×
24.01.2019
219.016.b375

Результат интеллектуальной деятельности: Лабораторный анализатор плотности газов

Вид РИД

Изобретение

Аннотация: Изобретение относится к средствам аналитической лабораторной техники, а именно к анализаторам плотности газов. Лабораторный анализатор плотности газов состоит из турбулентного дросселя, вход которого соединен через тройник с выходом камеры для сжатия газов, выполненной в виде спирали из тонкостенной металлической трубки и размещенной в емкости с охлаждающей жидкостью, и входом измерительной камеры датчика давления, а также пневмотумблера, подключенного к выходу турбулентного дросселя, и отличается тем, что дополнительно содержит микрокомпрессор с электроприводом, аналого-цифровым преобразователем и двумя дополнительными пневмотумблерами, при этом вход микрокомпрессора соединен с входом анализатора, а его выход через один из дополнительных пневмотумблеров соединен с входом камеры для сжатия газов, второй дополнительный пневмотумблер подключен к выходу измерительной камеры датчика давления, выход которого подключен к аналого-цифровому преобразователю, при этом электропривод микрокомпрессора и аналого-цифровой преобразователь выполнены с возможностью подключения к компьютеру. Техническим результатом является увеличение точности измерения плотности газа. 2 ил.

Изобретение относится к средствам аналитической лабораторной техники, а именно, к анализаторам плотности газов.

Известен лабораторный анализатор плотности газов (Кириллин В.А., Шейндлин А.Е. Исследования термодинамических свойств веществ. М.: Госэнергоиздат, 1963, с. 176-178), который содержит напорный сосуд, заполненный ртутью и установленный вертикально в штативе на определенной высоте, стеклянную трубку с открытым нижним торцом, в верхней части которого установлен турбулентный дроссель для истечения анализируемого газа. Нижняя часть трубки расположена в стеклянной емкости, в которой размещена ртуть, служащая затворной жидкостью.

При перемещении напорного сосуда проба анализируемого газа, отобранная в трубку, за счет перемещения уровня ртути, перетекающей из напорного сосуда в емкость, начинает вытесняться последней через отверстие турбулентного дросселя. В процессе истечения измеряется последовательно (с помощью секундомера) время достижения уровнем ртути двух электрических контактов, расположенных по высоте трубки, через которые замыкаются сигнальные электрические цепи. Расстояние по высоте между двумя контактами постоянно. Этим определяется постоянство объема, истекающей через турбулентный дроссель пробы анализируемого газа. Время истечения этой пробы анализируемого газа однозначно определяется его плотностью.

Недостатком такого анализатора является необходимость использования в нем ртути в качестве запорной жидкости, что является нежелательным с позиции техники безопасности.

Наиболее близким по технической сущности является лабораторный анализатор плотности газов (RU 2531043, МПК G01N 9/00, 2014), содержащий турбулентный дроссель, вход которого соединен через тройник с камерой для сжатия анализируемого газа, выполненной в виде спирали из тонкостенной металлической трубки, размещенной в емкости с охлаждающей жидкостью и выходом измерительной камеры датчика давления. Вход этой камеры соединен через вентиль с линией анализируемого газа. Пневмотумблер подключен к выходу турбулентного дросселя. Анализатор также содержит устройство для сжатия анализируемого газа, входной канал которого соединен с выходным каналом камеры для сжатия анализируемого газа.

Измерение плотности газа данным анализатором осуществляется путем измерения интервала времени истечения пробы анализируемого газа через турбулентное сопротивление после ее отбора и сжатия с помощью поршня в замкнутой емкости. При этом время истечения определяется как разность моментов времени, при которых в камере для сжатия анализируемого газа при непрерывно изменяющемся давлении достигаются выбранные заранее максимальное и минимальное значение давления.

Недостатками данного анализатора является необходимость использования большого числа вспомогательных элементов (измеритель временных интервалов, компараторы минимального и максимального сигналов, устройства задания уровней срабатывания максимального и минимального значений сигналов) для определения времени истечения и необходимость дополнительной ручной обработки результатов измерений для получения искомых значений плотностей газов, что ведет в уменьшению точности измерения плотности.

Проблемой изобретения является создание лабораторного анализатора плотности газа предоставляющего измерительную информацию в форме удобной для передачи, хранения и дальнейшей обработки.

Техническим результатом изобретения является увеличение точности измерения плотности газа.

Технический результат достигается тем, что лабораторный анализатор плотности газов содержит турбулентный дроссель (микродиафрагму), вход которого соединен через тройник с выходом камеры для сжатия газов, выполненной в виде спирали из тонкостенной металлической трубки и размещенной в емкости с охлаждающей жидкостью, и входом измерительной камеры датчика давления, а также пневмотумблер, подключенный к выходу турбулентного дросселя. Согласно изобретению анализатор дополнительно содержит микрокомпрессор с электроприводом, аналого-цифровой преобразователь и два дополнительных пневмотумблера, при этом вход микрокомпрессора соединен с входом анализатора, а его выход, через один из дополнительных пневмотумблеров, соединен со входом камеры для сжатия газов. Второй дополнительный пневмотумблер подключен к выходу измерительной камеры датчика давления, выход которого подключен к аналого-цифровому преобразователю. Электропривод микрокомпрессора и аналого-цифровой преобразователь выполнены с возможностью подключения к компьютеру.

Такая конструкция позволяет измерять принятые максимальные и минимальные значения давления по значениям электрического сигнала преобразователя давления, а после аналого-цифрового преобразования, использовать уже цифровой сигнал в дальнейшей обработке, например, на компьютере или микропроцессорном устройстве. Такая структура обработки сигнала обеспечивает, в свою очередь, более высокую точность измерения за счет исключения возможных ошибок обслуживающего персонала и использования алгоритмов обработки сигнала, позволяющих уменьшить случайную погрешность измерения.

По сравнению с прототипом заявляемая конструкция имеет отличительную особенность в совокупности элементов и их взаимном расположении.

На фиг. 1 показана схема лабораторного анализатора плотности газов.

На фиг. 2 - примеры выбора пар максимального Р1 и минимального Р2 давлений и соответствующие им значения времени истечения τ.

Лабораторный анализатор плотности газов, содержит турбулентный дроссель 1, вход 2 которого соединен через тройник 3 с выходом 4 камеры 5 для сжатия газов, выполненной в виде спирали из тонкостенной металлической трубки. Камера 5 размещена в емкости 6 с охлаждающей жидкостью. Вход 7 измерительной камеры 8 датчика 9 давления связан через тройник 3 с выходом 4 камеры 5 и входом 2 дросселя 1. Пневмотумблер 10, подключен к выходу 11 турбулентного дросселя 1. Анализатор дополнительно содержит микрокомпрессор 12 с электроприводом 13, аналого-цифровой преобразователь 14 и два дополнительных пневмотумблера 15 и 16. Вход 17 микрокомпрессора 12 соединен с входом 18 анализатора, а его выход 19, через один из дополнительных пневмотумблеров 15, соединен с входом 20 камеры для сжатия газов 5. Второй дополнительный пневмотумблер 16 подключен к выходу 21 измерительной камеры 8 датчика 9 давления, выход которого подключен к аналого-цифровому преобразователю 14. Электропривод 13 микрокомпрессора 12 и аналого-цифровой преобразователь 14 выполнены с возможностью подключения к компьютеру (на фиг. не показано). Все элементы анализатора расположены в корпусе 22.

Лабораторный анализатор плотности газов работает следующим образом. После включения в работу датчика 9 давления и аналого-цифрового преобразователя 14 выход 11 турбулентного дросселя 1 с помощью пневмотумблера 10 и выход 21 измерительной камеры 8 датчика 9 давления с помощью второго дополнительного пневмотумблера 16 соединяют с атмосферой, а выход 19 микрокомпрессора 12 с помощью первого дополнительного пневмотумблера 15 соединяют с входом 20 камеры 5 для сжатия газов. После этого с помощью электропривода 13 включается микрокомпрессор 12 и анализируемый газ, поступающий через вход анализатора 18, начинает истекать в атмосферу через камеру 5 для сжатия газов, измерительную камеру 8 датчика давления 9, а также через турбулентный дроссель 1. Таким образом, турбулентный дроссель 1, измерительная камера 8 датчика 9 давления и камера 5 для сжатия газов промываются анализируемым газом. Промывка длится 1-1,5 минуты. На этом заканчивается режим работы анализатора «Подготовка».

После переключения пневмотумблеров 10 и 16 анализируемый газ начинает сжимаеться микрокомпрессором 12. По достижении некоторого постоянного давления, пневмотумблер 15 переключается, а микрокомпрессор 12 выключается. При сжатии газа его температура несколько увеличивается. По истечении некоторого отрезка времени, в течение которого температура газа принимает значение равное температуре охлаждающей жидкости в емкости 6 с охлаждающей жидкостью, в измерительной камере 8 датчика 9 давления и камере 5 для сжатия газов устанавливается постоянное давление. Затем с помощью пневмотумблера 10 турбулентный дроссель 1 сообщается с атмосферой и анализируемый газ начинает истекать через него в атмосферу (режим работы «Анализ»). При этом давление в измерительной камере 8 датчика 9 давления и камере 5 для сжатия газов начинает постепенно уменьшаться. Поэтому уменьшается и электрический сигнал, возникающей на выходе датчика 9 давления. Этот сигнал поступает на вход аналого-цифрового преобразователя 14. С выхода аналого-цифрового преобразователя 14 сигнал измерительной информации поступает на компьютер или микропроцессорное устройство, где значения давления в определенные моменты времени записываются в виде массива данных, содержащего значения соответствующих давлений и времени, в которые эти давления измерены. Для повышения точности измерения в пределах одного анализа вычисляется несколько значений времени истечения анализируемого газа τai, определенных при нескольких разностях максимального P1i и минимального P2i давлений в измерительной камере 8 датчика 9 давления (фиг. 2).

Все описанные операции повторяются для эталонного газа, которым может служить осушенный воздух. При этом определяется несколько значений времени истечения эталонного газа τвi, определенных при выбранных ранее разностях максимального P1i и минимального P2i давлений в измерительной камере 8.

Для каждой пары максимального P1i и минимального P2i давлений рассчитывается значение плотности анализируемого газа по формуле:

где ρв - плотность воздуха в нормальных условиях.

Результат измерения плотности анализируемого газа определяется как среднее арифметическое значение плотности анализируемого газа, измеренных для каждой пары максимального P1i и минимального P2i давления:

где n - число значений времени истечения анализируемого τai и эталонного τвi газов, определенных при выбранных разностях максимального P1i и минимального P2i давлений в измерительной камере 8.

Экспериментальные исследования макета лабораторного анализаторов плотности газов показали, что он при использовании высокоточных современных преобразователей давления в электрический сигнал способен обеспечить измерение плотности газа с погрешностью ±0,2%.

Преимущества предлагаемого технического решения:

- простота конструкции и измерений

- высокая точность;

- низкая стоимость.

Предлагаемый лабораторный анализатор плотности газов может быть реализован на базе стандартного пьезорезистивного датчика давления, микрокомпрессора и аналого-цифрового преобразователя.

Лабораторный анализатор плотности газов может найти широкое применение в практике заводских и исследовательских лабораторий различных предприятий газовой, нефтеперерабатывающей и нефтехимической промышленности.

Лабораторный анализатор плотности газов, содержащий турбулентный дроссель, вход которого соединен через тройник с выходом камеры для сжатия газов, выполненной в виде спирали из тонкостенной металлической трубки и размещенной в емкости с охлаждающей жидкостью, и входом измерительной камеры датчика давления, а также пневмотумблер, подключенный к выходу турбулентного дросселя, отличающийся тем, что анализатор дополнительно содержит микрокомпрессор с электроприводом, аналого-цифровой преобразователь и два дополнительных пневмотумблера, при этом вход микрокомпрессора соединен с входом анализатора, а его выход через один из дополнительных пневмотумблеров соединен с входом камеры для сжатия газов, второй дополнительный пневмотумблер подключен к выходу измерительной камеры датчика давления, выход которого подключен к аналого-цифровому преобразователю, причем электропривод микрокомпрессора и аналого-цифровой преобразователь выполнены с возможностью подключения к компьютеру.
Лабораторный анализатор плотности газов
Лабораторный анализатор плотности газов
Лабораторный анализатор плотности газов
Источник поступления информации: Роспатент

Показаны записи 51-60 из 64.
17.02.2020
№220.018.0363

Способ установки заготовки на центрах токарного станка

Способ включает установку на шпиндель станка механизированного патрона с переменным движением кулачков, установку переднего упорного центра в патрон, установку заднего упорного центра в пиноль задней бабки станка и установку заготовки центровыми отверстиями на передний и задний упорные центры....
Тип: Изобретение
Номер охранного документа: 0002714361
Дата охранного документа: 14.02.2020
27.03.2020
№220.018.10a7

Способ переустановки тонкостенной заготовки в механизированный патрон

Способ включает установку заготовки на базирующий элемент, закрепление ее в упомянутом элементе, установку цангового патрона с зажимными элементами в виде лепестков цанги и с нажимным конусом напротив заготовки, подвод патрона к базирующему элементу с заходом его цанги в отверстие заготовки, а...
Тип: Изобретение
Номер охранного документа: 0002717760
Дата охранного документа: 25.03.2020
01.04.2020
№220.018.1204

Устройство контроля формы отражающей поверхности антенной системы зеркального типа

Изобретение относится к области радиотехники, а именно к антенной технике, точнее к устройствам, обеспечивающим получение информации о топологии и других свойствах поверхности объекта. Устройство контроля формы отражающей поверхности антенной системы зеркального типа включает рефлектор и...
Тип: Изобретение
Номер охранного документа: 0002718127
Дата охранного документа: 30.03.2020
16.05.2020
№220.018.1d3a

Устройство для заряда и десульфатации аккумуляторов

Изобретение относится к электротехнической области техники, а именно к устройствам заряда аккумуляторов асимметричным током, и может быть использовано во всех областях народного хозяйства. Техническим результатом изобретения является повышение надежности работы устройства. Устройство...
Тип: Изобретение
Номер охранного документа: 0002721006
Дата охранного документа: 15.05.2020
01.07.2020
№220.018.2d70

Устройство измерения формы произвольной отражающей поверхности антенной системы

Изобретение относится к области метрологии, а именно к устройствам получения информации о форме, топологии и других свойствах поверхности объекта. Устройство контроля криволинейной формы отражающей поверхности антенной системы зеркального типа включает рефлектор антенны и сканер с системой...
Тип: Изобретение
Номер охранного документа: 0002725030
Дата охранного документа: 29.06.2020
04.07.2020
№220.018.2e87

Устройство контроля диаграммы направленности и формы отражающей поверхности антенной системы

Изобретение относится к области антенной техники, а именно к устройствам получения информации о свойствах диаграммы направленности излучения антенн при отражении от рефлектора, и предназначено для использования в подвижных системах радиосвязи, радиолокации от УФ до ТГц диапазона, а также для...
Тип: Изобретение
Номер охранного документа: 0002725514
Дата охранного документа: 02.07.2020
12.07.2020
№220.018.3202

Способ измерения отклонений расположения плоскостей относительно центра наружной сферической поверхности

Изобретение относится к измерительной техники, в частности для измерения взаимного расположения плоскостей и наружной сферической поверхности. На установочной плоскости размещают базирующий элемент, содержащий базирующие призмы. Устанавливают на базирующем элементе основное отсчетное...
Тип: Изобретение
Номер охранного документа: 0002726285
Дата охранного документа: 10.07.2020
12.07.2020
№220.018.323c

Устройство для измерения отклонений расположения плоскостей относительно центра наружной сферической поверхности

Изобретение относится к измерительной технике, в частности для измерения взаимного расположения плоскостей и наружной сферической поверхности. Устройство содержит основание, базирующий элемент с базирующими призмами, основной и дополнительный индикаторы с измерительными стержнями, кронштейн,...
Тип: Изобретение
Номер охранного документа: 0002726294
Дата охранного документа: 10.07.2020
12.04.2023
№223.018.4804

Лазерная оптическая головка

Изобретение относится к лазерной оптической головке. Неподвижный корпус имеет защитное стекло, закрепленное на входе лазерного пучка. Безлинзовая оптическая зеркально отражающая система фокусировки лазерного пучка состоит из большого неподвижного зеркала с центральным отверстием,...
Тип: Изобретение
Номер охранного документа: 0002741035
Дата охранного документа: 22.01.2021
23.04.2023
№223.018.5227

Катализатор синтеза фишера-тропша и способ его получения

Изобретение относится к химической промышленности, а именно, к области производства гетерогенных катализаторов синтеза Фишера-Тропша, и может быть применено на предприятиях химической промышленности для получения жидких углеводородов. Катализатор синтеза Фишера-Тропша содержит носитель, железо...
Тип: Изобретение
Номер охранного документа: 0002745214
Дата охранного документа: 22.03.2021
Показаны записи 1-5 из 5.
20.07.2014
№216.012.e27b

Фотоионизационный детектор для газоаналитической аппаратуры

Изобретение относится к области аналитической техники, а именно к средствам измерений концентраций компонентов при газовом анализе. Фотоионизационный детектор для газоаналитической аппаратуры содержит лампу ультрафиолетового излучения с плоским выходным окном, над которым размещена проточная...
Тип: Изобретение
Номер охранного документа: 0002523765
Дата охранного документа: 20.07.2014
20.10.2014
№216.012.fea3

Лабораторный анализатор плотности газов

Изобретение относится к средствам аналитической лабораторной техники, а именно к анализаторам плотности газов. Лабораторный анализатор плотности газов содержит миниатюрное турбулентное сужающее устройство, вход которого связан через тройник с камерой для сжатия анализируемого газа, выполненной...
Тип: Изобретение
Номер охранного документа: 0002531043
Дата охранного документа: 20.10.2014
10.04.2016
№216.015.2b5f

Автоматический анализатор теплоценности газообразных топлив

Изобретение относится к области аналитической техники и может быть использовано для автоматического контроля теплоценности газообразных топлив. Автоматический анализатор теплоценности газообразных топлив содержит камеру, в днище которой установлена горелка для формирования пламени во...
Тип: Изобретение
Номер охранного документа: 0002579832
Дата охранного документа: 10.04.2016
21.10.2018
№218.016.9494

Лабораторный анализатор плотности газов

Изобретение относится к средствам аналитической лабораторной техники, а именно к анализаторам плотности газов. Лабораторный анализатор плотности газов содержит турбулентное сужающее устройство, вход которого соединен через тройник с камерой для сжатия анализируемого газа, выполненной в виде...
Тип: Изобретение
Номер охранного документа: 0002670210
Дата охранного документа: 19.10.2018
10.01.2019
№219.016.ae35

Лабораторный эффузионный анализатор плотности газов

Изобретение относится к средствам аналитической лабораторной техники, а именно к анализаторам плотности газов. Заявлен лабораторный эффузионный анализатор плотности газов, который содержит турбулентный дроссель 1, выход 2 которого соединен с пневмотумблером 3, камеру для сжатия газов 4,...
Тип: Изобретение
Номер охранного документа: 0002676559
Дата охранного документа: 09.01.2019
+ добавить свой РИД