретение относится к газовой промышленности, а именно к оборудованию для проведения исследований в целях подготовки исходных данных для подсчета запасов газа и конденсата, а также эксплуатационных характеристик газовых и газоконденсатных скважин на любой стадии их освоения. Технический...
Тип: Изобретение
Номер охранного документа: 0002675815
Дата охранного документа: 25.12.2018
29.12.2018
№218.016.aca3

Установка групповая гравиметрическая система капиллярного давления

Изобретение относится к измерительной технике, а именно может быть использовано для определения остаточной водонасыщенности порового пространства в образцах горных пород методом десатурации с использованием полупроницаемых керамических мембран в компьютеризированных станциях...
Тип: Изобретение
Номер охранного документа: 0002676227
Дата охранного документа: 26.12.2018
Показаны записи 1-4 из 4.
27.12.2014
№216.013.14b1

Способ контроля разработки нефтегазоконденсатного многопластового месторождения

Изобретение относится к нефтегазовой промышленности, а именно к способам контроля разработки нефтегазоконденсатных многопластовых месторождений. Технический результат - повышение точности определения оптимального технологического режима эксплуатации скважин, шлейфов и установки комплексной...
Тип: Изобретение
Номер охранного документа: 0002536721
Дата охранного документа: 27.12.2014
25.08.2017
№217.015.cb47

Способ эксплуатации газоконденсатной скважины

Изобретение относится к способам эксплуатации газовых и газоконденсатных скважин и может быть использовано для сокращения потерь ретроградного конденсата и предотвращения аккумулирования жидкости в стволе скважины. Способ включает замер термобарических параметров, таких как давление устьевое и...
Тип: Изобретение
Номер охранного документа: 0002620137
Дата охранного документа: 23.05.2017
26.01.2019
№219.016.b47b

Способ получения достоверных данных о газоконденсатной характеристике пластового газа для залежей, находящихся при аномально высоком пластовом давлении

Изобретение относится к нефтегазовой промышленности, а именно к методам проверки качества промысловой информации о газоконденсатной характеристике, в частности к способам контроля над составом и свойствами пластового газа. Сущность изобретения: при геологоразведочных работах и в процессе...
Тип: Изобретение
Номер охранного документа: 0002678271
Дата охранного документа: 24.01.2019
08.04.2019
№219.016.feab

Способ определения динамического забойного давления газоконденсатной скважины

Изобретение относится к нефтегазовой промышленности, а именно к способам расчета динамического забойного давления в газоконденсатных скважинах. Способ включает определение дебита, относительной плотности газоконденсатной смеси, устьевых значений давления и температуры, фактические значения...
Тип: Изобретение
Номер охранного документа: 0002684270
Дата охранного документа: 04.04.2019
+ добавить свой РИД