×
16.01.2019
219.016.b072

Результат интеллектуальной деятельности: Способ определения момента дифферента гирокамеры двухстепенного поплавкового гироскопа

Вид РИД

Изобретение

№ охранного документа
0002677091
Дата охранного документа
15.01.2019
Аннотация: Изобретение относится к области прецизионного приборостроения и может быть использовано при изготовлении и эксплуатации двухстепенных поплавковых гироскопов с бесконтактными опорами гирокамеры. Способ определения момента дифферента гирокамеры двухстепенного поплавкового гироскопа дополнительно содержит этапы, на которых осуществляют изменение температуры гироскопа от ее рабочего значения и одновременное измерение контрольных сигналов в каналах бесконтактных опор гирокамеры производят в двух ориентациях, которые гироскоп последовательно занимает после выполнения противоположных наклонов продольной оси гироскопа относительно плоскости горизонта на (50-70)° и уменьшения в каждом из состояний каждого наклона до (1-3)°, по результатам измерений контрольных сигналов в каналах бесконтактных опор гирокамеры в двух ориентациях определяют момент дифферента гирокамеры. Технический результат – повышение точности определения момента дифферента гирокамеры поплавкового гироскопа, возможность определения наличия нежидкостных компонентов в жидкости гироскопа.

Изобретение относится к области прецизионного приборостроения и может быть использовано при изготовлении и эксплуатации двухстепенных поплавковых гироскопов с бесконтактными опорами гирокамеры, например, электростатическими или магнитными [У. Ригли, У. Холлистер, У. Денхард. Теория, проектирование и испытания гироскопов. // М: Мир, 1972,289 с.].

Известен способ определения момента дифферента гирокамеры двухстепенного поплавкового гироскопа [а.с. СССР №1840722]. При реализации способа работающий гироскоп ориентируется измерительной осью перпендикулярно плоскости меридиана. Затем гироскоп поворачивается вокруг этой оси на 180°, измеряется его выходной сигнал. После чего гироскоп поворачивается в противоположную сторону на 180° и снова измеряется его выходной сигнал. Момент дифферента гирокамеры вычисляется по величинам отрезков времени между окончанием разворота и скачкообразным изменением выходного сигнала гироскопа, происходящим при механическом контакте в опорах.

Недостатком способа является низкая точность определения момента дифферента гирокамеры. Указанный недостаток обусловлен тем, что способ не позволяет измерить дифферент гирокамеры с бесконтактными опорами. В связи с отсутствием механического контакта в бесконтактных опорах гирокамеры, скачкообразных изменений в выходном сигнале при разворотах гироскопа не происходит.

Известен также способ определения момента дифферента гирокамеры двухстепенного поплавкового гироскопа [патент РФ №2591287], который принимаем за прототип. При реализации способа работающий гироскоп с бесконтактными опорами гирокамеры, нагретый до рабочей температуры, ориентируется в положение, при котором его продольная ось горизонтальна, а пара радиальных осей опор, параллельных измерительной оси гироскопа, направлена по вертикали. Затем осуществляется изменение температуры гироскопа последовательно в одну и другую сторону от ее рабочего значения и одновременное измерение контрольных сигналов в каналах бесконтактных опор, оси которых параллельны измерительной оси гироскопа. По результатам измерений определяются температуры, при которых значения измеряемых контрольных сигналов равны нулю.

Рассчитывается момент дифферента Мд по формуле:

Мд=(Т21)/2*К*V*L,

где:

Т2, T1 - значения температур, при которых значения измеряемых контрольных сигналов в каналах опор бесконтактного подвеса равны нулю;

К - температурный коэффициент поддерживающей жидкости;

V - объем поплавковой гирокамеры (далее гирокамеры);

L - расстояние между центрами приложения сил в опорах бесконтактного подвеса гирокамеры.

Недостатком способа является низкая точность определения момента дифферента гирокамеры. Указанный недостаток обусловлен тем, что в поддерживающей жидкости реальных гироскопов могут присутствовать перемещающиеся нежидкостные включения, например, газообразные включения (пузыри), которые вносят в результаты определения момента дифферента гирокамеры погрешность. Причиной их образования являются технологические погрешности изготовления гироскопа: недостаточное обезгаживание поддерживающей жидкости, недостаточное обезгаживание деталей гироскопа, разгерметизация поплавковой камеры через некачественно выполненные уплотнения или микротрещины и т.д.

Решаемой технической проблемой настоящего изобретения является совершенствование технологического процесса изготовления двухстепенных поплавковых гироскопов.

Достигаемый технический результат - повышение точности определения момента дифферента гирокамеры поплавкового гироскопа и возможность определения наличия нежидкостных компонентов в жидкости гироскопа.

Поставленная проблема решается тем, что в известном способе определения момента дифферента гирокамеры двухстепенного поплавкового гироскопа согласно которому, работающий гироскоп с бесконтактными опорами гирокамеры, нагретый до рабочей температуры ориентируют в положение, при котором его продольная ось горизонтальна, а пара радиальных осей бесконтактных опор гирокамеры, параллельных измерительной оси гироскопа, направлена по вертикали, осуществляют изменение температуры гироскопа последовательно в одну и другую сторону от ее рабочего значения и одновременное измерение контрольных сигналов в каналах опор гирокамеры, оси которых параллельны измерительной оси гироскопа; при этом изменение температуры гироскопа от ее рабочего значения и одновременное измерение контрольных сигналов в каналах бесконтактных опор гирокамеры производят в двух ориентациях, которые гироскоп последовательно занимает после выполнения противоположных наклонов продольной оси гироскопа относительно плоскости горизонта на (50-70)° и уменьшения в каждом из состояний каждого наклона до (1-3)°; по результатам измерений контрольных сигналов в каналах бесконтактных опор гирокамеры в двух ориентациях определяют момент дифферента гирокамеры.

Способ реализуется при выполнении следующих технологических операций:

1. Гироскоп устанавливают на неподвижном основании в положение, при котором его продольная ось горизонтальна, а оси бесконтактных опор гирокамеры, параллельные измерительной оси прибора, направлены по вертикали. Такая ориентация исключает появление в результатах измерений погрешности, обусловленной воздействием на опоры гироскопического момента.

2. Гироскоп приводят в рабочее состояние. Осуществляют нагрев гироскопа до рабочей температуры, взвешивают гирокамеру в бесконтактных опорах, запускают гиромотор.

3. Осуществляют наклон продольной оси гироскопа относительно плоскости горизонта на угол (50-70)°, например, по часовой стрелке. При наличии в поддерживающей жидкости рабочего зазора гироскопа газового пузыря (наиболее часто встречающееся при производстве и эксплуатации гироскопа нежидкостное включение в жидкости рабочего зазора) он переместится в сторону верхнего торца корпуса. Угол наклона не менее 50° выбран, исходя из надежного перемещения пузыря в сторону верхнего торца корпуса; угол не более 70° выбран, исходя из условия исключения (уменьшения) вероятности перехода части пузыря в торцевую часть корпуса.

4. Производят уменьшение угла наклона гироскопа до (1-3)° относительно плоскости горизонта. Угол выбран из условия предотвращения перемещения газового пузыря в рабочем зазоре от занятого им после наклона положения, а также из условия уменьшения составляющей погрешности в определении момента дифферента от заданной в плоскости горизонта первоначальной ориентации гироскопа. В этой ориентации, при размере газового пузыря превышающего рабочий зазор, со стороны пузыря на гирокамеру будет действовать сила давления, которая создаст момент Мп, например, одного знака с моментом Мд гирокамеры. Суммарный момент Мд1 дифферента в этой ориентации будет определяться выражением: Мд1дп.

5. Определяют момент Мд1 для чего:

5.1 Уменьшают температуру гироскопа Тг относительно ее рабочего значения Тграб, например, дискретным образом. При каждой фиксированной температуре измеряют контрольные сигналы Uk1 и Uk2 в каналах бесконтактных опор гирокамеры, пропорциональные действующим силам. При изменении температуры гироскопа Тг происходит изменение сил действующих в бесконтактных опорах гирокамеры (за счет изменения ее остаточного веса). Определяют температуру Т1 при которой значение контрольного сигнала в канале одной из бесконтактных опор гирокамеры равно нулю. При этом в этой опоре остаточный вес гирокамеры уравновесит силу, определяемую моментом дифферента Мд1

5.2 Увеличивают дискретным образом температура гироскопа и одновременно измеряют контрольные сигналы в каналах бесконтактных опор гирокамеры. Определяют температура Т2, при которой значение контрольного сигнала в канале другой бесконтактной опоры гирокамеры равно нулю. При этом в этой опоре остаточный вес камеры уравновесит силу, определяемую моментом дифферента.

5.3 Рассчитывают момент дифферента Мд1по формуле:

Мд1=(T2-T1)/2*К*V*L

6. Гироскоп возвращают в исходную ориентацию. Производят его нагрев до рабочей температуры.

7. Осуществляют наклон продольной оси гироскопа относительно плоскости горизонта на (50-70)° против часовой стрелке. При этом газовый пузырь в поддерживающей жидкости рабочего зазора гироскопа переместится в сторону противоположного торца корпуса, занявшего верхнее положение.

8. Производят уменьшение угла наклона гироскопа до (1-3)° относительно плоскости горизонта. При этом со стороны пузыря на гирокамеру будет действовать сила давления, которая будет уменьшать (увеличивать) момент ее дифферента. В этой ориентации со стороны пузыря на гирокамеру будет действовать сила давления, которая создаст момент Мп противоположного по знаку моменту Мд гирокамеры. Суммарный момент Мд2 дифферента в этой ориентации будет определяться выражением: Мд2дп.

9. Определяют момент Мд2, для чего:

9.1 Уменьшают температура гироскопа Тг относительно ее рабочего значения Тграб, например, дискретным образом. При каждой фиксированной температуре измеряют контрольные сигналы Uk3 и Uk4 в каналах бесконтактных опор гирокамеры, пропорциональные действующим силам. При изменении температуры гироскопа Тг происходит изменение сил действующих в бесконтактных опорах гирокамеры (за счет изменения ее остаточного веса). Определяется температура Т3, при которой значение контрольного сигнала в канале одной из бесконтактных опор гирокамеры равно нулю. При этом в этой опоре остаточный вес гирокамеры уравновесит силу, определяемую моментом дифферента Мд2.

9.2 Увеличивают дискретным образом температуру гироскопа и одновременно измеряется контрольный сигналы в каналах бесконтактных опор гирокамеры. Определяют температуру Т4, при которой значение контрольного сигнала в канале другой бесконтактной опоры гирокамеры равно нулю. При этом в этой опоре остаточный вес камеры уравновесит силу, определяемую моментом дифферента.

10. Рассчитывают суммарный момент дифферента Мд2 по формуле:

Мд2=(T4-T3)/2*К*V*L.

11. Определяют момент дифферента Мд гирокамеры из соотношения:

Мд=(Мд1+Мд2)/2

12. Определяют момент дифферента Мд от газового пузыря в жидкости рабочего зазора гироскопа из соотношения:

Мд=(Мд1-Мд2)/2

По сравнению со способом прототипом при реализации предлагаемого способа:

- Появляется возможность определить наличие/отсутствие пузыря, перемещающегося в жидкости рабочего зазора гироскопа.

- За счет исключения из результатов составляющей момента от газового пузыря повышается точность определения момента дифферента гирокамеры.

Поставленная цель достигнута.

На предприятии предлагаемый способ проверен. Получены положительные результаты. В настоящее время разрабатывается техническая документация для использования предлагаемого решения при производстве двухстепенных поплавковых гироскопов с бесконтактными электростатическими опорами гирокамеры.

Способ определения момента дифферента гирокамеры двухстепенного поплавкового гироскопа, согласно которому работающий гироскоп с бесконтактными опорами гирокамеры, нагретый до рабочей температуры ориентируют в положение, при котором его продольная ось горизонтальна, а пара радиальных осей бесконтактных опор гирокамеры, параллельных измерительной оси гироскопа, направлена по вертикали, осуществляют изменение температуры гироскопа последовательно в одну и другую сторону от ее рабочего значения и одновременное измерение контрольных сигналов в каналах опор гирокамеры, оси которых параллельны измерительной оси гироскопа, отличающийся тем, что изменение температуры гироскопа от ее рабочего значения и одновременное измерение контрольных сигналов в каналах бесконтактных опор гирокамеры производят в двух ориентациях, которые гироскоп последовательно занимает после выполнения противоположных наклонов продольной оси гироскопа относительно плоскости горизонта на (50-70)° и уменьшения в каждом из состояний каждого наклона до (1-3)°, по результатам измерений контрольных сигналов в каналах бесконтактных опор гирокамеры в двух ориентациях определяют момент дифферента гирокамеры.
Источник поступления информации: Роспатент

Показаны записи 51-60 из 87.
11.03.2019
№219.016.d5ff

Способ определения класса шумящей цели и дистанции до неё

Изобретение относится к области гидроакустики, а именно к пассивным шумопеленгаторным станциям (ШПС), предназначенным для обнаружения подводных лодок (ПЛ) и надводных кораблей (НК) по их шумоизлучению. Достигаемый технический результат - повышение достоверности классификации и точности...
Тип: Изобретение
Номер охранного документа: 0002681526
Дата охранного документа: 07.03.2019
17.03.2019
№219.016.e245

Двухстепенной поплавковый гироскоп

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов. Сущность изобретения заключается в том, что корпус двухстепенного поплавкового гироскопа выполнен в виде двух цилиндров, установленных...
Тип: Изобретение
Номер охранного документа: 0002682131
Дата охранного документа: 14.03.2019
29.03.2019
№219.016.edcc

Полиуретановый гель

Изобретение относится к связующим заливочным составам, в частности к полиуретановым гелям, и предназначено для использования в гидроакустических системах. Композиция может быть также использована в радиоэлектронике, электротехнике. Полиуретановый гель получен путем взаимодействия...
Тип: Изобретение
Номер охранного документа: 0002683098
Дата охранного документа: 26.03.2019
05.04.2019
№219.016.fd39

Способ обработки информации в гидроакустической антенне

Изобретение относится к области гидроакустики и может быть применено при разработке и эксплуатации гидроакустических антенн различного назначения для коррекции выходных сигналов гидроакустических приемников. Решаемая техническая проблема - совершенствование способа обработки информации в...
Тип: Изобретение
Номер охранного документа: 0002684003
Дата охранного документа: 03.04.2019
20.04.2019
№219.017.3580

Способ определения класса шумящей цели

Изобретение относится к области гидроакустики, а именно к пассивным шумопеленгаторным станциям, предназначенным для поиска и обнаружения подводных и надводных объектов. Технический результат - обеспечение достоверности классификации целей на классы «шум естественного происхождения» и «шум...
Тип: Изобретение
Номер охранного документа: 0002685419
Дата охранного документа: 18.04.2019
24.05.2019
№219.017.5d7c

Способ определения погрешности двухстепенного гироблока

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных гироблоков. Достигаемый технический результат - повышение точности (достоверности) определения составляющей погрешности гироблока, обусловленной резонансом его...
Тип: Изобретение
Номер охранного документа: 0002688915
Дата охранного документа: 22.05.2019
24.05.2019
№219.017.5dc7

Способ измерения магнитного курса судна в высоких широтах и устройство для его реализации

Изобретение относится к области навигационного приборостроения и может быть использовано в высокоширотных магнитных компасах, имеющих погрешность на качке от воздействия на магниточувствительный элемент (МЧЭ) компаса вертикальной составляющей магнитного поля Земли, оборудованных устройствами...
Тип: Изобретение
Номер охранного документа: 0002688900
Дата охранного документа: 22.05.2019
04.06.2019
№219.017.733d

Способ определения координат морской шумящей цели

Изобретение относится к области гидроакустики, а именно к способам и устройствам обнаружения морских целей по их шумоизлучению, а точнее к способам определения координат целей с использованием интерференционных максимумов в автокорреляционной функции шума цели. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002690223
Дата охранного документа: 31.05.2019
04.06.2019
№219.017.733f

Способ диагностики состояния газодинамической опоры ротора поплавкового гироскопа

Изобретение относится к измерительной технике и может быть использовано при изготовлении прецизионных приборов на газодинамической опоре. Способ диагностики состояния газодинамической опоры ротора поплавкового гироскопа включает определение времени выбега ротора на последовательных этапах...
Тип: Изобретение
Номер охранного документа: 0002690231
Дата охранного документа: 31.05.2019
02.07.2019
№219.017.a30a

Способ обнаружения, классификации и определения координат и параметров движения морской шумящей цели

Изобретение относится к области гидроакустики, а именно к пассивным шумопеленгаторным станциям, предназначенным для поиска и обнаружения шумящих морских объектов (целей). Технический результат - сокращение времени обнаружения и классификации целей. Указанный технический результат достигается...
Тип: Изобретение
Номер охранного документа: 0002692839
Дата охранного документа: 28.06.2019
Показаны записи 31-34 из 34.
04.06.2019
№219.017.733f

Способ диагностики состояния газодинамической опоры ротора поплавкового гироскопа

Изобретение относится к измерительной технике и может быть использовано при изготовлении прецизионных приборов на газодинамической опоре. Способ диагностики состояния газодинамической опоры ротора поплавкового гироскопа включает определение времени выбега ротора на последовательных этапах...
Тип: Изобретение
Номер охранного документа: 0002690231
Дата охранного документа: 31.05.2019
05.02.2020
№220.017.fe0f

Способ управления электростатическим подвесом инерционной массы

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке электростатического подвеса инерционной массы чувствительных элементов инерциальных систем. Способ управления электростатическим подвесом инерционной массы дополнительно содержит этапы, на...
Тип: Изобретение
Номер охранного документа: 0002712993
Дата охранного документа: 03.02.2020
01.06.2023
№223.018.7518

Способ управления подвесом ротора электростатического гироскопа

Изобретение относится к гироскопической технике, а именно к способам управления подвесом ротора электростатического гироскопа (ЭСГ), используемого для высокоточных измерений навигационных параметров подвижных объектов. В способе управления подвесом ротора ЭСГ парируют воздействие на ротор...
Тип: Изобретение
Номер охранного документа: 0002746313
Дата охранного документа: 12.04.2021
02.06.2023
№223.018.755b

Способ измерения параметров угловой скорости и ускорения микромеханическими гироскопами и акселерометрами

Изобретение относится к измерительной технике. Сущность изобретения заключается в том, что в способе измерения параметров угловой скорости и ускорения микромеханическими гироскопами и акселерометрами отсутствуют погрешности, вызванные угловой скоростью вращающегося модуля, так как измерения...
Тип: Изобретение
Номер охранного документа: 0002766833
Дата охранного документа: 16.03.2022
+ добавить свой РИД