×
03.02.2019
219.016.b6cd

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОЙ КОЛОННЫ КРУГЛОГО СЕЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области пожарной безопасности зданий. Сущность: осуществляют проведение технического осмотра, установление вида бетона и арматуры железобетонного элемента, выявление условий его опирания и крепления, определение времени наступления предельного состояния по признаку потери несущей способности железобетонного элемента под испытательной нагрузкой в условиях стандартного теплового воздействия, проведение оценочных испытаний без разрушения по комплексу единичных показателей качества железобетонного элемента, при котором технический осмотр сопровождают инструментальными измерениями геометрических размеров железобетонного элемента и его опасных сечений, устанавливают площади бетона и арматуры в опасном сечении. Определяют показатели термодиффузии бетона, жесткость и критическую силу железобетонной колонны, влажность и плотность бетона. Находят предельные сопротивления бетона и арматуры на сжатие, степень армирования опасного сечения железобетонного элемента и величину интенсивности силовых напряжений в опасном сечении. В качестве железобетонного элемента принимают железобетонную колонну круглого сечения и дополнительно определяют надежность железобетонной колонны круглого сечения по назначению, выявляют сплошность ее тела в опасном сечении, фактический предел огнестойкости от начала стандартного огневого воздействия до потери несущей способности (F, мин), который определяют, используя аналитическое уравнение. Технический результат: возможность определить огнестойкость железобетонной колонны круглого сечения без натурного огневого воздействия, повышение достоверности статистического контроля качества и неразрушающих испытаний, снижение экономических затрат. 6 з.п. ф-лы, 3 ил.

Изобретение относится к области пожарной безопасности зданий. В частности, оно может быть использовано для классификации железобетонных колонн круглого сечения по показателям сопротивления их воздействию пожара. Это дает возможность обоснованного использования существующих железобетонных конструкций с фактическим пределом огнестойкости в зданиях различных классов пожароопасности.

Известен способ оценки огнестойкости железобетонной колонны здания путем испытания, включающего проведение технического осмотра, установление вида бетона и арматуры конструкции, выявление условия их опирания и крепления, определение времени наступления предельного состояния по признаку потери несущей способности конструкции под испытательной нагрузкой в условиях стандартного теплового воздействия /ГОСТ 30247.1-94. Конструкции строительные. Методы испытания на огнестойкость. Несущие и ограждающие конструкции/ [1].

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе испытания проводят на образце железобетонной колонны, на который воздействуют только постоянные и длительные нагрузки в их расчетных значениях с коэффициентом надежности равным единице.

Испытания проводят на специальном стендовом оборудовании в огневых печах до разрушения образцов конструкций. Размеры образцов ограничивают в зависимости от проемов стационарных огневых печей. Следовательно, стандартные огневые испытания трудоемки, не эффективны, не безопасны, имеют малые технологические возможности для проверки на опыте различных по размерам и различно нагруженных конструкций, не дают необходимой информации о влиянии единичных показателей качества конструкции на ее огнестойкость. Оценка огнестойкости железобетонной колонны по единичному показателю качества, например, по толщине защитного слоя бетона, как правило, не позволяет достоверно определить пригодность колонны для ее эксплуатации в здании заданной степени огнестойкости. По малому числу испытуемых образцов (2-3 шт) невозможно судить о действительном состоянии колонн здания. Результаты огневого испытания единичны и не учитывают разнообразия в закреплении концов железобетонной колонны, фактических размеров и армирования колонны, и схемы обогрева опасного сечения в условиях пожара.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ оценки огнестойкости железобетонного сжатого элемента здания путем испытания, включающего проведение технического осмотра, установление вида бетона и арматуры железобетонной конструкции, выявление условий ее опирания и крепления, определение времени наступления предельного состояния по признаку потери несущей способности железобетонной конструкции под испытательной нагрузкой в условиях стандартного огневого воздействия. Испытание железобетонной конструкции проводят без разрушения по комплексу единичных показателей качества, технический осмотр дополняют инструментальными измерениями геометрических размеров железобетонной конструкции и ее опасного сечения, устанавливают площади бетона и рабочей арматуры в опасном сечении, выявляют схему его обогрева при пожаре, определяют показатели плотности бетона и его влажности в естественном состоянии и величину показателя термодиффузии бетона, находят предельные сопротивления бетона и арматуры на сжатие, степень армирования опасного сечения колонны, устанавливают величину испытательной нагрузки на железобетонную колонну и величину интенсивности силовых напряжений в опасном сечении, и, используя полученные интегральные параметры железобетонной колонны, по номограмме вычисляют фактический предел огнестойкости Fur, мин; | Патент №2281482 RU МПК G01N 25/50. Способ определения огнестойкости сжатых элементов железобетонных конструкций здания /Ильин Н.А., Бутенко С.А., Эсмонт С.В.; заяв. СГАСУ: 06.09.04; опубл. 18.02.06. Бюл. №22/ [2].

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, принятого за прототип, относится то, что использование номограммы для определения фактической огнестойкости железобетонного сжатого элемента дает результаты расчета с большей погрешностью, в ряде случаев требуется дополнительное построение графиков номограммы; кроме этого при построении номограммы не учитываются показатели надежности железобетонной колонны по назначению (уровню ответственности), особенности условий обогрева опасного сечения колонны, глубина залегания продольной арматуры, коэффициент его продольного изгиба.

Сущность изобретения заключается в установлении показателей пожарной безопасности здания в части гарантированной длительности сопротивления железобетонной колонны круглого сечения в условиях пожара; в определении фактических пределов огнестойкости железобетонной колонны при проектировании, строительстве и эксплуатации здания; в снижении экономических затрат при испытании железобетонной колонны на огнестойкость.

Технический результат - исключение огневых испытаний при определении огнестойкости железобетонной колонны круглого сечения в здании или его фрагменте; снижение трудоемкости оценки огнестойкости железобетонной колонны, расширение технологических возможностей определения фактической огнестойкости различно нагруженных железобетонных колонн любых размеров и возможность сопоставления полученных результатов с результатами испытаний аналогичных колонн здания; возможность проведения испытания конструкций на огнестойкость без нарушения функционального процесса в здании; снижение экономических затрат; сохранение эксплуатационной пригодности здания при обследовании и проведении неразрушающих испытаний железобетонной колонны; упрощение условий и сокращение сроков испытания колонн на огнестойкость; повышение точности показателей огнестойкости железобетонной колонны круглого сечения и оперативности их определения.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе оценки огнестойкости сжатого железобетонного элемента конструкции здания, включающем проведение технического осмотра, установление вида бетона и арматуры железобетонного элемента, выявление условий его опирания и крепления, определение времени наступления предельного состояния по признаку потери несущей способности железобетонного элемента под испытательной нагрузкой в условиях стандартного теплового воздействия, проведение оценочных испытаний без разрушения по комплексу единичных показателей качества железобетонного элемента, при котором технический осмотр сопровождают инструментальными измерениями геометрических размеров железобетонного элемента и его опасных сечений, устанавливают площади бетона и арматуры в опасном сечении, определяют показатели термодиффузии бетона, жесткость и критическую силу железобетонной колонны, влажность и плотность бетона, находят предельные сопротивления бетона и арматуры на сжатие, степень армирования опасного сечения железобетонного элемента и величину интенсивности силовых напряжений в опасном сечении, особенностью является то, что в качестве железобетонного элемента принимают железобетонную колонну круглого сечения и дополнительно определяют надежность железобетонной колонны круглого сечения по назначению, выявляют сплошность ее тела в опасном сечении и фактический предел огнестойкости от начала стандартного огневого воздействия до потери несущей способности (Fur, мин), который определяют используя аналитическое уравнение (1):

где Dcir - диаметр железобетонной колонны, мм;

Jσ0 - интенсивность силовых напряжений в опасном сечении; αμs - степень армирования опасного сечения железобетонной колонны; - показатель термодиффузии бетона, мм2/мин, Rbn - нормативное сопротивление бетона осевому сжатию, МПа, γn - коэффициент надежности железобетонной колонны по назначению; ka - показатель глубины залегания продольной арматуры железобетонной колонны.

Показатель глубины залегания продольной арматуры железобетонной колонны (ka) определяют из уравнения (2):

где ан и а - нормативное и соответственно фактическое расстояние от грани колонны до радиуса окружности rs, проходящей через центры тяжести стержней продольной арматуры, мм.

Интенсивность силовых напряжений в опасном сечении железобетонной колонны (Jσ0≤1) находят по уравнению (3):

где Mξ и Мсс - изгибающий момент от расчетной продольной силы с учетом прогиба железобетонной колонны и соответственно изгибающий момент, характеризующий прочность опасного сечения, кН⋅м.

Степень армирования опасного сечения железобетонной колонны (αμs) вычисляют по уравнению (4):

где As,tot и А - площадь сечения всей продольной арматуры и соответственно площадь сечения бетона железобетонной колонны в поперечном сечении, мм2; Rsn и Rbn - нормативное значение сопротивления растяжению арматуры и соответственно нормативное сопротивление бетона осевому сжатию, МПа.

Критическую силу (Ncr, кН), воспринимаемую колонной круглого сечения, вычисляют по уравнению (5):

где Ж0 - жесткость железобетонной колонны круглого сечения, кН⋅м2;

- расчетная длина колонны, м; π=3,14.

Жесткость железобетонной колонны круглого сечения (Ж0, кН⋅м2) вычисляют по уравнению (6):

где Es и Eb - модуль упругости арматуры и соответственно начальный модуль упругости бетона, МПа; Js и Jb - момент инерции арматуры и соответственно бетонного сечения относительно центра тяжести бетонного сечения, мм4; - коэффициент, учитывающий длительность действия нагрузки на прогиб железобетонной колонны; δе - относительное значение эксцентриситета продольной силы

δe=e0/Dcir≥0,15;

где Dcir - диаметр железобетонной колонны, мм; e0 - эксцентриситет продольной силы, мм.

За единичные показатели качества железобетонной колонны круглого сечения, влияющие на предел огнестойкости, принимают: геометрические размеры, условия закрепления и жесткость железобетонной колонны круглого сечения, прочность бетона на осевое сжатие, сопротивление арматуры сжатию, интенсивность силовых напряжений в опасном сечении, влажность и плотность бетона в естественном состоянии, показатель термодиффузии бетона, модуль упругости арматуры и начальный модуль упругости бетона.

Причинно-следственная связь между совокупностью признаков и техническим результатом заключена в следующем.

Исключение огневых испытаний железобетонной колонны существующего здания и замена их на неразрушающие испытания снижает трудоемкость оценки ее огнестойкости, расширяет технологические возможности выявления фактического предела огнестойкости различно нагруженных колонн любых размеров, дает возможность проведения испытания колонн на огнестойкость без нарушения функционального процесса обследуемого здания, а также сопоставления полученных результатов с результатами стандартных испытаний аналогичных колонн и сохранения эксплуатационной пригодности обследуемого здания без нарушения несущей способности его конструкций в процессе испытания. Следовательно, условия испытания железобетонной колонны здания на огнестойкость значительно упрощены. Снижение экономических затрат на проведение испытания достигается за счет уменьшения расходов на демонтаж, транспортирование и огневые испытания образца железобетонной колонны.

Применение математического описания процесса сопротивления нагруженной железобетонной колонны стандартному огневому испытанию и использование построенного полипараметрического уравнения (1) повышает точность и оперативность оценки проектной огнестойкости.

Использование интегральных конструктивных параметров, как-то: степени напряжения арматуры и показателя термодиффузии бетона упрощает математическое описание процесса сопротивления нагруженной железобетонной колонны огневому воздействию.

Оценка огнестойкости железобетонной колонны только по одному показателю качества, например, по толщине защитного слоя бетона, приводит, как правило, к недооценке их фактической огнестойкости, поскольку влияние на него вариаций единичных показателей качества имеют различные знаки, и снижение огнестойкости за счет одного показателя может быть компенсировано другими. Вследствие этого в предложенном способе оценку огнестойкости железобетонной колонны предусматривают не по одному показателю, а по комплексу единичных показателей их качества. Использование в предложенном способе интегральных конструктивных параметров для определения огнестойкости железобетонной колонны и упрощение математического описания процесса термического сопротивления нагруженной железобетонной колонны; учет реального ресурса конструкции на величину огнестойкости использованием комплекса единичных показателей их качеств; учет влияния на предел огнестойкости показателей надежности железобетонной колонны по назначению, условий обогрева опасного сечения колонны, глубины залегания продольной арматуры, сплошности тела колонн и продольного прогиба железобетонной колонны круглого сечения позволяет более точно учесть реальный ресурс огнестойкости железобетонной колонны круглого сечения.

Сведения, подтверждающие возможность осуществления изобретения, с получением указанного выше технического результата.

Способ определения огнестойкости железобетонной колонны здания осуществляют в следующей последовательности. Сначала проводят визуальный осмотр конструкций здания. Затем определяют группу однотипных железобетонных колонн круглого сечения и их общее число в нем. Вычисляют величину выборки однотипных колонн. Назначают комплекс единичных показателей качества железобетонных колонн, влияющих на огнестойкость. Выявляют условия закрепления концов и опасные сечения железобетонных колонн. Вычисляют число испытаний единичного показателя качества конструкции в зависимости от его статистической изменчивости. Затем оценивают единичные показатели качества железобетонной колонны, и по ним находят проектный предел огнестойкости.

Под визуальным осмотром понимают проверку состояния железобетонной колонны, включающую выявление условий обогрева и закрепления концов железобетонной колонны, определение вида бетона и толщины его защитного слоя, наличие трещин и отколов, нарушение сцепления арматуры с бетоном, наличие коррозии арматурной стали и других показателей безопасности железобетонной колонны.

В процессе осмотра определяют группы однотипных колонн круглого сечения. Под группой колонн в здании понимают однотипные железобетонные колонны, изготовленные и возведенные в сходных технологических условиях и находящихся в подобных условиях эксплуатации.

На фиг. 1 и 2 изображена схема расчета на огнестойкость железобетонной колонны круглого сечения: продольное сечение (фиг. 1) и поперечное сечение (фиг. 2): 1 - продольная растянутая арматура, 1' - продольная сжатая арматура, 2 - бетон; N - продольная сила, кН; е0 - эксцентриситет продольной силы относительно центра тяжести приведенного сечения, мм; Dcir - диаметр железобетонной колонны, мм; rs - радиус окружности, проходящей через центры тяжести стержней продольной арматуры, мм; а - расстояние от грани колонны до радиуса окружности rs, проходящей через центры тяжести стержней продольной арматуры, мм; As - площадь сечения продольной растянутой арматуры 1, мм2; As' - площадь сечения продольной сжатой арматуры 1', мм2; ξcir - относительная площадь сжатой зоны бетона; tcm - температура стандартного пожара, °C.

На фиг. 3 изображены графики несущей способности внецентренно сжатой железобетонной колонны круглого сечения:

αm - показатель изгибающего момента, равный N⋅e0/(Rb⋅А⋅r);

αn - показатель продольной силы, равный N/(Rb⋅А);

αs - показатель армирования бетона колонны, равный Rs⋅As,tot/(Rb⋅А).

Число и место расположения участков, в которых определяют показатели качества конструкций, определяют так: конструкции, имеющие одно опасное сечение, участки располагают только в этом сечении; в конструкциях, имеющих несколько опасных сечений, испытуемые участки располагают равномерно по поверхности с обязательным расположением части участков в опасных сечениях.

К основным единичным показателям качества железобетонной колонны круглого сечения, обеспечивающих огнестойкость, относятся: геометрические размеры, условия закрепления и жесткость железобетонной колонны круглого сечения, прочность бетона на осевое сжатие, сопротивление арматуры сжатию, интенсивность силовых напряжений в опасном сечении, влажность и плотность бетона в естественном состоянии, показатель термодиффузии бетона, модуль упругости арматуры и начальный модуль упругости бетона.

Проверяемыми геометрическими размерами являются: диаметр опасного сечения железобетонной колонны. Опасные сечения железобетонных колонн назначают в местах наибольших моментов от действия испытательной нагрузки или в точках максимального сближения огибающей эпюры моментов и эпюры материалов конструкций. Размеры конструкции проверяют с точностью ±1 мм; ширину трещин с точностью до 0,05 мм.

ka=1-(ан-а)/10⋅ан;

где а и ан - нормативное и соответственно фактическое расстояние от грани колонны до радиуса окружности rs, проходящей через центры тяжести стержней продольной арматуры, мм.

Интенсивность силовых напряжений в опасном сечении железобетонной колонны от испытательной нагрузки на огнестойкость определяют из условия (3):

Jσ0=Mξ/Mcc;

где Mξ и Мсс - изгибающий момент от расчетной продольной силы с

учетом прогиба железобетонной колонны и соответственно изгибающий момент, характеризующий прочность опасного сечения, кН⋅м.

Степень армирования опасного сечения железобетонной колонны (αμs) вычисляют по уравнению (4):

αμs=(As,tot/A)⋅(Rsn/Rbn);

где As,tot и А - площадь сечения всей продольной арматуры и соответственно площадь сечения бетона колонны в поперечном сечении железобетонной колонны, мм2;

Rsn и Rbn - нормативное значение сопротивления растяжению арматуры и нормативное сопротивление бетона осевому сжатию, МПа.

Пример.

Дано: железобетонная колонна круглого сечения диаметром Dcir=400 мм; ан=30 мм; а=35 мм; бетон класса В25 (Eb=3⋅104 МПа, Rbn=18,5 МПа); продольная арматура класса А400 (Rsn=400 МПа); площадь ее сечения As,tot=3140 мм2 (10∅20); продольные силы и изгибающие моменты: от постоянных и длительных нагрузок от всех нагрузок N=350 кН, М=80 кН⋅м; расчетная длина колонны снеговая, ветровая и кратковременные вертикальные нагрузки в расчете огнестойкости колонны не принимают.

Требуется выявить интенсивность силовых напряжений и вычислить проектный предел огнестойкости железобетонной колонны круглого сечения.

Расчет.

1) Расчетная длина колонны равна усилия от всех нагрузок равны:

М=80 кН⋅м; N=350 кН; e0 = M / N = 80/350 = 0,229 м = 229 мм; Тогда момент от постоянных и длительных нагрузок:

2) Для определения жесткости Ж0 колонны вычисляют:

радиус сечения железобетонной колонны: r=Dcir/2=400/2=200 мм;

радиус окружности, проходящей через центры тяжести стержней продольной арматуры: rs=r-а=200-35=165 мм;

М1 и - моменты внешних сил относительно оси, нормальной плоскости изгиба и проходящей через центр наиболее растянутого или наименее сжатого (при целиком сжатом сечении) стержня арматуры, соответственно от действия всех нагрузок и от действия постоянных и длительных нагрузок:

М1=M+N⋅rs=80+350⋅0,165=137,75 кН⋅м;

коэффициент, учитывающий влияние длительного действия нагрузки на прогиб элемента:

относительное значение эксцентриситета продольной силы δe=e0/Dcir=228,571/400=0,571>0,15 и не превышает 1,5, поэтому принимают δе=0,571.

3) Моменты инерции бетонного сечения и всей арматуры соответственно равны:

4) Значения коэффициентов для определения жесткости железобетонной колонны:

ks=0,7;

Тогда непосредственно жесткость железобетонной колонны круглого сечения (Ж0) по [3] равна:

Ж0=kb⋅Eb⋅Jb+ks⋅Es⋅Js=0,1⋅3⋅104⋅1257⋅106++0,7⋅2⋅105⋅42,74⋅106=9769,417 кН⋅м2

5) Условная критическая сила равна:

Значение коэффициента η при расчете колонны по недеформированной схеме определяют по формуле:

η=1/(1-N/Ncr)=1/(1-350/6026,267)=1,062.

6) Расчетный момент с учетом влияния прогиба железобетонной колонны равен:

Mξ=N⋅е0⋅η=350⋅0,229⋅1,062=84,933 кН⋅м ≈ 85 кН⋅м.

Прочность сечения проверяем с помощью графика на фиг. 3 [4].

Определим площадь сечения бетона железобетонной колонны

По значениям

и

на графике находим am=0,387.

Расчетный момент с учетом прогиба колонны равен:

Mcc=am⋅Rbn⋅A⋅r=0,387⋅18,5⋅103⋅125664⋅10-6⋅0,2=180 кН⋅м;

Мсс=180 кН⋅м > Мξ=85 кН⋅м; прочность сечения обеспечена.

7) Величину интенсивности силовых напряжений (Jσ0) в сечении железобетонной колонны круглого сечения вычисляют по уравнению (3):

Jσ0=Мξ/Мсс=85 /180=0,472,

где Mξ и Мсс - изгибающий момент от расчетной продольной силы с учетом прогиба железобетонной колонны и соответственно изгибающий момент, характеризующий прочность опасного сечения колонны, кН⋅м.

8) Степень армирования опасного сечения (αμs) железобетонной колонны вычисляют по уравнению (4):

αμs=(As/A)⋅(Rsn/Rbn)=(3140/125664)⋅(400/18,5)=0,54,

где As,tot и А - площадь сечения всей продольной арматуры и соответственно площадь сечения бетона железобетонной колонны в поперечном сечении, мм2; Rsn и Rbn - нормативное значение сопротивления растяжению арматуры и соответственно нормативное сопротивление бетона осевому сжатию, МПа.

9) Показатель глубины залегания арматуры (ka) вычисляют по уравнению (2):

ka=1-(ан-a)/10⋅ан=1-(30-35)/10⋅30=1+0,017=1,017,

где ан и а - нормативное и соответственно фактическое расстояние от грани колонны до радиуса окружности rs, проходящей через центры тяжести стержней продольной арматуры, мм.

10) Проектный предел огнестойкости железобетонной колонны круглого сечения по потере несущей способности (Fur, мин) вычисляют по уравнению (1):

где Dcir - диаметр железобетонной колонны, мм;

Jσ0 - интенсивность силовых напряжений в опасном сечении; αμs - степень армирования опасного сечения железобетонной колонны; ka - показатель глубины залегания продольной арматуры железобетонной колонны; - показатель термодиффузии бетона, мм2/мин, Rbn - нормативное сопротивление бетона осевому сжатию, МПа, γn - коэффициент надежности железобетонной колонны по назначению здания.

Предложенное аналитическое выражение (1) использовано для оценки огнестойкости железобетонных колонн круглого сечения для безбалочного перекрытия многоэтажного здания (г. Тольятти, распределительный холодильник на 10 тыс. тонн).

Источники информации

1. ГОСТ 3Q247.1-94. Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции.

2. Патент №2281482 RU МПК G01N 25/50. Способ определения огнестойкости сжатых элементов железобетонных конструкций здания / Ильин Н.А., Бутенко С.А., Эсмонт С.В.; заяв. СГАСУ: 06.09.04; опубл. 18.02.06. Бюл. №22.

3. СП 63.13330.2012. Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003 - М.: ФАУ «ФЦС», 2012. - 156 с.

4. Пособие по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры (к СП 52-101-2003). ЦНИИПромзданий, НИИЖБ. - М.; - 2005.


СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОЙ КОЛОННЫ КРУГЛОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОЙ КОЛОННЫ КРУГЛОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОЙ КОЛОННЫ КРУГЛОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОЙ КОЛОННЫ КРУГЛОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОЙ КОЛОННЫ КРУГЛОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОЙ КОЛОННЫ КРУГЛОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОЙ КОЛОННЫ КРУГЛОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОЙ КОЛОННЫ КРУГЛОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОЙ КОЛОННЫ КРУГЛОГО СЕЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 191.
20.01.2018
№218.016.1e75

Способ очистки отходящих газов окисления изопропилбензола

Изобретение относится к нефтехимической и нефтеперерабатывающей промышленности. Способ очистки отходящих газов окисления изопропилбензола заключается в извлечении изопропилбензола с помощью низкотемпературной конденсации, причем для создания низких температур используют энергию отходящих газов...
Тип: Изобретение
Номер охранного документа: 0002640781
Дата охранного документа: 11.01.2018
13.02.2018
№218.016.2035

Вертикальный стальной резервуар

Изобретение относится к области строительства, в частности к сооружению стальных вертикальных резервуаров, расположенных в сейсмически опасных районах и районах с повышенными требованиями к защите окружающей среды. Техническим результатом изобретения является увеличение эксплуатационной...
Тип: Изобретение
Номер охранного документа: 0002641353
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.267d

Цифровой модулятор для преобразования частоты

Изобретение относится к области импульсной техники и может быть использовано в преобразователях частоты для управления электродвигателями переменного тока. Технический результат заключается в формировании различных законов регулирования напряжения в функции частоты силового преобразователя и...
Тип: Изобретение
Номер охранного документа: 0002644070
Дата охранного документа: 07.02.2018
17.02.2018
№218.016.2bb0

Способ получения (s)-3-(аминометил)-5-метилгексановой кислоты

Изобретение относится к способу получения (S)-3-(аминометил)-5-метилгексановой кислоты формулы I, используемой в терапии ряда нейропатических заболеваний, путем энантиоселективного присоединения диэтилмалоната к 4-метил-1-нитропентену-1 с последующим восстановлением и кислотным гидролизом...
Тип: Изобретение
Номер охранного документа: 0002643373
Дата охранного документа: 01.02.2018
17.02.2018
№218.016.2df0

Способ производства съедобных пленок из яблочного сырья

Изобретение относится к пищевой промышленности, преимущественно к съедобным пленкам из яблочного сырья. Способ производства съедобных пленок из яблочного сырья характеризуется тем, что у яблок удаляют несъедобные части, обрабатывают водяным паром в течение 10-30 мин, к полученной массе...
Тип: Изобретение
Номер охранного документа: 0002643722
Дата охранного документа: 05.02.2018
04.04.2018
№218.016.31d3

Сборный резец для контурного точения

Сборный резец содержит державку, имеющую державочную часть и головку с гнездом для установки режущей пластины, прихват и расположенный в выступе головки со стороны державочной части резьбовой механизм с возможностью взаимодействия его упорного винта с одним из торцов пластины для ее перемещения...
Тип: Изобретение
Номер охранного документа: 0002645236
Дата охранного документа: 19.02.2018
04.04.2018
№218.016.33d2

Расплавляемый электролит для химического источника тока

Изобретение относится к области электротехнической промышленности, в частности к разработке расплавляемых электролитов для химических источников тока на основе солей лития и рубидия. Расплавляемый электролит для химического источника тока включает хлорид лития и хлорид рубидия, в качестве...
Тип: Изобретение
Номер охранного документа: 0002645763
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3ebd

Способ работы маневренной регенеративной парогазовой теплоэлектроцентрали и устройство для его осуществления

Изобретение относится к энергетике. В способе работы маневренной регенеративной парогазовой теплоэлектроцентрали и устройстве для его реализации теплоту газов, расширенных в газовой турбине, используют для регенеративного подогрева сжатого воздуха и сетевой воды теплосети. При этом в...
Тип: Изобретение
Номер охранного документа: 0002648478
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.4183

Буксовый подшипниковый узел колес железнодорожного транспорта

Буксовый подшипниковый узел колес железнодорожного транспорта содержит двухрядный блок роликовых подшипников качения, воспринимающий радиальную и осевую нагрузку при движении транспортного средства. Подшипник с цилиндрическими роликами устанавливают с внешней стороны буксы. Подшипник с...
Тип: Изобретение
Номер охранного документа: 0002649106
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.43b5

Способ изготовления образца для испытания на внецентренное сжатие

Изобретение относится к области строительства, в частности к способу изготовления образцов для испытания на внецентренное сжатие. Сущность: осуществляют высверливание на верхней и нижней опорной поверхности четырехугольной призмы симметричных парных сферических лунок для центрирующих элементов,...
Тип: Изобретение
Номер охранного документа: 0002649609
Дата охранного документа: 04.04.2018
Показаны записи 31-40 из 41.
13.12.2018
№218.016.a5e8

Способ оценки огнестойкости железобетонной плиты с защемлением по контуру

Изобретение относится к области пожарной безопасности зданий сооружений и может быть использовано для классификации железобетонных плит с защемлением по контуру. Сущность изобретения заключается в том, что испытание железобетонной плиты проводят без разрушения, по комплексу единичных...
Тип: Изобретение
Номер охранного документа: 0002674570
Дата охранного документа: 11.12.2018
03.02.2019
№219.016.b6c9

Способ определения огнестойкости железобетонного сжатого элемента кольцевого сечения

Изобретение относится к области пожарной безопасности зданий. Оно может быть использовано для классификации железобетонных сжатых элементов кольцевого сечения по показателям сопротивления их воздействию пожара. Заявлен способ определения огнестойкости сжатого железобетонного элемента...
Тип: Изобретение
Номер охранного документа: 0002678781
Дата охранного документа: 01.02.2019
14.05.2019
№219.017.5195

Способ определения скорости обугливания деревянного изгибаемого элемента

Изобретение относится к области пожарной безопасности: к исследованию параметров горения твердых веществ, строительных материалов и деревянных конструкций, в частности к определению скорости обугливания деревянных изгибаемых элементов в условиях пожара в здании. Согласно заявленному...
Тип: Изобретение
Номер охранного документа: 0002687304
Дата охранного документа: 13.05.2019
14.05.2019
№219.017.51a3

Способ определения скорости обугливания деревянного сжатого элемента

Изобретение относится к области пожарной безопасности: к исследованию параметров горения твердых веществ, строительных материалов и деревянных конструкций, в частности к определению скорости обугливания деревянных сжатых элементов в условиях пожара в здании. Согласно заявленному изобретению...
Тип: Изобретение
Номер охранного документа: 0002687305
Дата охранного документа: 13.05.2019
25.07.2019
№219.017.b883

Способ определения огнестойкости трубобетонной колонны здания

Изобретение относится к области пожарной безопасности зданий применительно к классификации трубобетонных колонн по показателям сопротивления их воздействию пожара. Способ включает проведение технического осмотра, установление вида бетона колонны, выявление условий ее опирания и крепления,...
Тип: Изобретение
Номер охранного документа: 0002695344
Дата охранного документа: 23.07.2019
01.09.2019
№219.017.c503

Способ оценки пожароустойчивости деревянного сжатого элемента

Изобретение относится к области пожарной безопасности: к исследованию параметров горения твердых веществ, строительных материалов и деревянных конструкций, в частности к определению скорости обугливания деревянных сжатых элементов в условиях пожара в здании. Заявлен способ испытания...
Тип: Изобретение
Номер охранного документа: 0002698571
Дата охранного документа: 28.08.2019
01.09.2019
№219.017.c52c

Способ оценки пожароустойчивости деревянного изгибаемого элемента

Изобретение относится к области пожарной безопасности зданий. Предложен способ определения временного показателя пожароустойчивости изгибаемого элемента под испытательной нагрузкой в условиях стандартного теплового воздействия. Для этого неразрушающими испытаниями производят поверку единичных...
Тип: Изобретение
Номер охранного документа: 0002698572
Дата охранного документа: 28.08.2019
22.12.2019
№219.017.f08c

Огнезащищенная металлическая чугунная опора здания

Изобретение относится к области пожарной безопасности зданий, в частности может быть использовано при изготовлении конструктивной огнезащиты чугунной опоры здания. Техническим результатом изобретения является повышение надежности крепления элементов опоры и конструктивной огнезащиты, повышение...
Тип: Изобретение
Номер охранного документа: 0002709532
Дата охранного документа: 19.12.2019
17.02.2020
№220.018.0329

Способ огнезащиты чугунной опоры здания

Изобретение относится к области пожарной безопасности зданий и касается способа конструктивной огнезащиты чугунной опоры здания. Элементы конструктивной огнезащиты прикрепляют вплотную к несущему стержню опоры. Выявляют марку серого чугуна, интенсивность силовых напряжений в сечении несущего...
Тип: Изобретение
Номер охранного документа: 0002714401
Дата охранного документа: 14.02.2020
22.05.2023
№223.018.6b86

Способ определения огнестойкости монолитной сталежелезобетонной плиты перекрытия здания

Изобретение относится к области оценки и обеспечения пожарной безопасности сталежелезобетонных элементов и строительных конструкций зданий и сооружений и может быть использовано для анализа методов и средств неразрушающего контроля элементов строительных конструкций. Заявлен способ определения...
Тип: Изобретение
Номер охранного документа: 0002795798
Дата охранного документа: 11.05.2023
+ добавить свой РИД