×
13.02.2019
219.016.b9c2

Результат интеллектуальной деятельности: ГАЗОВЫЙ СВЧ-СЕНСОР

Вид РИД

Изобретение

Аннотация: Использование: для детектирования малых концентраций различных газов и летучих соединений. Сущность изобретения заключается в том, что газовый СВЧ-сенсор содержит микрополосковую линию с заземляющим металлическим слоем и резонатор со слоем газоактивного материала на его поверхности, резонатор выполнен в виде микрополоскового гребенчатого конденсатора, встроенного в разрыв микрополосковой линии между её входом и выходом, и петлевого элемента, СВЧ-сенсор содержит цепь управления, которая состоит из p–i–n-диода, электрического фильтрующего элемента и источника управляющего напряжения, СВЧ-сенсор содержит металлическое основание, на котором размещены микрополосковая линия, p–i–n-диод и электрический фильтрующий элемент, при этом один конец петлевого элемента соединен с выходом микрополосковой линии, а второй конец петлевого элемента соединен с металлическим основанием, отрицательный полюс p–i–n-диода соединен с металлическим основанием, а положительный полюс p–i–n-диода подключен к источнику управляющего напряжения через фильтрующий элемент, причем петлевой элемент одним или более витками огибает p–i–n-диод, а заземляющий металлический слой микрополосковой линии гальванически соединен с металлическим основанием. Технический результат: обеспечение возможности повышения чувствительности газового СВЧ сенсора в широком диапазоне концентраций исследуемого газа. 8 ил.

Изобретение относится к аналитическому приборостроению, в частности к СВЧ-технике, а именно к СВЧ газовым сенсорам, и может быть использовано для детектирования малых концентраций различных газов и летучих соединений.

В сенсорных системах изменение импеданса рабочей поверхности газочуствительного слоя сопряженного с линией передачи при адсорбции молекул различных газов однозначно влияет на коэффициенты прохождения/отражения электромагнитной волны в СВЧ-диапазоне, а по характерному изменению частотных зависимостей этих коэффицинтов можно судить о концентрации и химическом составе анализируемого газа. Выбор того, где поместить газочувствительный материал зависит от того, где он будет максимально влиять на работу сенсора, при изменении газового состава окружающей среды.

Известен газовый сенсор (см. WO2012005738, МПК G01N29/02, G01R27/26, G08B21/14). Газовый сенсор представляет собой дисковый резонатор, поверхность которого покрыта пленкой углеродных нанотрубок. Для адекватного определения концентрации и состава исследуемого газа с помощью такого сенсора дополнительно вводился набор резонаторов с разными геометрическими размерами и соответственно с разными резонансными частотами. По полученному набору резонансных частот и по их характеристическому сдвигу при адсорбции молекул анализируемого газа на поверхности углеродных нанотрубок и оценивают концентрацию газа. Другой вариант определения концентрации исследуемого газа, описанный в данном патенте, предполагает наличие второго контольного резонатора, на который анализируемый газ не воздействовал. Затем сравнивают два сигнала, поступающие от двух сенсоров, и определяют разницу между двумя резонансными частотами, которую затем переводят в цифровую форму.

Однако данное сложное конструктивное решение дает низкую воспроизводимость параметров отклика на различные газы, что связано не только с неоднородной структурой газочувствительного слоя из углеродных нанотрубок в каждом резонаторе, но и с наличием технологического разброса геометрических размеров резонаторов. Также необходима сложная аналогово-цифровая система анализа для смеси нескольких газов для устранения неоднозначности полученных результатов в зависимости от концентрации и состава исследуемой газовой смеси. Кроме этого отсутствие возможности перестройки резонансной частоты в процессе работы газового СВЧ-сенсора резко увеличивает погрешность измерения больших концентраций исследуемого газа.

Другой вариант конструкции СВЧ газового сенсора предложен в работе («Novel Microwave Gas Sensor using Dielectric Resonator With SnO2 Sensitive Layer» H. Hallil, P. Menini and H. Aubert. Procedia Chemistry 1 (2009) 935–938). В качестве резонатора используют дисковый диэлектрический резонатор на поверхности, которого нанесен газочувствительный слой из оксида олова. По характерному сдвигу одного из резонансов (в диапазоне 50-75 ГГц) описанного выше резонатора определяют концентрацию и состав газа (например, ацетилен).

Однако предложенная конструкция газового сенсора имеет ряд недостатков: система имеет множество достаточно близко расположенных резонансов, что затрудняет идентификацию сдвига одной из выбранных резонансных частот, для данной системы характерна невысокая температурная стабильность частоты резонанса и высокая чувствительность резонатора к различным неоднородностям в структурах диэлектрического резонатора и газочувствительного слоя. Описанные выше недостатки резко снижают точность и воспроизводимость определения концентрации исследуемого газа. Кроме этого у данной конструкции отсутствует возможность плавной перестройки резонансной частоты газового СВЧ-сенсора в широком диапазоне частот.

Кроме дисковых резонаторов в газовых сенсорах часто используют резонаторы сложной формы (J. Rossignol, et al., Microwave-based gas sensor with phthalocyanine film at room temperature, Sens. Actuators B: Chem. (2013), http://dx.doi.org/10.1016/j.snb.2013.03.092), например, в виде набора полуволновых микрополосковых отрезков соединенных между собой, часть из которых закорочены на землю. Полученный резонатор покрывают фталоциановой пленкой легированной кобальтом. Данная система имеет резонанс на частоте ~ 3.65 ГГц и при воздействии газа (например, аммиака) наблюдается сдвиг резонансной частоты, а величина сдвига зависит от концентрации аммиака.

В предложенной конструкции газового сенсора имеется ряд недостатков, таких как: сложность расчета топологии резонатора, из-за этого при изготовлении данного резонатора имеется большой разброс по частоте и добротности резонанса, а также отсутствие возможности настройки резонансной частоты перед началом работы газового сенсора и/или в процессе его работы при измерении концентрации исследуемого газа для повышения точности измерения концентрации анализируемого газа.

Наиболее близким к заявленному изобретению является микрополосковый СВЧ-сенсор, использующий в качестве газочувствительного слоя углеродные нанотрубки (см. US2005183492, МПК G01H13/00, G01N29/02). В СВЧ-сенсоре используют микрополосковый резонатор в виде диска, на поверхность которого нанесен чувствительный слой из однослойных или многослойных нанотрубок. С одного конца дисковый резонатор подключен к 50-омной микрополосковой линии передачи (МПЛП). На спектре отражения измерительной структуры наблюдается резонанс на частоте ~ 5,5 ГГц. При воздействии паров аммиака NH3 наблюдается линейное изменение частоты резонанса при увеличении концентрации аммиака.

Однако воспроизводимость параметров и чувствительность представленного газового СВЧ-сенсора достаточно низкая, что связано c недостаточно высокой добротностью резонатора. В предложенном способе реализации газового сенсора всегда присутствует значительная погрешность в определении концентрации исследуемого газа, связанная с разбросом параметров газочуствительного слоя (например, углеродные нанотрубки). Эти параметры зависят от способа нанесения газочувствительного слоя и от морфологии самих углеродных нанотрубок. Также требуется трудоемкая процедура обработки отклика резонансной системы в СВЧ-диапазоне и преобразования СВЧ-отклика в низкочастотный аналоговый сигнал, для дальнейшей его оцифровки. Кроме этого отсутствие возможности перестройки резонансной частоты снижает чувствительность данного газового СВЧ-сенсора при анализе больших концентраций исследуемого газа.

Технической проблемой изобретения является реализация возможности создания высокоэффективного газового СВЧ-сенсора, у которого параметры резонансной системы могут перестраиваться за счет электрического управления.

Технический результат заключается в повышении чувствительности газового СВЧ сенсора в широком диапазоне концентраций исследуемого газа, за счет возможности электрической перестройки резонансной частоты в широком диапазоне частот, а также в повышении технологичности процесса изготовления СВЧ-сенсора и снижении его себестоимости.

Указанная техническая проблема решается тем, что в газовом СВЧ-сенсоре, содержащем микрополосковую линию с заземляющим металлическим слоем, и резонатор со слоем газоактивного материала на его поверхности, согласно решению, резонатор выполнен в виде микрополоскового гребенчатого конденсатора, встроенного в разрыв микрополосковой линии между её входом и выходом, и петлевого элемента, СВЧ-сенсор содержит цепь управления, которая состоит из p–i–n-диода, электрического фильтрующего элемента и источника управляющего напряжения, СВЧ-сенсор содержит металлическое основание, на котором размещена микрополосковая линия, p–i–n-диод и электрический фильтрующий элемент, при этом один конец петлевого элемента соединен с выходом микрополосковой линии, а второй конец петлевого элемента соединен с металлическим основанием, отрицательный полюс p–i–n-диода соединен с металлическим основанием, а положительный полюс p–i–n-диода подключен к источнику управляющего напряжения через фильтрующий элемент, причем петлевой элемент одним или более витками огибает p–i–n-диод, а заземляющий металлический слой микрополосковой линии гальванически соединен с металлическим основанием.

Изобретение поясняется чертежами.

На фиг. 1 – изображена конструкция заявляемого электрически управляемого газового СВЧ-сенсора (вид сбоку).

На фиг. 2 – изображена конструкция заявляемого электрически управляемого газового СВЧ-сенсора (вид сверху).

На фиг. 3 – схема включения СВЧ-сенсора.

На фиг. 4 – представлена топология микрополосковой линии передачи с гребенчатым конденсатором.

На фиг. 5 – представлены зависимости коэффициента отражения СВЧ-сигнала от времени воздействия аммиака с фиксированной объемной концентрацией 500 ррм (1 – 0 мин, 2 – 1 мин, 3 – 5 мин, 4 – 10 мин, 5 – 15 мин).

На фиг. 6 – изображены зависимости изменения резонансной частоты СВЧ-сенсора от времени воздействия аммиака при циклической работе СВЧ-сенсора с различной объемной концентрацией аммиака (первая-100 ррм; вторая-500 ррм; третья-1500 ррм) в рабочей камере.

На фиг. 7 – представлена калибровочная кривая для определения концентрации аммиака в воздухе по величине сдвига резонансной частоты от величины объемной концентрации аммиака (0-1500 ррм) при фиксированном времени наблюдения t = 15 мин.

На фиг. 8 – представлена калибровочная кривая для определения концентрации аммиака в воздухе, полученная за счет компенсации сдвига резонансной частоты путем изменения величины управляющего тока, протекающего через p-i-n диод от объемной концентрации аммиака в диапазоне 0–1500 ррм при фиксированном времени наблюдения t = 15 мин.

Позициями на чертежах обозначены:

1 – газовый СВЧ-сенсор;

2 – микрополосковая линия передачи;

3 – заземляющий металлический слой микрополосковой линии передачи;

4 – микрополосковый гребенчатый конденсатор;

5 – вход микрополосковой линии передачи;

6 – выход микрополосковой линии передачи;

7 – петлевой элемент;

8 – слой газоактивного материала;

9 – p–i–n-диод;

10 – электрический фильтрующий элемент;

11 – источник управляющего напряжения;

12 – металлическое основание;

13 – диэлектрическая пластина;

14 – рабочая камера;

15 – натекатель;

16 – анализатор СВЧ-цепей.

Электрически управляемый газовый СВЧ-сенсор 1 содержит отрезок микрополосковой линии передачи 2 с заземляющим металлическим слоем 3 и резонатор, выполненный в виде микрополоскового гребенчатого конденсатора 4, встроенного в разрыв микрополосковой линии 2, между её входом 5 и выходом 6, и петлевого элемента 7. На поверхность микрополоскового гребенчатого конденсатора 4 нанесен слой газоактивного материала 8 в виде тонкой пленки из углеродных нанотрубок. Цепь управления газового СВЧ-сенсора 1 состоит из p–i–n-диода 9, электрического фильтрующего элемента 10 и источника управляющего напряжения 11. Газовый СВЧ-сенсор 1 содержит металлическое основание 12, на котором размещена микрополосковая линия передачи 2, таким образом, что заземляющий металлический слой 3 микрополосковой линии гальванически соединен с металлическим основанием 12, как это показано на фиг. 1 и фиг. 2. На металлическом основании 12 также размещен p–i–n-диод 9 и электрический фильтрующий элемент 10. Один конец петлевого элемента 7 соединен с выходом 6 микрополосковой линии, а второй конец петлевого элемента 7 соединен с металлическим основанием 12. Петлевой элемент одним или более витками огибает p–i–n-диод, при этом отрицательный полюс p–i–n-диода 9 соединен с металлическим основанием 12, а положительный полюс p–i–n-диода 9 подключен к источнику управляющего напряжения 11 через электрический фильтрующий элемент 10.

Предложенный газовый СВЧ-сенсор включается в СВЧ-схему на отражение. В этом случае входной СВЧ-сигнал подается на вход 5 микрополосковой линии передачи и на этом же входе 5 измеряется отраженный СВЧ-сигнал, содержащий информацию о степени поглощения контролируемого газа слоем газоактивного материала.

Микрополосковая линия передачи выполнена на основе диэлектрической пластины 13, на одной стороне которой размещен металлический полосковый проводник, в разрыв которого встроен микрополосковый гребенчатый конденсатор 4, а другая сторона покрыта заземляющим металлическим слоем 3.

Схема включения газового СВЧ-сенсора изображена на фиг. 3. Электрически управляемый газовый СВЧ-сенсор 1 помещают в камеру 14, в которую через натекатель 15 напускают газообразный аммиак. Вход 5 микрополосковой линии подключают к анализатору СВЧ-цепей 16.

С помощью источника управляющего напряжения 11, подключенного к положительному полюсу p–i–n-диода 9, управляют резонансной частотой газового СВЧ-сенсора.

Пример практической реализации изобретения.

Микрополосковый гребенчатый конденсатор 4, встроенный в разрыв микрополосковой линии 2 шириной 1 мм, между её входом 5 и выходом 6, изготовлен методом фотолитографии на одной стороне пластины 13 из поликора (Al2O3) толщиной 1 мм (см. фиг. 4), на другой стороне которой нанесен заземляющий металлический слой 3. Пластина 13 заземляющим металлическим слоем 3 припаяна припоем ПОСК-50-18 к металлическому основанию 12, к которому также припаян кремниевый диффузионный переключательный p–i–n-диод 9 типа 2А523А-4 его отрицательным электродом. Петлевой элемент 3 выполнен в виде трех витков медной проволоки диаметром 0.2 мм, огибающей корпус p–i–n-диода 9 и припаянной одним концом к выходу микрополосковой линии 6, а другим концом – к металлическому основанию 12. Положительный полюс p–i–n-диода 9 подключен к положительному полюсу источника управляющего напряжения 11 через фильтрующий элемент 10, состоящий из керамического конденсатора емкостью 10 мкФ и дросселя. Отрицательный полюс источника управляющего напряжения 11 гальванически соединен с металлическим основанием 12.

Используемые в СВЧ-сенсоре углеродные нанотрубки были получены газофазным химическим осаждением пропанобутановой смеси на металлическом катализаторе и имели следующие размеры: диаметр ~ 20 – 50 нм, длина ~ 1 мкм. Было проведено их диспергирование в ультразвуковой ванне УЗВ-4/150-МП (частота УЗ-колебаний 22 кГц, мощность УЗ-колебаний 100 Вт) в водном растворе с добавление ПАВ (цетилтриметиламмония бромида) в течение 30 минут. Полученная взвесь фильтровалась и наносилась на подогретую диэлектрическую подложку через маску с помощью пульвизатора. Толщина пленки из углеродных нанотрубок составляла ~ 1 мкм.

Для проведения измерений электрических параметров электрически управляемый газовый СВЧ-сенсор помещают в рабочую камеру, вход 5 микрополосковой линии через СВЧ-циркулятор подключают к входу векторного анализатора цепей Agilent PNA-L Network Analyzer N5230A через коаксиально-микрополосковый адаптер, а на p–i–n-диод подают прямое напряжение смещения. Для дегазации чувствительного слоя газового СВЧ-сенсора проводят отжиг пленки из углеродных трубок при температуре 1500С в течение 1 часа.

При помощи анализатора цепей были измерены частотные зависимости коэффициента отражения устройства при различных значениях электрического тока, протекающего через p–i–n-диод. Варьированием величины электрического тока, протекающего через p–i–n-диод, добиваются минимума коэффициента отражения СВЧ-сигнала от газового СВЧ-сенсора. Значение коэффициента отражения в минимуме на частоте 4,14 ГГц составляло ~ – 90 дБ, при токе через p–i–n-диод, равном 0.08 мА.

Затем напускают газообразный аммиак в рабочую камеру с объемной концентрацией 500 ррм (количество подаваемого аммиака с учетом объема рабочей камеры пересчитывается в величину объемной концентрации) и фиксируют сдвиг резонансной частоты в течение 15 минут.

На фиг. 5 представлены частотные зависимости коэффициента отражения электромагнитного излучения L=10⋅lg(Рпадотр), измеренные при различном времени воздействия газообразного аммиака с объемной концентрацией 500 ррм на углеродные нанотрубки в составе СВЧ-сенсора с фиксированным значением прямого тока I=0.08 мА, пропускаемого через p–i–n-диод, где Рпад – мощность СВЧ-излучения, поступающая на вход газового СВЧ-сенсора, Ротр – мощность СВЧ-излучения, отраженная от газового СВЧ-сенсора. Анализ частотных зависимостей коэффициента отражения электромагнитного излучения L(f) показал, что с течением времени наблюдается сдвиг резонансной частоты, величина которого достигала максимума и составляла 24 МГц на частоте резонанса ~ 4,14 ГГц при времени воздействия аммиака t = 15 минут, а коэффициент отражения изменял свое значение на 45 дБ. Чувствительность заявляемого СВЧ-сенсора составила ~ 48 кГц/ррм (при концентрации аммиака – 500 ррм).

На фиг. 6 изображены зависимости изменения резонансной частоты от времени воздействия аммиака при циклической работе СВЧ-сенсора с различной объемной концентрацией аммиака (первая-100 ррм; вторая-500 ррм; третья-1500 ррм) в рабочей камере.

Экспериментально установленные частотные зависимости коэффициента отражения при различных объемных концентрациях аммиака в рабочей камере, позволяют использовать предлагаемую структуру для создания высокочувствительного газового СВЧ-сенсора.

На основе экспериментальных данных была построена калибровочная кривая, которая представлена на фиг. 7, в виде зависимости сдвига резонансной частоты от величины объемной концентрации аммиака при фиксированном времени наблюдении (t = 15 мин), которая позволяет однозначно определять концентрацию аммиака в окружающем воздухе.

На основе экспериментальных данных была построена вторая калибровочная кривая, которая представлена на фиг. 8, в виде зависимости величины управляющего тока, протекающего через p–i–n-диод, при котором происходит компенсация сдвига резонансной частоты из-за адсорбции молекул аммиака на поверхности углеродных нанотрубок, от величины объемной концентрации аммиака при фиксированном времени наблюдении (t = 15 мин). В процессе измерения концентрации исследуемого газа возможно проводить подстройку частоты и добротности резонатора путем изменения величины пропускаемого тока через p–i–n-диод для сохранения максимальной добротности резонансной системы предложенного газового СВЧ-сенсора, что позволяет расширить диапазон измеряемых концентраций исследуемого газа при сохранении требуемой точности измерений концентрации анализируемого газа.

Таким образом, заявляемый электрически управляемый газовый СВЧ-сенсор, содержащий микрополосковую линию с заземляющим металлическим слоем и резонатор с пленкой из углеродных нанотрубок на его поверхности, который выполнен в виде микрополоскового гребенчатого конденсатора, встроенного в разрыв микрополосковой линии, и петлевого элемента, при этом цепь управления газового СВЧ-сенсора, которая состоит из p–i–n-диода, электрического фильтрующего элемента и источника управляющего напряжения, позволяет определять низкие концентрации аммиака (на уровне 100 ррм) в течение нескольких минут, за счет широкого диапазона перестройки частоты резонанса ~ 400 МГц (до 10% от частоты основного резонанса) и изменения величины потерь затухания на отражение более 70 дБ.

Устройство значительно снижает требования к параметрам элементов СВЧ-узлов, линий передач и характеристикам газочувствительного слоя, тем самым повышает технологичность процесса изготовления СВЧ-сенсора и снижает его себестоимость. Это связано с тем, что возможно провести предварительную электрическую настройку газового сенсора по частоте или по добротности резонанса перед началом его работы. Кроме этого значительно упрощается процедура обработки результатов измерений, так как сдвиг частоты СВЧ-сигнала при адсорбции молекул анализируемого газа на поверхности углеродных нанотрубок однозначно может быть преобразован в величину постоянного тока, протекающего через p–i–n-диод.

Газовый СВЧ-сенсор, содержащий микрополосковую линию с заземляющим металлическим слоем и резонатор со слоем газоактивного материала на его поверхности, отличающийся тем, что резонатор выполнен в виде микрополоскового гребенчатого конденсатора, встроенного в разрыв микрополосковой линии между её входом и выходом, и петлевого элемента, СВЧ-сенсор содержит цепь управления, которая состоит из p–i–n-диода, электрического фильтрующего элемента и источника управляющего напряжения, СВЧ-сенсор содержит металлическое основание, на котором размещены микрополосковая линия, p–i–n-диод и электрический фильтрующий элемент, при этом один конец петлевого элемента соединен с выходом микрополосковой линии, а второй конец петлевого элемента соединен с металлическим основанием, отрицательный полюс p–i–n-диода соединен с металлическим основанием, а положительный полюс p–i–n-диода подключен к источнику управляющего напряжения через фильтрующий элемент, причем петлевой элемент одним или более витками огибает p–i–n-диод, а заземляющий металлический слой микрополосковой линии гальванически соединен с металлическим основанием.
ГАЗОВЫЙ СВЧ-СЕНСОР
ГАЗОВЫЙ СВЧ-СЕНСОР
ГАЗОВЫЙ СВЧ-СЕНСОР
ГАЗОВЫЙ СВЧ-СЕНСОР
ГАЗОВЫЙ СВЧ-СЕНСОР
Источник поступления информации: Роспатент

Показаны записи 71-80 из 90.
15.03.2020
№220.018.0c62

Способ определения относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь диэлектрической структуры

Изобретение относится к области контрольно-измерительной техники и предназначено для одновременного определения относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь диэлектрических структур в сверхвысокочастотном диапазоне, и может найти применение для...
Тип: Изобретение
Номер охранного документа: 0002716600
Дата охранного документа: 13.03.2020
21.03.2020
№220.018.0e36

Направленный 3d ответвитель на магнитостатических волнах

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотно-избирательного ответвителя мощности. Техническая проблема изобретения заключается в создании 3D ответвителя СВЧ-мощности, обеспечивающего возможность...
Тип: Изобретение
Номер охранного документа: 0002717257
Дата охранного документа: 19.03.2020
15.04.2020
№220.018.14bf

Устройство для контролируемого получения пористых оксидов полупроводников in situ

Изобретение относится к области получения пористых анодных оксидов полупроводников и изучения полупроводниковых материалов в процессе их формирования (т.е. in situ). Техническая проблема заключается в возможности получения полупроводниковых наноструктурированных материалов с прогнозируемым...
Тип: Изобретение
Номер охранного документа: 0002718773
Дата охранного документа: 14.04.2020
06.07.2020
№220.018.3019

Способ синтеза апконверсионных частиц nayf:er,yb

Изобретение может быть использовано в биофизике, медицинской диагностике и терапии для преобразования инфракрасного излучения в видимое. Готовят водные растворы гексагидратов хлорида иттрия, хлорида иттербия, хлорида эрбия, а также цитрата натрия и фторида натрия. Полученные растворы...
Тип: Изобретение
Номер охранного документа: 0002725581
Дата охранного документа: 02.07.2020
07.07.2020
№220.018.3064

Способ бесконтактного измерения внутриглазного давления

Изобретение относится к медицине. Способ бесконтактного измерения внутриглазного давления включает воздействие на глаз воздушным импульсом и освещение оптическим излучением, преобразование отражённого от глаза оптического излучения в напряжение, регистрацию зависимости напряжения от времени,...
Тип: Изобретение
Номер охранного документа: 0002725854
Дата охранного документа: 06.07.2020
09.07.2020
№220.018.30bc

Способ детектирования терагерцовых электромагнитных волн

Использование: для создания нанодетекторов терагерцовых электромагнитных волн. Сущность изобретения заключается в том, что способ детектирования терагерцового электромагнитного излучения включает направление потока излучения на преобразователь, регистрацию отклика, по которому судят о наличии...
Тип: Изобретение
Номер охранного документа: 0002725899
Дата охранного документа: 07.07.2020
24.07.2020
№220.018.3606

Способ получения наночастиц хитозана

Изобретение относится к области химии полимеров и может быть использовано для получения полимерных наночастиц из хитозана. Способ предусматривает смешивание хитозана с кислотой и получение целевого продукта. Используют порошок высокомолекулярного хитозана, в качестве кислоты используют порошок...
Тип: Изобретение
Номер охранного документа: 0002727360
Дата охранного документа: 21.07.2020
24.07.2020
№220.018.371e

Оптически управляемый переключатель на магнитостатических волнах

Изобретение относится к области радиотехники СВЧ и касается оптически управляемого переключателя. Переключатель содержит управляющий источник света и волноводную структуру. Волноводная структура выполнена из пленки железо-иттриевого граната, расположенной на подложке галлий-гадолиниевого...
Тип: Изобретение
Номер охранного документа: 0002727293
Дата охранного документа: 21.07.2020
26.07.2020
№220.018.3881

Способ определения нитрит-ионов

Изобретение относится к аналитической химии, а именно к способу определения нитрит-ионов. Способ включает обработку анализируемой пробы растворами органических реагентов, один из которых на основе п-нитроанилина, а другой дифениламина, выделение из полученной реакционной смеси мицеллярной фазы...
Тип: Изобретение
Номер охранного документа: 0002727879
Дата охранного документа: 24.07.2020
21.04.2023
№223.018.4f1b

Устройство подзарядки аккумулятора беспилотного летательного аппарата

Изобретение относится к подзарядке аккумуляторов беспилотных летательных аппаратов (БЛА) в процессе полета. Устройство подзарядки аккумулятора беспилотного летательного аппарата содержит пороговое устройство, источник питания в виде ионистора и бортовые электроды, выполненные в виде двух блоков...
Тип: Изобретение
Номер охранного документа: 0002794005
Дата охранного документа: 11.04.2023
Показаны записи 51-51 из 51.
07.07.2020
№220.018.3064

Способ бесконтактного измерения внутриглазного давления

Изобретение относится к медицине. Способ бесконтактного измерения внутриглазного давления включает воздействие на глаз воздушным импульсом и освещение оптическим излучением, преобразование отражённого от глаза оптического излучения в напряжение, регистрацию зависимости напряжения от времени,...
Тип: Изобретение
Номер охранного документа: 0002725854
Дата охранного документа: 06.07.2020
+ добавить свой РИД