×
03.02.2019
219.016.b6c9

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОГО СЖАТОГО ЭЛЕМЕНТА КОЛЬЦЕВОГО СЕЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области пожарной безопасности зданий. Оно может быть использовано для классификации железобетонных сжатых элементов кольцевого сечения по показателям сопротивления их воздействию пожара. Заявлен способ определения огнестойкости сжатого железобетонного элемента конструкции здания, согласно которому испытание железобетонного сжатого элемента кольцевого сечения проводят без разрушения по комплексу единичных показателей качества, оценивая их величину с помощью статистического контроля. Для этого определяют геометрические размеры железобетонного элемента, степень армирования бетона и условия крепления элемента; плотность, влажность и показатель термодиффузии бетона; интенсивность напряжения кольцевого сечения элемента, показатель надежности железобетонного элемента по назначению (уровню ответственности), показатель сплошности тела железобетонного элемента кольцевого сечения и его гибкости. Описание процесса сопротивления железобетонного элемента огневому воздействию представляют математической зависимостью, которая учитывает размеры поперечного сечения элемента, степень армирования α, интенсивность силовых напряжений J, нормативное сопротивление бетона осевому сжатию R и показатель термодиффузии бетона, D, а также величину интегрального показателя безопасности железобетонного элемента кольцевого сечения. Предел огнестойкости железобетонного элемента определяют, используя аналитическое выражение. Технический результат – обеспечение определения огнестойкости железобетонного элемента кольцевого сечения без натурного огневого воздействия, повышение достоверности статистического контроля качества. 7 з.п. ф-лы, 2 ил.

Изобретение относится к области пожарной безопасности зданий. В частности, оно может быть использовано для классификации железобетонных колонн кольцевого сечения по показателям сопротивления их воздействию пожара. Это дает возможность обоснованного использования существующих железобетонных конструкций с фактическим пределом огнестойкости в зданиях различных классов по их пожароопасности.

Известен способ оценки огнестойкости железобетонной колонны здания путем испытания, включающего проведение технического осмотра, установление вида бетона и арматуры конструкции, выявление условия их опирания и крепления, определение времени наступления предельного состояния по признаку потери несущей способности конструкции под испытательной нагрузкой в условиях стандартного теплового воздействия / ГОСТ 30247.1-94. Конструкции строительные. Методы испытания на огнестойкость. Несущие и ограждающие конструкции / [1].

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе испытания проводят на образце железобетонной колонны, на который воздействуют только постоянные и длительные нагрузки в их расчетных значениях с коэффициентом надежности равным единице.

Испытания проводят на специальном стендовом оборудовании в огневых печах до разрушения образцов конструкций. Размеры образцов ограничивают в зависимости от проемов стационарных огневых печей. Следовательно, стандартные огневые испытания трудоемки, не эффективны, не безопасны, имеют малые технологические возможности для проверки на опыте различных по размерам и различно нагруженных конструкций, не дают необходимой информации о влиянии единичных показателей качества конструкции на ее огнестойкость. Оценка огнестойкости железобетонной колонны по единичному показателю качества, например, по толщине защитного слоя бетона, как правило, не позволяет достоверно определить пригодность колонны для ее эксплуатации в здании заданной степени огнестойкости. По малому числу испытуемых образцов (2-3 шт) невозможно судить о действительном состоянии колонн здания. Результаты огневого испытания единичны и не учитывают разнообразия в закреплении концов железобетонной колонны, фактических размеров и армирования колонны, и схемы обогрева опасного сечения в условиях пожара.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ оценки огнестойкости железобетонного сжатого элемента здания путем испытания, включающего проведение технического осмотра, установление вида бетона и арматуры железобетонного сжатого элемента, выявление условий его опирания и крепления, определение времени наступления предельного состояния по признаку потери несущей способности железобетонного сжатого элемента под испытательной нагрузкой в условиях стандартного огневого воздействия. Испытание железобетонного сжатого элемента проводят без разрушения по комплексу единичных показателей качества, технический осмотр дополняют инструментальными измерениями геометрических размеров железобетонного сжатого элемента и его опасного сечения. Устанавливают площади бетона и рабочей арматуры в опасном сечении, выявляют схему его обогрева при пожаре, определяют показатели плотности бетона и его влажности в естественном состоянии и величину показателя термодиффузии бетона, находят предельные сопротивления бетона и арматуры на сжатие, степень армирования опасного сечения колонны, устанавливают величину испытательной нагрузки на железобетонную колонну и величину интенсивности силовых напряжений в опасном сечении, и, используя полученные интегральные параметры железобетонного сжатого элемента по номограмме вычисляют фактический предел огнестойкости Fur, мин; /Патент №2281482 RU МПК G01N 25/50. Способ определения огнестойкости сжатых элементов железобетонных конструкций здания / Ильин Н.А., Бутенко С.А., Эсмонт С.В.; заяв. СГАСУ: 06.09.04; опубл. 18.02.06. Бюл. №22 / [2].

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, принятого за прототип, относится то, что использование номограммы для определения фактической огнестойкости железобетонного сжатого элемента дает результаты расчета с большей погрешностью, в ряде случаев требуется дополнительное построение графиков номограммы; кроме этого при построении номограммы не учитываются показатели надежности железобетонного сжатого элемента по назначению (уровню ответственности), особенности условий обогрева опасного сечения элемента, глубина залегания продольной арматуры, сплошность тела железобетонного элемента и коэффициент его продольного изгиба.

Сущность изобретения заключается в установлении показателей пожарной безопасности здания в части гарантированной длительности сопротивления железобетонного сжатого элемента в условиях пожара; в определении фактических пределов огнестойкости железобетонного сжатого элемента при проектировании, строительстве и эксплуатации здания; в снижении экономических затрат при испытании железобетонного сжатого элемента на огнестойкость.

Технический результат - исключение огневых испытаний при определении огнестойкости железобетонного сжатого элемента в здании или его фрагменте; снижение трудоемкости оценки огнестойкости железобетонного сжатого элемента, расширение технологических возможностей определения фактической огнестойкости различно нагруженных железобетонных элементов любых размеров и возможность сопоставления полученных результатов с результатами испытаний аналогичных элементов здания; возможность проведения испытания конструкций на огнестойкость без нарушения функционального процесса в здании; снижение экономических затрат при определении огнестойкости железобетонного элемента; сохранение эксплуатационной пригодности здания при обследовании и проведении неразрушающих испытаний железобетонного сжатого элемента; упрощение условий и сокращение сроков испытания элементов на огнестойкость; повышение точности и оперативности испытания.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе оценки огнестойкости сжатого железобетонного элемента здания, включающем проведение технического осмотра, установление вида бетона и арматуры железобетонного элемента, выявление условий его опирания и крепления, определение времени наступления предельного состояния по признаку потери несущей способности железобетонного элемента под испытательной нагрузкой в условиях стандартного теплового воздействия, проведение оценочных испытаний без разрушения по комплексу единичных показателей качества железобетонного элемента, при котором технический осмотр сопровождают инструментальными измерениями геометрических размеров железобетонного элемента и его опасных сечений, устанавливают площади бетона и арматуры в опасном сечении, определяют показатели термодиффузии бетона, жесткость и критическую силу железобетонного элемента, влажность и плотность бетона, находят предельные сопротивления бетона и арматуры на сжатие, степень армирования опасного сечения железобетонного элемента и величину интенсивности силовых напряжений в опасном сечении, особенностью является то, что определяют огнестойкость сжатого железобетонного элемента кольцевого сечения, при этом дополнительно определяют его надежность по назначению, выявляют показатель сплошности железобетонного элемента в опасном сечении и фактический предел огнестойкости железобетонного элемента от начала стандартного огневого воздействия до потери несущей способности (Fur, мин), который определяют используя аналитическое уравнение (1):

где r1 и r2 - соответственно внутренний и наружный радиусы окружностей железобетонного элемента кольцевого сечения, мм; Jσ0 - интенсивность силовых напряжений в опасном сечении; αμs - степень насыщения продольной арматурой бетона железобетонного элемента; K - интегральный показатель безопасности железобетонного элемента; Dвт - показатель термодиффузии бетона, мм2/мин, Rbn - нормативное сопротивление бетона осевому сжатию, МПа.

Величину интегрального показателя безопасности железобетонного элемента определяют, используя аналитическое уравнение (2):

где γn - коэффициент надежности железобетонного элемента по назначению; kcn - показатель сплошности тела железобетонного элемента; ka - показатель глубины залегания продольной арматуры железобетонного элемента. При этом показатель глубины залегания продольной арматуры железобетонного элемента (ka) определяют из уравнения (3):

где ан и а - нормативная и соответственно фактическая глубина залегания продольной арматуры железобетонного элемента, мм.

Показатель сплошности тела железобетонного элемента кольцевого сечения (kсп≤1) вычисляют по аналитическому выражению (4):

где r1 и r2 - внутренний и соответственно наружный радиусы окружностей кольца железобетонного элемента кольцевого сечения, мм.

Интенсивность силовых напряжений в опасном сечении сжатого железобетонного элемента (Jσ0≤1) находят, используя уравнение (5):

где Mξ и Мсс - изгибающий момент от расчетной продольной силы с учетом прогиба сжатого железобетонного элемента и соответственно изгибающий момент, характеризующий прочность сечения, кН⋅м.

Степень насыщения продольной арматурой бетона сжатого железобетонного элемента кольцевого сечения (αμs) вычисляют по уравнению (6):

где As,tot и А - площадь сечения всей продольной арматуры и соответственно площадь сечения бетона в поперечном сечении железобетонного элемента, мм2; Rsn и Rbn - нормативное значение сопротивления растяжению арматуры и соответственно нормативное сопротивление бетона осевому сжатию, МПа.

Критическую силу (Ncr, кН), воспринимаемую сжатым железобетонным элементом кольцевого сечения, вычисляют по уравнению (7):

где Ж0 - жесткость железобетонного элемента кольцевого сечения, кН⋅м2; - расчетная длина железобетонного элемента, м; π=3,14.

Жесткость железобетонного элемента кольцевого сечения (Ж0, кН⋅м2) вычисляют по уравнению (8):

где Es и Eb - модуль упругости арматуры и соответственно начальный модуль упругости бетона, МПа; Js и Jb - момент инерции арматуры и соответственно бетонного сечения относительно центра тяжести бетонного сечения, мм4; - коэффициент, учитывающий длительность действия нагрузки на прогиб железобетонного элемента; δе - относительное значение эксцентриситета продольной силы

δe=e0/Dcir≥0,15;

где Dcir - диаметр кольцевого сечения железобетонного элемента, мм; e0 - эксцентриситет продольной силы, мм.

За единичные показатели качества железобетонного элемента кольцевого сечения, влияющие на предел его огнестойкости, принимают: геометрические размеры опасного сечения, условия закрепления сжатого железобетонного элемента, степень насыщения арматурой бетона сжатого элемента, жесткость железобетонного элемента, прочность бетона на осевое сжатие, сопротивление арматуры сжатию, интенсивность силовых напряжений в опасном сечении, влажность и плотность бетона в естественном состоянии, показатель термодиффузии бетона, показатель сплошности тела железобетонного элемента кольцевого сечения, модуль упругости арматуры, начальный модуль упругости бетона.

Причинно-следственная связь между совокупностью признаков и техническим результатом заключена в следующем.

Исключение огневых испытаний железобетонного элемента кольцевого сечения существующего здания и замена их на неразрушающие испытания снижает трудоемкость оценки его огнестойкости, расширяет технологические возможности выявления фактической огнестойкости различно нагруженных конструкций любых размеров, дает возможность проведения испытания конструкций на огнестойкость без нарушения функционального процесса обследуемого здания, а также сопоставления полученных результатов с результатами стандартных испытаний аналогичных конструкций и сохранения эксплуатационной пригодности обследуемого здания без нарушения несущей способности его конструкций в процессе испытания. Следовательно, условия испытания железобетонного элемента здания на огнестойкость значительно упрощены. Снижение экономических затрат на проведение испытания достигается за счет уменьшения расходов на демонтаж, транспортирование и огневые испытания образца железобетонного элемента.

Применение математического описания процесса сопротивления нагруженного железобетонного элемента стандартному огневому испытанию и использование построенного полипараметрического уравнения (1) повышает точность и оперативность оценки огнестойкости.

Использование интегральных конструктивных параметров, как-то: степени напряжения арматуры, показателя термодиффузии бетона, и показателя безопасности сжатого элемента упрощает математическое описание процесса сопротивления нагруженного железобетонного элемента огневому воздействию.

Оценка огнестойкости железобетонного элемента только по одному показателю качества, например, по толщине защитного слоя бетона, приводит, как правило, к недооценке их фактической огнестойкости, поскольку влияние на него вариаций единичных показателей качества имеют различные знаки, и снижение огнестойкости за счет одного показателя может быть компенсировано другими. Вследствие этого в предложенном способе оценку огнестойкости железобетонного элемента предусматривают не по одному показателю, а по комплексу единичных показателей их качества. Использование интегральных конструктивных параметров для определения огнестойкости железобетонного сжатого элемента и упрощение математического описания процесса термического сопротивления нагруженного железобетонного элемента, а также учет реального ресурса конструкции на величину огнестойкости использованием комплекса единичных показателей их качеств; учет влияния на предел огнестойкости показателей надежности железобетонного элемента по назначению, глубины залегания продольной арматуры, сплошности тела и продольного прогиба железобетонного элемента позволяет более точно учесть реальный ресурс огнестойкости железобетонного элемента кольцевого сечения.

Сведения, подтверждающие возможность осуществления изобретения, с получением указанного выше технического результата.

Способ определения огнестойкости железобетонного элемента кольцевого сечения здания осуществляют в следующей последовательности. Сначала проводят визуальный осмотр здания. Затем определяют группу однотипных железобетонных элементов и их общее число в нем. Вычисляют величину выборки однотипных элементов. Назначают комплекс единичных показателей качества железобетонных элементов, влияющих на огнестойкость. Выявляют условия закрепления концов и опасные сечения железобетонных элементов. Вычисляют число испытаний единичного показателя качества конструкции в зависимости от его статистической изменчивости. Затем оценивают единичные показатели качества железобетонного элемента и его интегральные параметры, и по ним находят предел огнестойкости.

Под визуальным осмотром понимают проверку состояния железобетонных элементов кольцевого сечения, включающую выявление условий обогрева и закрепления концов железобетонных элементов, определение вида бетона и толщины его защитного слоя, наличие трещин и отколов, нарушение сцепления арматуры с бетоном, наличие коррозии арматурной стали и других показателей безопасности железобетонных элементов кольцевого сечения.

В процессе осмотра определяют группы однотипных элементов. Под группой элементов в здании понимают однотипные железобетонные элементы кольцевого сечения, изготовленные и возведенные в сходных технологических условиях и находящихся в подобных условиях эксплуатации.

Изобретение поясняется чертежом, где стрелками показано направление действия высокой температуры стандартного пожара tст, °С.

На рисунке изображена схема расчета на огнестойкость сжатого элемента кольцевого сечения: продольное сечения (фиг. 1) и поперечное сечение (фиг. 2): 1 - продольная растянутая арматура, 1' - продольная сжатая арматура, 2 - бетон; N - продольная сила, кН; е0 - эксцентриситет продольной силы относительно центра тяжести приведенного сечения, мм; r1 - внутренний радиус кольцевого сечения, мм; r2 - наружный радиус кольцевого сечения, мм; rs - радиус окружности, проходящей через центры тяжести стержней продольной арматуры, мм; а - расстояние от грани колонны до радиуса окружности rs, проходящей через центры тяжести стержней продольной арматуры, мм; As - площадь сечения продольной растянутой арматуры 1, мм2; As' - площадь сечения продольной сжатой арматуры 1', мм2; ξcir - относительная площадь сжатой зоны бетона; tст - температура стандартного пожара, °С.

Число и место расположения участков, в которых определяют показатели качества конструкций, определяют так: в сжатых элементах конструкции, имеющих одно опасное сечение, участки располагают только в этом сечении; в сжатых элементах конструкций, имеющих несколько опасных сечений, испытуемые участки располагают равномерно по поверхности с обязательным расположением части участков в опасных сечениях.

К основным единичным показателям качества сжатого железобетонного элемента кольцевого сечения, обеспечивающим огнестойкость, относятся: геометрические размеры опасного сечения, условия закрепления сжатого железобетонного элемента, степень насыщения арматурой бетона сжатого элемента, жесткость железобетонного элемента, прочность бетона на осевое сжатие, сопротивление арматуры сжатию, интенсивность силовых напряжений в опасном сечении, влажность и плотность бетона в естественном состоянии, показатель термодиффузии бетона, показатель сплошности тела железобетонного элемента кольцевого сечения, модуль упругости арматуры, начальный модуль упругости бетона.

Проверяемыми геометрическими размерами являются: ширина и высота опасного кольцевого сечения железобетонного элемента. Опасные сечения железобетонного элемента назначают в местах наибольших моментов от действия испытательной нагрузки или в точках максимального сближения огибающей эпюры моментов и эпюры материалов конструкций. Размеры конструкции проверяют с точностью ±1 мм; ширину трещин с точностью до 0,05 мм.

Интегральный показатель безопасности сжатого железобетонного элемента кольцевого сечения определяют, используя аналитическое уравнение (2):

;

где γn - коэффициент надежности железобетонного элемента по назначению; kcn - показатель сплошности тела железобетонного элемента;

ka - показатель глубины залегания продольной арматуры железобетонного элемента определяют, используя уравнение (3):

ka=1-0,1⋅(ан-а)/ан;

где а и ан- нормативная и соответственно фактическая глубина залегания продольной арматуры железобетонного элемента, мм.

Интенсивность силовых напряжений в опасном сечении сжатого железобетонного элемента кольцевого сечения от испытательной нагрузки на огнестойкость определяют из условия (5):

Jσ0=Mξ/Mcc;

где Mξ и Мсс - изгибающий момент от расчетной продольной силы с учетом прогиба сжатого железобетонного элемента и соответственно изгибающий момент, характеризующий прочность сечения, кН⋅м.

Степень насыщения арматурой сжатого железобетонного элемента кольцевого сечения (αμs) вычисляют по алгебраическому выражению (6):

αμs=(As,tot/A)⋅(Rsn/Rbn);

где As,tot и А - площадь сечения всей продольной арматуры и соответственно площадь сечения бетона колонны в поперечном сечении железобетонного элемента, мм2;

Rsn и Rbn - нормативное значение сопротивления растяжению арматуры и нормативное сопротивление бетона осевому сжатию, МПа.

Пример.

Дано: железобетонный элемент - консольная стойка кольцевого сечения высотой Н=6 м, сечение с внутренним радиусом r1=150 мм, наружным - r2=250 мм; бетон класса В25 (Eb=3⋅104 МПа, Rbn=18,5 МПа, Dbm=22,5 мм2/мин); продольная арматура класса А400 (Rsn=400 МПа) располагается посредине толщины кольца (а=50 мм, ан=26 мм), площадь ее сечения As,tot=1470 мм2 (13∅12); продольная сила и момент в заделке: от вертикальных нагрузок: Nv=120 кН, Mv=40 кН⋅м; (кратковременную, а также нагрузки от ветра и снега при оценке огнестойкости элемента в расчете не принимают!)

Требуется выявить интенсивность силовых напряжений и вычислить предел огнестойкости сжатого железобетонного элемента кольцевого сечения (γн=1).

Расчет.

1) Внутренний и наружный диаметры равны D1=2⋅r1=300 мм, D2=Dcir=2⋅r2=500 мм; М=Mv=40 кН⋅м. Расчетная длина стойки равна .

Усилия от всех нагрузок равны: N=120 кН; М=40 кН⋅м; е0=М/N=40/120=0,333=333 мм.

2) Для определения жесткости (Ж0) вычисляем:

радиус окружности, проходящей через центры тяжести стержней продольной арматуры: rs=rm=(r1+r2)/2=(150+250)/2=200 мм;

М1 и - моменты внешних сил относительно оси, нормальной плоскости изгиба и проходящей через центр наиболее растянутого или наименее сжатого (при целиком сжатом сечении) стержня арматуры, соответственно от действия всех нагрузок и от действия постоянных и длительных нагрузок:

M1=M+N⋅rs=40+120⋅0,2=64 кНм;

;

коэффициент, учитывающий влияние длительного действия нагрузки на прогиб элемента:

Относительное значение эксцентриситета продольной силы: δе0/Dcir=333/500=0,667>0,15 и менее 1,5.

3) Моменты инерции бетонного сечения и всей арматуры соответственно равны

4) Значения коэффициентов для бетона и арматуры при определении жесткости консольной стойки:

;

ks=0,7

Тогда непосредственно жесткость консольной стойки кольцевого сечения (Ж0) по [3] равна:

Ж0=kb⋅Eb⋅Jb+ks⋅Es⋅Js=0,078⋅3⋅104⋅2,67⋅109+0,7⋅2⋅105⋅2,94⋅107=10331,479 кН⋅м2

5) Определим значение условной критической силы

.

Значение коэффициента, учитывающего влияние прогиба на значение эксцентриситета продольной силы:

η=1/(1-N/Ncr)=1/(1-120/708,108)=1,204.

6) Изгибающий момент с учетом влияния прогиба равен

Mξ=Mv⋅η=40⋅1,204=48,162 кН⋅м,

Площадь кольцевого сечения равна

.

7) Вычисляем относительную площадь сжатой зоны бетона железобетонного элемента по формуле:

.

8) Так как 0,15<ξcir<0,6, прочность сечения сжатого железобетонного элемента равна:

9) Величина интенсивности силовых напряжений (Jσ0) в сечении сжатого железобетонного элемента: Jσ0=Mξсс=48,162/135,273=0,356.

10) Степень армирования железобетонного элемента кольцевого сечения вычисляем по уравнению:

αμs=(As/А)⋅(Rsn/Rbn)=(1470/125664)⋅(400/18,5)=0,253.

11) Показатель сплошности сжатого железобетонного элемента кольцевого сечения (kcn) и показатель глубины заложения арматуры (ka) вычисляют соответственно по уравнениям:

kcn=1-(r1/r2)3=1-(15/25)3=1-0,216=0,784;

ka=(1-0,1(an-a)/an)=(1-0,1(26-50)/26)=1+0,067=1,067.

12) Интегральный показатель безопасности сжатого железобетонного элемента: k=γn⋅kcn⋅ka=1⋅0,784⋅1,067=0,836.

13) Проектный предел огнестойкости сжатого железобетонного элемента кольцевого сечения по потере несущей способности (Fur, мин) вычисляют по уравнению (1):

.

Следовательно, конструкция консольной стойки кольцевого сечения подходит для зданий 1 степени огнестойкости (табл. 21 [5]).

Источники информации

1. ГОСТ 30247.1-94. Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции.

2. Патент №2281482 RU МПК G01N 25/50. Способ определения огнестойкости сжатых элементов железобетонных конструкций здания / Ильин Н.А., Бутенко С.А., Эсмонт С.В.; заяв. СГАСУ: 06.09.04; опубл. 18.02.06. Бюл.№22.

3. СП 63.13330.2012. Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003 - М.: ФАУ «ФЦС», 2012.- 156 с.

4. Пособие по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры (к СП 52-101-2003). ЦНИИПромзданий, НИИЖБ. - М.; - 2005.

5. Технический регламент о требованиях пожарной безопасности: ФЗ №123-2018 (табл. 21).


СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОГО СЖАТОГО ЭЛЕМЕНТА КОЛЬЦЕВОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОГО СЖАТОГО ЭЛЕМЕНТА КОЛЬЦЕВОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОГО СЖАТОГО ЭЛЕМЕНТА КОЛЬЦЕВОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОГО СЖАТОГО ЭЛЕМЕНТА КОЛЬЦЕВОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОГО СЖАТОГО ЭЛЕМЕНТА КОЛЬЦЕВОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОГО СЖАТОГО ЭЛЕМЕНТА КОЛЬЦЕВОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОГО СЖАТОГО ЭЛЕМЕНТА КОЛЬЦЕВОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОГО СЖАТОГО ЭЛЕМЕНТА КОЛЬЦЕВОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОГО СЖАТОГО ЭЛЕМЕНТА КОЛЬЦЕВОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОГО СЖАТОГО ЭЛЕМЕНТА КОЛЬЦЕВОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОГО СЖАТОГО ЭЛЕМЕНТА КОЛЬЦЕВОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОГО СЖАТОГО ЭЛЕМЕНТА КОЛЬЦЕВОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОГО СЖАТОГО ЭЛЕМЕНТА КОЛЬЦЕВОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОГО СЖАТОГО ЭЛЕМЕНТА КОЛЬЦЕВОГО СЕЧЕНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ОГНЕСТОЙКОСТИ ЖЕЛЕЗОБЕТОННОГО СЖАТОГО ЭЛЕМЕНТА КОЛЬЦЕВОГО СЕЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 191.
26.08.2017
№217.015.d9b0

Способ компенсации оптических аберраций с использованием деформируемого зеркала

Изобретение относится к способам, которые обеспечивают компенсацию оптических аберраций с использованием деформируемого зеркала, и может быть использовано в активных и адаптивных оптических системах, предназначенных для компенсации аберраций волнового фронта светового излучения. Способ...
Тип: Изобретение
Номер охранного документа: 0002623661
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.df33

Способ приготовления кисломолочногопродукта

Изобретение относится к молочной промышленности. Подготовленное молоко подвергают действию электрического тока в катодном пространстве диафрагменного электролизера с плоскими электродами из нержавеющей стали 10Х17Н13М2Т при объемной плотности тока 2 А/см и катодной плотности тока 0,018 А/см в...
Тип: Изобретение
Номер охранного документа: 0002625030
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.f51a

Катализатор, способ его приготовления и процесс селективной гидроочистки бензина каталитического крекинга

Изобретение относится к области химии, в частности к катализаторам для селективной гидроочистки бензинов каталитического крекинга, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Заявляется катализатор селективной гидроочистки бензина каталитического...
Тип: Изобретение
Номер охранного документа: 0002637808
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f85d

Адсорбент для очистки сточных вод от ионов меди

Изобретение относится к охране окружающей среды. Предложен сорбент для очистки сточных вод от меди. Сорбент представляет собой отработанный в процессе фильтрации пива кизельгур, подвергнутый сушке при 50-200°C и последующей термохимической активации при 60-100°C. Активацию проводят в 2,0-2,5 М...
Тип: Изобретение
Номер охранного документа: 0002639803
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.f8cd

Способ получения изопропилбензола

Изобретение относится к способу получения изопропилбензола алкилированием бензола пропиленом и переалкилированием полиалкилибензолов. Способ характеризуется тем, что реакции алкилирования и переалкилирования проводят раздельно, причем реакцию алкилирования проводят в жидкой фазе с применением...
Тип: Изобретение
Номер охранного документа: 0002639706
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.0516

Способ производства фруктового продукта в виде пластинок из груш, яблок и виноградного сырья

Изобретение относится к пищевой промышленности, в частности к изготовлению фруктового продукта в виде пластинок из груш, яблок и виноградного сырья. Пищевой продукт готовят путем подготовки груш и яблок. Удаляют несъедобные части и кожуру. Режут на ломтики толщиной 5-8 мм, обрабатывают в...
Тип: Изобретение
Номер охранного документа: 0002630702
Дата охранного документа: 12.09.2017
19.01.2018
№218.016.078f

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Изобретение относится к способу приготовления катализатора для глубокой гидроочистки нефтяных фракций. Способ включает пропитку алюмооксидного носителя раствором соединений металлов VIII, VI и V групп. При этом готовят совместный пропиточный раствор MoO и/или WO, не обязательно VO, от 0,33 до...
Тип: Изобретение
Номер охранного документа: 0002631424
Дата охранного документа: 22.09.2017
20.01.2018
№218.016.0f39

Способ получения 1н-бензо[f]хромен-2-ил(арил)кетонов

Изобретение относится к способу получения 1-бензо[ƒ]хромен-2-ил(арил)кетонов реакцией замещенных 1-[(диметиламино)метил]-2-нафтолов с 3-(диметиламино)-1-арил-проп-2-ен-1-онами. Полученные соединения являются перспективными исходными соединениями для синтеза фармакологически активных веществ....
Тип: Изобретение
Номер охранного документа: 0002633368
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0f41

Расплавляемый электролит для химического источника тока

Изобретение относится к расплавляемому электролиту для химического источника тока, включающему при следующем соотношении компонентов, мас. %: фторид лития 1,57…1,63, хромат лития 64,59…66,29, хлорид калия 16,38…18,52, хромат калия 15,32…15,70. Технический результат – снижение температуры...
Тип: Изобретение
Номер охранного документа: 0002633360
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1152

Погружной скважинный генератор газопаровой смеси

Изобретение относится к области промышленной теплоэнергетики и может быть применено для генерирования газопаровой смеси с целью термической обработки скважин в нефтедобывающей промышленности. Техническим результатом изобретения является обеспечение надежного функционирования генератора...
Тип: Изобретение
Номер охранного документа: 0002633983
Дата охранного документа: 20.10.2017
Показаны записи 21-30 из 41.
25.08.2017
№217.015.b985

Способ оценки огнестойкости железобетонной балочной конструкции здания

Изобретение относится к области пожарной безопасности зданий и сооружений и может быть использовано для классификации железобетонных балочных конструкций. Сущность изобретения заключается в том, что испытание железобетонной балочной конструкции здания проводят без разрушения, по комплексу...
Тип: Изобретение
Номер охранного документа: 0002615048
Дата охранного документа: 03.04.2017
29.12.2017
№217.015.f6bf

Способ определения пожарно-технических характеристик элементов и материалов комплексной облицовки стальной балки с гофрированной стенкой

Изобретение относится к области пожарной безопасности зданий, в частности, может быть использовано при изготовлении конструктивной огнезащиты сварного двутавра стальной балки здания. Способ определения пожарно-технических характеристик элементов и материалов комплексной облицовки стальной балки...
Тип: Изобретение
Номер охранного документа: 0002639209
Дата охранного документа: 20.12.2017
20.01.2018
№218.016.13ae

Способ оценки огнестойкости стальной термозащищённой гофробалки здания

Изобретение относится к области пожарной безопасности зданий, в частности, оно может быть использовано для пожарно-технической классификации стальной термозащищенной гофробалки по показателям сопротивления воздействию пожара. Оценку огнестойкости стальной гофробалки проводят без разрушения по...
Тип: Изобретение
Номер охранного документа: 0002634568
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.13c3

Способ оценки огнестойкости стальной балки с гофростенкой

Изобретение относится к области пожарной безопасности зданий. При осуществлении способа испытание стальной балки с гофростенкой проводят без разрушения по комплексу единичных показателей качества, оценивая их величину с помощью статистического контроля. Для этого определяют геометрические...
Тип: Изобретение
Номер охранного документа: 0002634569
Дата охранного документа: 31.10.2017
10.05.2018
№218.016.47c1

Способ оценки огнестойкости балочной конструкции

Изобретение относится к области пожарной безопасности зданий и сооружений. Предложен способ оценки огнестойкости стальной гофрированной стенки, растянутого и сжатого железобетонных поясов составной балки здания без нарушения ее пригодности по комплексу единичных показателей качества. Для...
Тип: Изобретение
Номер охранного документа: 0002650704
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4b8c

Конструкция огнезащищённой стальной балки

Изобретение относится к области пожарной безопасности зданий, в частности, оно может быть использовано при изготовлении огнезащищенной стальной балки с гофрированной стенкой. Техническим результатом изобретения является совершенствование конструкции огнезащиты стальной балки с гофрированной...
Тип: Изобретение
Номер охранного документа: 0002651997
Дата охранного документа: 24.04.2018
14.06.2018
№218.016.61f9

Способ оценки огнестойкости ограждающей конструкции здания по критерию теплоизолирующей способности

Изобретение относится к области пожарной безопасности зданий и может быть использовано для классификации ограждающих конструкций зданий по их показателям сопротивления воздействию высоких температур при пожаре. Оценку огнестойкости ограждающей конструкции здания проводят без разрушения, по...
Тип: Изобретение
Номер охранного документа: 0002657328
Дата охранного документа: 13.06.2018
21.10.2018
№218.016.94a3

Способ выявления сопротивления растяжению арматуры железобетонного элемента в условиях пожара

Изобретение относится к области пожарной безопасности зданий, в частности к огнестойкости железобетонных элементов конструкций здания, и касается исследования и анализа качества растянутой арматуры с помощью тепловых средств при совместном воздействии нагрузки и высокой температуры стандартного...
Тип: Изобретение
Номер охранного документа: 0002670239
Дата охранного документа: 19.10.2018
09.11.2018
№218.016.9bb0

Способ оценки огнестойкости многопустотной преднапряженной железобетонной плиты

Изобретение относится к области пожарной безопасности зданий - огнестойкости их конструкций. Сущность изобретения заключается в том, что испытание многопустотной преднапряженной многопустотной железобетонной плиты проводят без разрушения, по комплексу единичных показателей качества. Для этого...
Тип: Изобретение
Номер охранного документа: 0002671910
Дата охранного документа: 07.11.2018
12.12.2018
№218.016.a5a2

Способ оценки огнестойкости монолитной железобетонной балочной плиты перекрытия здания

Изобретение относится к области пожарной безопасности зданий и сооружений и может быть использовано для классификации монолитных железобетонных балочных плит перекрытий зданий по показателям сопротивления их воздействию высоких температур пожара. Сущность изобретения заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002674418
Дата охранного документа: 07.12.2018
+ добавить свой РИД