×
29.12.2018
218.016.acf3

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ СВЧ ФОТОДЕТЕКТОРА

Вид РИД

Изобретение

№ охранного документа
0002676185
Дата охранного документа
26.12.2018
Аннотация: Изобретение относится к оптоэлектронике и может быть использовано для создания мощного СВЧ фотодетектора на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ заключается в создании многослойной структуры из системы чередующихся слоев AlGaAs и GaAs на подложке GaAs n-типа, создании широкозонного окна AlGaAs на поверхности многослойной структуры, формировании контактного слоя GaAs р-типа на поверхности широкозонного окна, создании фронтального и тыльного омических контактов, формировании просветляющего покрытия, проведении пассивации боковой поверхности меза-структуры. Шину фронтального омического контакта выполняют в виде усеченной пирамиды с широким тыльным основанием и зеркальной боковой поверхностью. Изобретение обеспечивает снижение омических потерь и потерь на затенение фоточувствительной области фотодетектора путем создания контактных шин в виде усеченных пирамид с широким основанием и с зеркальными боковыми стенками, увеличение рабочей мощности фотодетектора, снижение токов утечки по боковой поверхности фотодетектора. 2 з.п. ф-лы, 3 ил.

Изобретение относится к оптоэлектронике и может быть использовано для создания мощного СВЧ фотодетектора на основе эпитаксиальных структур GaAs/AlxGa1-xAs, чувствительных к излучению на длине волны 810-860 нм.

Известен способ изготовления фотодетектора на основе эпитаксиальных структур InGaAs/InP, чувствительного в ИК диапазоне (см. заявку US №2014/0264275 A1, H01L 31/02, опубликована 18.09.2014). Фотодетектор включает: подложку, канал транзистора, исток транзистора и сток транзистора, расположенные на фронтальной поверхности структуры; исток и сток транзистора, расположенные на обратной стороне канала транзистора, барьер, расположенный на канале, и светочувствительный слой, расположенный на барьере. Светочувствительный слой необходим для поглощения света. При падении света на светочувствительный слой, сопротивление канала проводимости меняется при туннелировании носителей из светочувствительного слоя в канал.

Недостатком данного способа изготовления СВЧ фотодетектора является использование материалов InGaAs/InP, нечувствительных к излучению на длине волны 810-860 нм.

Известен способ изготовления фотодетектора на основе эпитаксиальных структур GaAs/AlxGa1-xAs, чувствительных к ИК-излучению (см. заявку RU №2022411, МПК H01L 31/101, опубликована 30.10.1994). Данный фотодетектор на основе полупроводниковой структуры с квантовыми ямами включает подложку из полуизолирующего GaAs с буферным слоем 1-GaAs, первый контактный слой n-GaAs, систему чередующихся слоев AlxGa1-xAs и GaAs, причем в один из материалов системы чередующихся слоев введена примесь кремния до уровня легирования 2*1018 см-3, и второй контактный слой n-GaAs, примесь кремния введена в слой AlxGa1-xAs в виде моноатомного слоя, расположенного на расстоянии, не большем Дебаевской длины экранирования от одной из границ раздела чередующихся слоев.

Недостатком данного способа изготовления СВЧ фотодетектора является отсутствие процесса усовершенствования пост-ростовой технологии создания омических контактов, что ведет к увеличению затенения фоточувствительной поверхности фотодетектора и снижению КПД.

Известен способ изготовления фотодетектора на основе эпитаксиальных структур GaAs/AlxGa1-xAs, чувствительных к ИК-излучению (см. заявку RU №2318272, МПК H01L 31/18, опубликована 27.02.2008). Для изготовления фотоприемника эпитаксиальную пластину n-InP/n-In0,53Ga0,47As/n+-InP, содержащую эпитаксиальные слои n-InP/n-In0,53Ga0,47As и подложку n+-InP, покрывают пленкой нитрида кремния как со стороны эпитаксиального слоя n-InP, так и со стороны подложки n+-InP. Фотолитографическим способом вскрывают окна под диффузию с помощью плазменно-химического травления в пленке нитрида кремния со стороны эпитаксиальных слоев n-InP/n-In0,33Ga0,47As и формируют метки для дальнейшего совмещения рисунков фотошаблонов со стороны подложки n+-InP. В эпитаксиальных слоях n-InP/n-In0,53Ga0,47As формируют локальный p-n-переход диффузией кадмия в запаянной откачной ампуле из источника Cd3P2. Пластину n-InP/n-In0,33Ga0,47As/n+-InP покрывают вторым слоем пленки Si3N4 со стороны эпитаксиальных слоев n-InP/n-In0,53Ga0,47As. Вскрывают контактные окна во втором слое пленки Si3N4 и создают омические контакты Au/Ti к p+-областям. Фотолитографическим способом в пленке Si3N4 со стороны подложки n+-InP вскрывают окна под контакт к области n+-InP с помощью плазмо-химического травления, при этом над областью p-n-переходов остается пленка Si3N4, которая служит просветляющим покрытием. Напыляют в вакууме золото с подслоем титана, так что образуется металлизация для контакта к подложке n+-InP. Фотолитографическим способом в пленке золота с подслоем титана вытравливают рисунок, который с одной стороны является контактным и обеспечивает омический контакт к подложке n+-InP, а с другой стороны формирует диафрагму, ограничивающую область засветки только областью пространственного заряда многоэлементного фотоприемника. Изобретение обеспечивает увеличение быстродействия фоточувствительного элемента за счет устранения возможности засветки необедненной n-области при планарной технологии изготовления многоэлементного фотоприемника.

Недостатком данного способа изготовления СВЧ фотодетектора является небольшая толщина омических контактов, ограниченная технологическими особенностями напылительного процесса металлизации, что приводит к снижению рабочей мощности фотодетектора и к снижению КПД.

Наиболее близким к заявляемому техническому решению по совокупности существенных признаков является способ изготовления фотодетектора на основе GaAs (см. заявку RU №2547004, H01L 31/18, опубликована 26.11.2013), принятый за прототип. Способ изготовления фотопреобразователя на основе GaAs включает последовательное выращивание методом жидкофазной эпитаксии на подложке n-GaAs буферного слоя n-GaAs, базового слоя n-GaAs, эмиттерного слоя p-GaAs и слоя p-AlGaAs с содержанием Al в твердой фазе от 30-40 ат. % в начале роста слоя и при содержании Al в твердой фазе 10-15 ат. % в приповерхностной области слоя, а также осаждение тыльного контакта и лицевого контакта. На лицевую поверхность подложки наносят антиотражающее покрытие. Способ безопасен и позволяет с меньшими затратами совместить в одном слое функции широкозонного окна и контактного слоя, что приводит к увеличению КПД преобразования узкополосного, в частности лазерного излучения.

Недостатком данного способа изготовления СВЧ фотодетектора является отсутствие процесса усовершенствования пост-ростовой технологии создания омических контактов, что ведет к увеличению затенения фоточувствительной поверхности фотодетектора и снижению КПД. Также недостатком является отсутствие диэлектрического покрытия на боковой поверхности меза-структуры, что приводит к дополнительным утечкам p-n-перехода.

Задачей данного изобретения является усовершенствование системы омических контактов с целью снижения омических потерь и потерь на затенение фоточувствительной области фотодетектора путем создания контактных шин в виде усеченных пирамид с зеркальными боковыми стенками; увеличение рабочей мощности фотодетектора за счет создания омических контактов толщиной 4-6 мкм; снижение токов утечки по боковой поверхности фотодетектора путем пассивации боковой поверхности меза-структуры нанесением защитного диэлектрического покрытия.

Поставленная задача достигается тем, что способ изготовления СВЧ фотодетектора включает создание многослойной структуры из системы чередующихся слоев AlxGa1-xAs и GaAs на подложке GaAs n-типа, создание широкозонного окна AlxGa1-xAs на поверхности многослойной структуры, формирование контактного слоя GaAs р-типа на поверхности широкозонного окна, создание фронтального и тыльного омических контактов, нанесение просветляющего покрытия. Новым в способе является то, что шины фронтального омического контакта выполняют в виде усеченных пирамид с широким тыльным основанием, с зеркальной боковой поверхностью, формирование просветляющего покрытия на поверхности широкозонного окна AlxGa1-xAs осуществляют с предварительной обработкой поверхности методом ионно-лучевого травления, на боковой поверхности меза-структуры осуществляют формирование пассивирующего диэлектрического покрытия.

Шины фронтального омического контакта в виде усеченных пирамид могут быть выполнены шириной 4-6 мкм и толщиной 4-6 мкм.

Шины фронтального омического контакта могут иметь шаг расположения 25-50 мкм.

Создание фронтального омического контакта в виде усеченных пирамид шириной 4-6 мкм и толщиной 4-6 мкм с широким тыльным основанием, расположенных с шагом 25-50 мкм, позволяет снизить омические и оптические потери. Уменьшение шага расположения шин омического контакта до 25-50 мкм позволяет снизить омические потери при увеличении рабочего тока, за счет снижения растекания тока. Конфигурация контактных шин в виде усеченных пирамид с широким тыльным основанием и зеркальной боковой стенкой позволяет снизить оптические потери за счет того, что падающее излучение отражается от зеркальной боковой поверхности контактных шин и падает на светочувствительную поверхность. Увеличение толщины контактных шин до 4-6 мкм позволяет увеличить максимальную рабочую мощность СВЧ фотодетектора. Минимальная ширина контактных шин 4 мкм обусловлена технологическими особенностями пост-ростовой обработки структур. Ширина контактных шин не более 6 мкм позволяет снизить оптические потери за счет снижения области затенения фоточувствительной поверхности фотодетектора.

Формирование просветляющего покрытия на поверхности широкозонного окна AlxGa1-xAs с предварительной обработкой поверхности методом ионно-лучевого травления позволяет увеличить адгезию просветляющего покрытия к поверхности структуры за счет удаления естественного окисла.

Создание защитного диэлектрического покрытия на боковой поверхности меза-структуры приводит к снижению токов утечки по боковой поверхности p-n перехода, увеличивает надежность и срок службы СВЧ фотодетектора.

Заявляемое техническое решение поясняется чертежами, где:

на фиг. 1 приведена схема СВЧ фотодетектора;

на фиг. 2 изображена шина фронтального омического контакта, имеющая в сечении вид трапеции с широким тыльным основанием, прилегающим к фронтальной поверхности структуры.

На фиг. 1-2 указаны: 1 - многослойная структура, 2 - подложка GaAs, 3 - широкозонное окно AlxGa1-xAs, 4 - контактный слой GaAs, 5 - просветляющее покрытие, 6 - омический контакт, 7 - напыленный тонкий слой контактных материалов, 8 - электрохимически осажденнный толстый слой контактного материала.

Заявляемый способ создания СВЧ фотодетектора проводят в несколько стадий. Создают многослойную структуру 1 из системы чередующихся слоев AlxGa1-xAs и GaAs (см. фиг. 1) на подложке GaAs n-типа 2, создают широкозонное окно AlxGa1-xAs 3 на поверхности многослойной структуры, создают контактный слой GaAs p-типа 4, обладающий электрической проводимостью на поверхности окна. Далее проводят локальное удаление контактного слоя GaAs 4 для открытия части нижележащего слоя 3, и осуществляют дополнительную очистку поверхности слоя широкозонного окна 3 методом ионно-лучевого травления. Затем осаждают просветляющее покрытие 5 на вышеуказанной открытой части слоя 3.

Создают омические контакты 6 из материалов, обладающих электрической проводимостью на поверхности оставшейся части контактного слоя и на тыльной поверхности подложки GaAs 2, в два этапа. Проводят напыление тонкого слоя контактных материалов 7, толщиной 0,2-0,4 мкм. Проводят вжигание при температуре 360-370°С в течение 10-60 с. Осуществляют электрохимическое осаждение толстого слоя контактных материалов 8 (см. фиг. 1, 2, 3), толщиной 4-6 мкм, при этом контактные шины имеют в сечении вид трапеций с широким тыльным основанием, прилегающим к фронтальной поверхности структуры и с зеркальными боковыми стенками.

Далее осуществляют формирование меза-структуры методом жидкостного химического травления и осуществляют осаждение защитного пассивирующего диэлектрического покрытия на боковую поверхность меза-структуры.

Пример 1.

Были получены СВЧ фотодетекторы в несколько стадий. Создана многослойная структура из системы чередующихся слоев AlxGa1-xAs и GaAs на подложке GaAs n-типа. Создано широкозонное окно AlxGa1-xAs на поверхности многослойной структуры, создан контактный слой GaAs p-типа, обладающий электрической проводимостью на поверхности окна. Проведено локальное удаление контактного слоя GaAs для открытия части нижележащего слоя широкозонного окна. Осуществлена дополнительная очистка поверхности слоя широкозонного окна методом ионно-лучевого травления. Проведено осаждение просветляющего покрытия на вышеуказанной открытой части широкозонного окна.

Созданы омические контакты из материалов, обладающих электрической проводимостью на поверхности оставшейся части контактного слоя и на тыльной поверхности подложки GaAs, в два этапа. Проведено напыление тонкого слоя контактных материалов AgMn/Ni/Au толщиной 0,2 мкм на поверхность контактного слоя. Проведено напыление тонкого слоя Au(Ge)/Ni/Au толщиной 0,2 мкм на тыльную поверхность подложки GaAs. Проведено вжигание при температуре 360°С в течение 10 с. Осуществлено электрохимическое осаждение толстого слоя контактных материалов Ag/Ni/Au, толщиной 4 мкм, контактные шины выполнены в виде усеченных пирамид с широким тыльным основанием, прилегающим к фронтальной поверхности структуры и с зеркальными боковыми стенками.

Осуществлено формирование меза-структуры методом жидкостного химического травления и проведено осаждение защитного пассивирующего диэлектрического покрытия Si3N4 на боковую поверхность меза-структуры.

Пример 2.

Были получены СВЧ фотодетекторы способом, приведенным в примере 1 со следующими отличительными признаками. Фронтальный омический контакт на поверхности контактного слоя GaAs выполнен путем напыления слоев Cr/Au толщиной 0,3 мкм. Тыльный омический контакт выполнен путем напыления Au(Ge)/Ni/Au толщиной 0,3 мкм. Проведено вжигание при температуре 370°С в течение 60 с. Осуществлено электрохимическое осаждение толстого слоя контактных материалов Ag/Ni/Au, толщиной 6 мкм, контактные шины выполнены в виде усеченных пирамид с широким тыльным основанием, прилегающим к фронтальной поверхности структуры и с зеркальными боковыми стенками.

Пример 3.

Были получены СВЧ фотодетекторы способом, приведенным в примере 1 со следующими отличительными признаками. Фронтальный омический контакт на поверхности контактного слоя GaAs выполнен путем напыления слоев Cr/Au толщиной 0,4 мкм. Тыльный омический контакт выполнен путем напыления Au(Ge)/Ni/Au толщиной 0,4 мкм. Проведено вжигание при температуре 360°С в течение 60 с. Осуществлено электрохимическое осаждение толстого слоя контактных материалов Ag/Ni/Au, толщиной 5 мкм, контактные шины выполнены в виде усеченных пирамид с широким тыльным основанием, прилегающим к фронтальной поверхности структуры и с зеркальными боковыми стенками.

Результатом процесса изготовления СВЧ фотодетектора стало увеличение эффективности за счет усовершенствования системы омических контактов, снижения омических потерь и потерь на затенение фоточувствительной области фотодетектора за счет создания контактных шин в виде усеченных пирамид с зеркальными боковыми стенками; увеличение рабочей мощности фотодетектора за счет создания омических контактов толщиной 4-6 мкм; снижение токов утечки по боковой поверхности фотодетектора за счет пассивации боковой поверхности меза-структуры нанесением защитного диэлектрического покрытия.


СПОСОБ ИЗГОТОВЛЕНИЯ СВЧ ФОТОДЕТЕКТОРА
СПОСОБ ИЗГОТОВЛЕНИЯ СВЧ ФОТОДЕТЕКТОРА
Источник поступления информации: Роспатент

Показаны записи 71-80 из 174.
01.05.2019
№219.017.47da

Чувствительный элемент из пьезокомпозита связности 1-3 и способ его изготовления

Группа изобретений относится к пьезоэлектрическим преобразователям типа керамика-полимер со связностью 1-3 и может быть использована для повышения приемной чувствительности гидроакустических антенн. Чувствительный элемент из пьезокомпозита связности 1-3 содержит стержни, выполненные из...
Тип: Изобретение
Номер охранного документа: 0002686492
Дата охранного документа: 29.04.2019
24.05.2019
№219.017.5d96

Способ получения полиэфирсульфонов

Изобретение относится к области получения полиэфирсульфонов, применяемых в качестве суперконструкционных полимерных материалов для 3D печати. Способ получения полиэфирсульфонов заключается в том, что проводят реакцию нуклеофильного замещения нуклеофильного агента дигалоидароматическим...
Тип: Изобретение
Номер охранного документа: 0002688942
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5dc8

Ароматический огнестойкий полиэфирэфиркетон и способ его получения

Настоящее изобретение относится к огнестойким ароматическим полиэфирэфиркетонам. Описан ароматический огнестойкий полиэфирэфиркетон, характеризующийся строением:
Тип: Изобретение
Номер охранного документа: 0002688943
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5e87

Композиция для получения паропроницаемой пористой мембраны

Изобретение относится к составу формовочного раствора для получения нетканого материала методом электроформования для достижения требуемых показателей эксплуатационных свойств. Изобретение касается состава формовочного раствора для получения паропроницаемой мембраны, а также регулирования...
Тип: Изобретение
Номер охранного документа: 0002688625
Дата охранного документа: 21.05.2019
24.05.2019
№219.017.5f6e

Устройство и способ для экспериментального изучения и расширения временных границ сверхглубокой гипотермии

Группа изобретений относится к медицинской технике. Устройство для изучения устойчивости млекопитающих к сверхглубокой гипотермии и расширения предельных временных границ нахождения животного в состоянии сверхглубокой гипотермии включает платформу для закрепления на спине испытуемого животного,...
Тип: Изобретение
Номер охранного документа: 0002688722
Дата охранного документа: 22.05.2019
29.05.2019
№219.017.631b

Композиционный материал на основе полифениленсульфона и способ его получения

Изобретение относится к способу получения композиционного материала на основе полифениленсульфона, применяемого в качестве суперконструкционного полимерного материала для аддитивных 3D технологий. Способ получения композиционного материала заключается в том, что предварительно сухую смесь 75-85...
Тип: Изобретение
Номер охранного документа: 0002688140
Дата охранного документа: 20.05.2019
29.05.2019
№219.017.6385

Способ криоконсервации биологических образцов под давлением и устройство для его осуществления

Изобретение относится к области криоконсервации для обеспечения длительного хранения биологических образцов. Способ криоконсервации биологического образеца включает насыщение раствором криопротектора, размещение образца во внутреннем объеме камеры высокого давления, проведение витрификации...
Тип: Изобретение
Номер охранного документа: 0002688331
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.6388

Ароматические сополиэфирсульфонкетоны и способ их получения

Изобретение относится к способу получения ароматических сополиэфирсульфонкетонов (СПЭСК), которые могут быть использованы в качестве термо- и теплостойких конструкционных полимерных материалов. Первый вариант способа получения сополиэфирсульфонкетона заключается в том, что проводят реакцию...
Тип: Изобретение
Номер охранного документа: 0002688142
Дата охранного документа: 20.05.2019
30.05.2019
№219.017.6bad

Вычислительный модуль и способ обработки с использованием такого модуля

Изобретение относится к области вычислительной техники. Технический результат изобретения заключается в повышении производительности многопотоковых вычислений в вариативных задачах дискретной математики за счет параллельной работы специализированных процессорных элементов по общей программе с...
Тип: Изобретение
Номер охранного документа: 0002689433
Дата охранного документа: 28.05.2019
31.05.2019
№219.017.70ec

Огнезащитный текстильный материал

Изобретение относится к легкой промышленности, а именно к получению огнестойкого текстильного материала, и может быть использовано для изготовления одежды и фильтрующих средств индивидуальной защиты. Огнезащитный текстильный материал содержит нетканый материал на основе полиакрилонитрила и...
Тип: Изобретение
Номер охранного документа: 0002689600
Дата охранного документа: 28.05.2019
Показаны записи 61-64 из 64.
16.05.2023
№223.018.60a4

Мощный концентраторный фотоэлектрический модуль

Концентраторный фотоэлектрический модуль содержит монолитную фронтальную панель (3), боковые стенки (1) и тыльную панель (2), по меньшей мере один первичный оптический концентратор (4), по меньшей мере один вторичный оптический концентратор в форме фокона (9), меньшим основанием обращенным к...
Тип: Изобретение
Номер охранного документа: 0002740738
Дата охранного документа: 20.01.2021
29.05.2023
№223.018.727a

Инфракрасный светодиод

Изобретение относится к электронной технике, в частности к полупроводниковым приборам. Инфракрасный светодиод включает световыводящий слой (1), активную область (3), выполненную на основе нескольких квантовых ям InGaAs, окруженную барьерными широкозонными слоями (2, 4), брегговский отражатель...
Тип: Изобретение
Номер охранного документа: 0002796327
Дата охранного документа: 22.05.2023
16.06.2023
№223.018.7c95

Способ изготовления фотоэлектрического концентраторного модуля

Способ изготовления фотоэлектрического концентраторного модуля включает формирование множества солнечных элементов, формирование вторичных концентраторов солнечного излучения, расположенных соосно над солнечными элементами, формирование панели первичных концентраторов, расположенных соосно над...
Тип: Изобретение
Номер охранного документа: 0002740862
Дата охранного документа: 21.01.2021
17.06.2023
№223.018.8105

Солнечный фотоэлектрический модуль

Солнечный фотоэлектрический модуль включает, по меньшей мере, два субмодуля (1), каждый субмодуль (1) содержит зеркальный параболический концентратор (5) солнечного излучения и солнечный элемент (6), расположенный в фокусе зеркального параболического концентратора (5). Зеркальный параболический...
Тип: Изобретение
Номер охранного документа: 0002763386
Дата охранного документа: 28.12.2021
+ добавить свой РИД