×
19.01.2019
219.016.b18f

Результат интеллектуальной деятельности: Способ регенерации медно-хлоридного травильного раствора

Вид РИД

Изобретение

Аннотация: Изобретение относится к регенерации травильного раствора хлорида меди и может быть использовано в производстве печатных плат. Способ регенерации медно-хлоридного травильного раствора, содержащего 70-200 г/л ионов меди и 75-90 г/л хлористого водорода, включает электрохимическую обработку медно-хлоридного травильного раствора при температуре 25-50°С на титановом катоде в катодной камере, отделенной катионообменной мембраной от анодной камеры с раствором серной кислоты и платинированным титановым анодом, подключенным к источнику тока. Причем после обработки в катодной камере травильный раствор переливают в дополнительную отделенную от упомянутой катодной камеры катионообменной мембраной анодную камеру с платинированным титановым анодом, подключенным к дополнительному источнику тока. При этом травильный раствор обрабатывают в катодной камере при катодной плотности тока 2-10 А/дм, причем в основной анодной камере анодная плотность тока составляет 1-5 А/дм, а в дополнительной анодной камере - 0,1-0,5 А/дм. Изобретение позволяет устранить выделения хлора на аноде и обеспечивает получение регенерированного травильного раствора с содержанием ионов одновалентной меди не более 10% от суммарного содержания меди, а также снижение удельного расхода электроэнергии. 3 пр.

Изобретение относится к производству печатных плат, конкретно - к операции травления в кислом растворе хлорида меди. Изобретение может быть использовано в производстве печатных плат.

Кислые травильные растворы на основе хлорида меди могут содержать суммарное количество ионов меди 70-200 г/л и хлористый водород 75-90 г/л. В процессе травления растворение металлической меди происходит в результате ее взаимодействия с раствором хлорида меди(II):

Cu+CuCl2→Cu2Cl2.

В результате этой реакции хлорид двухвалентной меди превращается в хлорид одновалентной меди, не обладающий травящим действием, возрастает содержание ионов меди в травильном растворе и раствор утрачивает способность осуществлять дальнейшее травление металла. Добавление окислителей, например, пероксида водорода, в раствор и взаимодействие раствора с кислородом воздуха переводит ионы одновалентной меди обратно в двухвалентное состояние и дает возможность продолжать эксплуатацию раствора. Однако после того как суммарное содержание ионов одно- и двухвалентной меди превысит допустимое предельное значение (150-200 г/л), дальнейшую эксплуатацию раствора приходится прекращать из-за выпадения кристаллического осадка хлорной меди.

Отработанный раствор можно утилизировать путем извлечения из него всей меди в виде каких-либо химических соединений, например, хлорокиси меди или в виде металла. Более целесообразной технически и экономически является регенерация такого раствора, проводимая химическим или электрохимическим методом. При химической регенерации к раствору добавляют водный раствор пероксида водорода, в результате чего увеличивается объем раствора, а, следовательно, снижается суммарная концентрация ионов меди. Одновременно, благодаря химическому взаимодействию пероксида водорода с ионами одновалентной меди последние окисляются в ионы двухвалентной меди, и раствор приобретает травящие свойства. Кроме того, в результате разбавления раствора в нем снижается содержание хлористого водорода, поэтому перед дальнейшей эксплуатацией к нему приходится добавлять необходимое количество соляной кислоты.

Серьезным недостатком химического метода регенерации является образование излишних объемов травильного раствора, которые подлежат обязательной утилизации. Так, например, при снижении общего содержания ионов меди в процессе регенерации в два раза образуется излишек травильного раствора, содержащий столько же ионов меди, сколько их находится в регенерированном растворе.

Известен и использовался в промышленности электрохимический способ регенерации щелочных травильных растворов на основе хлорида меди без разделения катодного и анодного пространств электролизера [Кругликов С.С., Регенерация травильных растворов и рекуперация меди в производстве печатных плат Гальванотехника и обработка поверхности. 1993. Т. 2, №2, с. 69-72]. Однако данный способ применим только для щелочных медно-аммиачных растворов. Для регенерации таких растворов известен также электрохимический способ регенерации с разделением катодного и анодного пространств с помощью ионообменной мембраны [Патент РФ №2620228, Кругликов С.С., Колесников В.А., Губин А.Ф., Кондратьева Е.С.]

Для регенерации щелочных аммиачных медно-хлоридных растворов предложен способ с использованием дополнительной стадии экстракции ионов меди органическим экстрагентом с последующей реэкстракцией раствором серной кислоты, из которого металлическая медь осаждается на катоде при электролизе [Совершенствование процесса регенерации растворов травления печатных плат / Губин А.Ф., Гусев В.Ю., Ильин В.И. // Оборонный комплекс - научно-техническому прогрессу России, 2008, №2, с. 84-86]. Аналогичный способ разработан для регенерации кислых медно-хлоридных растворов [Электронный ресурс - http://www.sigma-gmppen.com/en/products/mecer-equipment/process-description-acidic-mecer-17364780, дата обращения 17.01.2018 г.] Однако в связи со сложностью многостадийного технологического процесса, высокой стоимостью необходимого оборудования и органических экстрагентов, промышленное применение этих способов экономически оправдано только при очень больших объемах производства печатных плат.

Был разработан способ электрохимической регенерации кислого медно-хлоридного раствора в электролизере без разделения катодного и анодного пространств. Испытания этого, способа в промышленных условиях закончились неудачей - через несколько минут после включения тока на аноде начиналось обильное выделение газообразного хлора.

Наиболее близким по технической сущности и достигаемому результату является способ электрохимической регенерации кислого медно-хлоридного травильного раствора, содержащего ионы меди 60 г/л и хлористый водород 50 г/л, путем его обработки в катодной камере на катоде из титана при температуре 25-50°С и плотности тока 4-8 А/дм2. [Кругликов С.С., Тураев Д.Ю., Бузикова A.M. Регенерация раствора травления меди в производстве печатных плат методом мембранного электролиза, Гальванотехника и обработка поверхности, 2009, т. 17, №1, с .59-65] На этой стадии из раствора извлекается избыток ионов меди, которые разряжаются на катоде, образуя осадок металлической меди. Однако параллельно с осаждением меди на катоде часть оставшихся в растворе ионов меди переходит из двухвалентного в одновалентное состояние. Поэтому после обработки раствора в катодной камере он обрабатывается в анодной камере, отделенной от катодной камеры катионообменной мембраной, чтобы приобрести свойства травильного раствора, путем анодного окисления ионов одновалентной меди в двухвалентные. В процессе электрохимической обработки температура раствора не должна превышать 50°С, так как при более высокой температуре ионообменные мембраны недостаточно устойчивы.

Однако эксперименты показали, что такой процесс регенерации сопровождается обильным выделением хлора на аноде из-за дисбаланса между количеством электричества, расходуемым на удаление избыточной меди из раствора в катодной камере и значительно меньшим количеством электричества, расходуемым на анодное окисление ионов одновалентной меди в ионы двухвалентной меди в анодной камере.

В этом способе удельный расход электроэнергии на проведение регенерации составляет 5-10 кВтч/кг извлеченной из раствора меди и раствор после обработки в катодной и анодной камерах непригоден для повторного использования в качестве травильного, так как значительная доля ионов меди содержится в нем в виде одновалентных ионов. Для повторного использования в качестве травильного необходима дополнительная стадия окисления ионов одновалентной меди химическим или электрохимическим методом, который в данном способе вообще не предусматривается.

Задачей предлагаемого изобретения является устранение выделения хлора на аноде и получение регенерированного травильного раствора с содержанием ионов одновалентной меди не более 10% от суммарного содержания меди, а также снижение удельного расхода электроэнергии.

Поставленная задача решается путем электрохимической обработки медно-хлоридного травильного раствора при температуре 25-50°С на титановом катоде в катодной камере, отделенной катионообменной мембраной от анодной камеры с платинированным титановым анодом, подключенным к источнику тока и раствором серной кислоты, при этом, после обработки в катодной камере медно-хлоридный травильный раствор поступает в дополнительную анодную камеру с платинированным титановым анодом, отделенную от катодной камеры катионообменной мембраной и подключенную к дополнительному источнику тока, причем травильный раствор с начальной концентрацией ионов меди 70-200 г/л и хлористого водорода 75-90 г/л, обрабатывают в катодной камере при катодной плотности тока 2-10 А/дм2, в основной анодной камере анодная плотность тока 1-5 А/дм2, а в дополнительной анодной камере при анодной плотности тока 0,1-0,5 А/дм2.

Предлагаемый способ обладает следующими преимуществами по сравнению с известным.

1. После регенерации раствор содержит большую часть ионов меди в двухвалентном состоянии и поэтому пригоден для использования в качестве травильного.

2. Предлагаемый способ устраняет возможность образования газообразного хлора на аноде.

3. Удельный расход электроэнергии снижается с 5-10 кВтч/кг до 2,0-3,7 кВтч/кг меди.

4. Система управления технологическими параметрами с использованием двух независимых источников питания легко может быть автоматизирована.

Приведенные ниже примеры иллюстрируют реализацию данного изобретения.

Пример 1.

200 мл отработанного травильного раствора, содержащего 200 г/л ионов меди, в том числе 100 г/л одновалентных и 100 г/л двухвалентных, а также 90 г/л хлористого водорода, обрабатывали в катодной камере трехкамерного электролизера, состоящего из двух анодных и одной катодной камеры емкостью 200 мл каждая. Процесс проводили в течение 8 час при катодной плотности тока 10 А/дм2 и температуре 50°С. После этого раствор из катодной камеры перелили в дополнительную анодную камеру объемом 200 мл, где его обрабатывали в течение 8 час при анодной плотности тока 0,5 А/дм2. В это же время в катодной камере обрабатывали следующую порцию отработанного травильного раствора. Основная анодная камера объемом 200 мл содержала раствор серной кислоты 100 г/л, и анодная плотность тока составляла 5 А/дм2. После обработки сначала в катодной, а затем в дополнительной анодной камерах, раствор содержал 10 г/л одновалентных ионов меди и 140 г/л двухвалентных. На катоде выделилось 10 г металлической меди. Раствор после регенерации был пригоден для использования в качестве травильного. Удельный расход электроэнергии составил 3,7 кВтч/кг меди.

Пример 2.

200 мл отработанного раствора, содержащего 70 г/л меди, в том числе 30 г/л одновалентных, 40 г/л двухвалентных и 75 г/л хлористого водорода, обрабатывали в катодной камере трехкамерного электролизера, описанного в Примере 1. Процесс проводили в течение 4 часов при катодной плотности тока 2 А/дм2 и температуре 25°С. После этого раствор из катодной камеры перелили в дополнительную анодную камеру объемом 200 мл, где он обрабатывался в течение 4 часов при анодной плотности тока 0,1 А/дм2. В это же время в катодной камере обрабатывали следующую порцию отработанного травильного раствора Основная анодная камера объемом 200 мл содержала раствор серной кислоты 20 г/л и анодная плотность тока составляла 1 А/дм2. После обработки сначала в катодной, а затем в анодной камерах, раствор содержал 5 г/л одновалентных ионов меди и 50 г/л двухвалентных. На катоде выделилось 2 г металлической меди. Раствор после регенерации был пригоден для использования в качестве травильного. Удельный расход электроэнергии составил 2 кВтч/кг меди.

Пример 3.

200 мл отработанного раствора, содержащего 150 г/л меди, в том числе 50 г/л одновалентных, 100 г/л двухвалентных и 85 г/л хлористого водорода, обрабатывали в катодной камере трехкамерного электролизера, описанного в Примере 1. Процесс проводили в течение 6 часов при катодной плотности тока 5 А/дм2 и температуре 40°С. После этого раствор из катодной камеры перелили в дополнительную анодную камеру объемом 200 мл, где он обрабатывался в течение 6 часов при анодной плотности тока 0,3 А/дм2. В это же время в катодной камере обрабатывали следующую порцию отработанного травильного раствора Основная анодная камера объемом 200 мл содержала раствор серной кислоты 50 г/л и анодная плотность тока составляла 3 А/дм3. После обработки сначала в катодной, а затем в анодной камерах, раствор содержал 5 г/л одновалентных ионов меди и 95 г/л двухвалентных. На катоде выделилось 6 г металлической меди. Раствор после регенерации был пригоден для использования в качестве травильного. Удельный расход электроэнергии составил 2,8 кВтч/кг меди.

Как видно из примеров при использовании данного способа для регенерации медно-хлоридного раствора травления хлор не выделяется на аноде, удельный расход энергии ниже по сравнению с тем, который указан в прототипе и содержание ионов одновалентной меди не более 10% от суммарного содержания меди.

Способ регенерации медно-хлоридного травильного раствора, содержащего 70-200 г/л ионов меди и 75-90 г/л хлористого водорода, включающий электрохимическую обработку медно-хлоридного травильного раствора при температуре 25-50°С на титановом катоде в катодной камере, отделенной катионообменной мембраной от анодной камеры с платинированным титановым анодом, подключенным к источнику тока, и раствором серной кислоты, отличающийся тем, что после обработки в катодной камере медно-хлоридный травильный раствор переливают в дополнительную анодную камеру с платинированным титановым анодом, отделенную от катодной камеры катионообменной мембраной и подключенную к дополнительному источнику тока, при этом травильный раствор обрабатывают в катодной камере при катодной плотности тока 2-10 А/дм, причем в основной анодной камере анодная плотность тока составляет 1-5 А/дм, а в дополнительной анодной камере - 0,1-0,5 А/дм.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 62.
20.01.2018
№218.016.1092

Фосфатное стекло

Изобретение относится к области оптического материаловедения, в частности к фосфатным стеклам, которые могут использоваться в качестве активных сред лазеров (в том числе волоконных) и усилителей лазерных импульсов сверхкороткой длительности, генерирующих в ближней инфракрасной области спектра....
Тип: Изобретение
Номер охранного документа: 0002633845
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.1520

Способ кислотной переработки бедного фосфатного сырья

Изобретение относится к сельскому хозяйству. Способ кислотной переработки бедного фосфатного сырья заключается в том, что сырье подвергают разложению 10÷40%-ным избытком 1,0÷5,6 молярной азотной кислоты, в которую предварительно добавляют 0,5÷50 мол.% сульфата калия по отношению к СаО,...
Тип: Изобретение
Номер охранного документа: 0002634948
Дата охранного документа: 08.11.2017
20.01.2018
№218.016.1c30

Способ локальной кристаллизации стекол

Изобретение относится к способу локальной кристаллизации стекол под действием лазерного пучка. Локальную кристаллизацию стекол лантаноборогерманатной системы, легированных неодимом, проводят с помощью импульсного фемтосекундного лазера, перемещающегося относительно стекла со скоростью 10-50...
Тип: Изобретение
Номер охранного документа: 0002640604
Дата охранного документа: 10.01.2018
13.02.2018
№218.016.1f87

Способ приготовления термостойкого гидрофобного платинового катализатора для реакции окисления водорода

Изобретение относится к способу приготовления термостойкого гидрофобного платинового катализатора для реакции низкотемпературного окисления водорода, включающему нанесение платины при комнатной температуре из пропитывающего раствора гексахлорплатиновой кислоты НPtCl⋅6HO в смешанном растворителе...
Тип: Изобретение
Номер охранного документа: 0002641113
Дата охранного документа: 16.01.2018
17.02.2018
№218.016.2e29

Полимерный материал для оптической записи информации на основе прекурсоров флуоресцирующих соединений и способ получения этих соединений

Изобретение относится к области светочувствительных материалов, применяющихся для записи информации на многослойных оптических дисках с флуоресцентным считыванием. Описывается полимерный материал для оптической записи информации на основе новых прекурсоров флуоресцирующих соединений ряда...
Тип: Изобретение
Номер охранного документа: 0002643951
Дата охранного документа: 06.02.2018
04.04.2018
№218.016.34b4

Способ кислотной переработки фосфатного сырья

Изобретение относится к сельскому хозяйству. Способ кислотной переработки фосфатного сырья включает разложение фосфатного сырья избытком ортофосфорной кислоты по отношению к стехиометрической норме по СаО, отделение образовавшегося монокальцийфосфата от маточного раствора фильтрацией и...
Тип: Изобретение
Номер охранного документа: 0002646060
Дата охранного документа: 01.03.2018
10.05.2018
№218.016.3dcc

Замещенные 4-(азол-1-илметил)-1-фенил-5,5-диалкилспиро-[2.5]октан-4-олы, способ их получения (варианты), фунгицидная и рострегуляторная композиции на их основе

Изобретение относится к замещенным 4-(азол-1-илметил)-1-фенил-5,5-диалкилспиро-[2.5]октан-4-олам общей формулы I и их солям с агрохимически или фармацевтически подходящими кислотами. В общей формуле I R1 и R2 совместно означают полиметиленовую цепь с числом атомов углерода от 2 до 5, R3...
Тип: Изобретение
Номер охранного документа: 0002648240
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.3dd2

Способ определения эффективной концентрации антискаланта для подавления кристаллизации труднорастворимых солей в воде

Изобретение относится к физико-химическим исследованиям и может быть использовано в ряде отраслей промышленности для определения эффективной концентрации ингибиторов кристаллизации солей или антискалантов. Способ заключается в том, что готовят серию растворов конкретной технической воды с...
Тип: Изобретение
Номер охранного документа: 0002648351
Дата охранного документа: 23.03.2018
29.05.2018
№218.016.597e

Способ каталитического обезвреживания сточных вод, содержащих органические красители

Изобретение относится к обезвреживанию сточных вод, содержащих органические красители. Для осуществления способа проводят обработку сточных вод при рН 6-8 и температуре 40-60°С пероксидом водорода в присутствии кобальтсодержащего катализатора на основе керамического блочно-ячеистого материала....
Тип: Изобретение
Номер охранного документа: 0002655346
Дата охранного документа: 25.05.2018
09.06.2018
№218.016.5d60

Способ деструкции органических красителей в сточных водах

Изобретение относится к охране окружающей среды и может быть использовано для очистки сточных вод от органических красителей. Деструкцию органических красителей в сточных водах проводят методом окисления пероксидом водорода в присутствии катализатора. Катализатор представляет собой алюминат...
Тип: Изобретение
Номер охранного документа: 0002656463
Дата охранного документа: 05.06.2018
Показаны записи 11-20 из 38.
27.03.2016
№216.014.c7a9

Способ получения нитрата церия (iv) электрохимическим окислением нитрата церия (iii)

Изобретение относится к способу получения нитрата церия(IV) электрохимическим окислением нитрата церия(III) в анодной камере электролизера, содержащей раствор с начальной концентрацией нитрата церия(III) 100-130 г/л и начальной концентрацией свободной азотной кислоты в анолите и в католите 8-12...
Тип: Изобретение
Номер охранного документа: 0002578717
Дата охранного документа: 27.03.2016
10.06.2016
№216.015.458e

Способ электроосаждения композиционных покрытий на основе никеля и наноразмерного диоксида циркония

Изобретение относится к области гальванотехники и может быть использовано для нанесения на детали, работающие под нагрузкой в агрессивных средах, для повышения надежности работы изделий. Способ включает электроосаждение композиционного покрытия на основе никеля и наноразмерного диоксида...
Тип: Изобретение
Номер охранного документа: 0002586371
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.46c4

Способ электроосаждения медных покрытий

Изобретение относится к области гальванотехники и может быть использовано для нанесения медных покрытий на профилированные изделия. Способ включает электроосаждение медного покрытия из электролита, содержащего соль меди и серную кислоту, с использованием реверсивного тока, при этом электролиз...
Тип: Изобретение
Номер охранного документа: 0002586370
Дата охранного документа: 10.06.2016
12.01.2017
№217.015.5cc9

Способ электромембранной регенерации раствора снятия хромовых покрытий

Изобретение относится к гальванотехнике и может использоваться на участках гальванического хромирования. Способ регенерации раствора для снятия хромового покрытия, содержащего гидроксид и хромат натрия, включает проведение электрохимической обработки регенерируемого раствора в камерах...
Тип: Изобретение
Номер охранного документа: 0002591025
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.86f1

Способ получения нитрата церия (iv)

Изобретение относится к способу получения нитрата церия (IV) электрохимическим окислением нитрата церия (III) в анодной камере электролизера, содержащей раствор с начальной концентрацией ионов церия (III) 100-130 г/л и начальной концентрацией свободной азотной кислоты в анолите и в католите...
Тип: Изобретение
Номер охранного документа: 0002603642
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8741

Способ электромембранной регенерации раствора снятия кадмиевых покрытий и устройство для его осуществления

Изобретение относится к регенерации технологических растворов. Способ регенерации раствора для снятия кадмиевого покрытия, содержащего нитрат аммония 100-200 г/л, включает электролиз регенерируемого раствора в двухкамерном электролизере с катионообменной мембраной, катодом из нержавеющей стали...
Тип: Изобретение
Номер охранного документа: 0002603522
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9e48

Способ извлечения ионов церия (iv) из водных растворов

Изобретение относится к способам извлечения церия (IV) методом электрофлотации из сточных вод, бедного или техногенного сырья. Описан способ извлечения церия (IV) из водного раствора, включающий электрофлотацию с нерастворимыми анодами, в котором в очищаемую воду вводят катионный флокулянт на...
Тип: Изобретение
Номер охранного документа: 0002610864
Дата охранного документа: 16.02.2017
25.08.2017
№217.015.c138

Способ электроосаждения покрытий никель-фосфор

Изобретение относится к области гальванотехники и может быть использовано при нанесении покрытий с повышенной твердостью и износостойкостью. Способ включает нанесение покрытия из электролита, содержащего сульфат никеля семиводный, аминоуксусную кислоту, хлорид-ион, гипофосфит натрия одноводный,...
Тип: Изобретение
Номер охранного документа: 0002617470
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.cbcc

Способ электрохимической регенерации медно-аммиачного травильного раствора

Изобретение относится к гальванотехнике. Способ включает электрохимическую обработку регенерируемого медно-аммиачного травильного раствора в трехкамерном электролизере с двумя катодными камерами и двумя катионообменными мембранами, причем сначала регенерируемый раствор подвергают...
Тип: Изобретение
Номер охранного документа: 0002620228
Дата охранного документа: 23.05.2017
26.08.2017
№217.015.dcdf

Способ изготовления массивов кобальтовых нанопроволок

Изобретение относится к изготовлению массивов кобальтовых нанопроволок в порах трековых мембран. Способ включает электроосаждение кобальта в поры трековых мембран из электролита, содержащего CoSO⋅7HO - 300-320 г/л, HBO - 30-40 г/л, при рН 3,5-3,8 и температуре 40-45°С. Электроосаждение проводят...
Тип: Изобретение
Номер охранного документа: 0002624573
Дата охранного документа: 04.07.2017
+ добавить свой РИД