×
26.12.2018
218.016.ab2d

Результат интеллектуальной деятельности: Способ сортировки породы

Вид РИД

Изобретение

Аннотация: Изобретение относится к области сортировки различных пород полезных ископаемых по их теплофизическим свойствам и может быть использовано при разделении минеральных частиц, в том числе алмазосодержащей породы. Способ включает анализ посредством термического формирования изображений и идентификации частиц, содержащих ценный материал, и отделение частиц, содержащих по результатам анализа посредством формирования изображений ценный материал. При этом осуществляют регистрацию распределений температуры в виде инфракрасных изображений в диапазоне от 0,74 до 14 мкм длин электромагнитных волн путем сканирования поверхности месторождения, шахты, штольни, траншеи или штрека посредством тепловизора, а отделение ценного материала проводят по теплофизическим характеристикам минералов, зафиксированным на инфракрасных изображениях, собирая обнаруженный ценный материал непосредственно с поверхности карьера, шахты, штольни, траншеи или штрека разрабатываемого месторождения. Достигается повышение оперативности дифференцирования полезных минералов непосредственно с поверхности карьера, шахты, штольни разрабатываемого месторождения. 12 ил.

Изобретение относится к области обогащения полезных ископаемых, а именно к способам обогащения различных пород полезных ископаемых по их теплофизическим свойствам, и может быть использовано при сепарации минеральных частиц, у которых теплопроводность и теплоемкость существенно отличаются от частиц пустой породы, например, таких, как различные самородные минералы (медь, золото и тому подобные), в том числе минералы алмазосодержащей породы. Заявляемый способ может быть использован на многих этапах разведки, добычи и обогащения полезных ископаемых.

Заявляемое изобретение относится к приоритетному направлению развития науки и технологий «Технологии экологически безопасной разработки месторождений и добычи полезных ископаемых» [Алфавитно-предметный указатель к Международной патентной классификации по приоритетным направлениям развития науки и технологий / Ю.Г. Смирнов, Е.В. Скиданова, С.А. Краснов. - М.: ПАТЕНТ, 2008. - с. 110], так как заявляемый способ является экологически безопасным.

Существует ряд контактных способов с использованием различных устройств для выявления алмазов и бриллиантов, например, способ, раскрытый в описании патента РФ 2011978, с использованием устройства для идентификации алмазов и бриллиантов (патент РФ 2011978, МПК 5 G01N 25/18, опубликовано 30.04.1994), в котором идентификация алмаза осуществляется контактным образом с использованием электронной схемы с транзистором.

Признаками способа-аналога, совпадающими с существенными признаками заявляемого способа, является назначение и использование физического воздействия.

Известный способ с использованием устройства для идентификации алмазов и бриллиантов по патенту РФ 2011978 весьма сложен для промышленного обогащения алмазоносной руды. Другие подобные контактные устройства также невозможно использовать в промышленной сепарации (сортировке) алмазов от породы их содержащей.

Существует ряд способов, представляющих собой рентгенолюминесцентную сепарацию алмазов из исходной алмазосодержащей породы.

Известен, например, способ люминесцентной сепарации минералов из обогащаемого материала (патент РФ №2362635, МПК В07С 5/346 (2006.01), В03В 13/06 (2006.01), опубликовано 27.07.2009), использующий возникающую под воздействием возбуждающего излучения люминесценцию извлекаемого минерала.

Признаками способа-аналога, совпадающими с существенными признаками заявляемого способа, является использование физического воздействия.

Недостатками данного способа являются:

- во-первых, не все минеральные частицы ценного компонента люминесцируют, а часть пустой породы может также люминесцировать, давая ложный сигнал, что снижает эффективность сепарации;

- во-вторых, сложная система обработки полученных ответных сигналов, что не позволяет получать требуемое извлечение ценного компонента из исходной руды;

- в-третьих, высокие энергозатраты;

- в-четвертых, применение проникающего электромагнитного излучения не является безопасным.

Известен способ сепарации алмазосодержащих материалов и устройство для его осуществления (патент РФ №2366519, МПК В07С 5/346 (2006.01), В03В 13/06 (2006.01), G01N 23/00 (2006.01), опубликовано 10.09.2009).

Признаками способа-аналога, совпадающими с существенными признаками заявляемого способа, является физическое воздействие (облучение в рентгеновском диапазоне электромагнитных волн) на исходный материал.

Недостатками данного способа также являются:

- во-первых, не все минеральные частицы ценного компонента люминесцируют, а часть пустой породы может также люминесцировать, давая ложный сигнал, что снижает эффективность сепарации;

- во-вторых, сложная система обработки полученных ответных сигналов, что не позволяет получать требуемое извлечение ценного компонента из исходной руды;

- в-третьих, высокие энергозатраты;

- в-четвертых, применение проникающего электромагнитного излучения не является безопасным.

Известен способ, который реализуется при работе люминесцентного сепаратора для обогащения минерального сырья и устройства отделения искомого продукта для сепараторов (патент РФ №2215586, МПК В03В 13/06, В07С 5/346, опубликовано 10.11.2003).

Признаками аналога, совпадающими с существенными признаками заявляемого способа, являются способ, в котором осуществляется физическое воздействие (облучение в некотором диапазоне электромагнитных волн) на исходный материал.

Недостатками данного способа являются, как было сказано выше: во-первых, сложная система обработки полученных ответных сигналов, что не позволяет получать требуемое извлечение ценного компонента из исходной руды; во-вторых, не все минеральные частицы ценного компонента люминесцируют, а часть пустой породы также может люминесцировать; в-третьих, высокие энергозатраты; в-четвертых, применение проникающего электромагнитного излучения не является безопасным.

Таким образом, все способы, по которым работают рентгенолюминесцентные сепараторы имеют ряд недостатков:

- экологически не безопасны, так как используется электромагнитное излучение неблагоприятно действующее на живые организмы;

- сложный обсчет выявления ценного компонента;

- большие энергозатраты;

- не все алмазы светятся под рентгеном, так как их свечение обусловлено примесями (азот и другие примеси);

- кроме алмазов под рентгеном светится еще ряд минералов (цирконы, пиропы, галиты, кальциты и др.), поэтому, способы рентгенолюминесцентной сепарации устройств НПО «Буревестник» идентифицируют алмазы по затуханию их свечения после облучения рентгеном, что усложняет процесс сепарации;

- для способов рентгенолюминесцентной сепарации необходимо сложное аппаратурное исполнение (защита людей и других живых организмов от проникающего электромагнитного излучения, сложные электронные схемы и другие элементы устройства).

Наиболее близкий к заявляемому способу является способ сортировки добытой породы (патент РФ №2401166, МПК В07С 5/342 (2006.01), G01N 33/24 (2006.01), опубликовано 10.10.2010), в котором сортировка основана на анализе посредством термического формирования изображений и идентификации частиц, содержащих ценный материал. Для чего на грубую фракцию частиц осуществляют воздействие некоторого вида нагрева и проводят разделение грубой фракции на частицы, содержащие, по результатам анализа посредством термического формирования изображений, ценный материал, и частицы, относительно непродуктивные с точки зрения содержания ценного материала.

Признаками прототипа, совпадающими с существенными признаками варианта заявляемого способа по п. 1 формулы изобретения, являются:

- анализ посредством термического формирования изображений и идентификации частиц, содержащих ценный материал;

- отделение частиц, содержащих по результатам анализа посредством формирования изображений ценный материал.

Способ по прототипу не позволит проводить сортировку руды с отделением ценного материала непосредственно на поверхности месторождения или в шахте, отбирая ценный материал с поверхности штолен, так как для этого по формуле прототипа требуется следующая последовательность действий: измельчение, сортировка и нагрев. Данный нагрев можно осуществить только локально, по большой площади равномерный нагрев трудноосуществим. Следовательно, будет нагрет только определенный участок и неравномерно, то есть ценные частицы нагреются по-разному, что не будет способствовать их явному выделению на полученных изображениях в инфракрасном диапазоне электромагнитных волн. Другими словами, должно быть какое-то замкнутое пространство для данного нагрева или способ с устройством, которые равномерно подводят тепло к поверхности руды, в котором источник тепла будет равномерно нагревать ценные частицы до некоторой определенной температуры, а не ценные частицы - до другой существенно отличающейся температуры.

Признаками прототипа, совпадающими с существенными признаками варианта заявляемого способа по п. 3 формулы изобретения, являются:

- измельчение добытой руды;

- разделение частиц по крупности;

- воздействие на одну из фракций частиц некоторого вида физического воздействия с последующим анализом посредством термического формирования изображений и идентификацией частиц, содержащих ценный материал;

- отделение ценного материала из анализируемой фракции частиц по результатам анализа посредством сформированных изображений.

Недостатком прототипа также является осуществление того или иного нагрева, что требует безусловно дополнительных энергозатрат. Однако, нагрев не всегда приемлем, так как исходная руда может содержать минералы, которые при нагреве выделяют ядовитые или токсичные вещества. Например, колорадоит - минерал, содержащейся в застывшей магме (кимберлитовой трубке). Этот минерал при нагреве выделяет смертельно ядовитые пары и пыль. Кроме этого, кимберлитовая трубка в ряде случаев содержит некоторое количество нефти. Пары нефти также токсичны, а при нагреве с воспламенением выделяют еще более токсичные вещества. Особенно сильно могут нагреться вышеприведенные вещества при СВЧ, которое используется для нагрева в прототипе. Так же нагрев не приемлем при обогащении других руд, содержащих токсичные минералы (киноварь, аурипигмент, стибнит, торбернит, арсенопирит, асбест, галенит, гутчинсонит, халькантит и другие), так как такие минералы выделяют ядовитые и токсичные химические вещества.

Изобретение направлено на создание эффективной безопасной технологии сортировки породы, содержащей ценные компоненты такие, как алмазы, самородные металлы (золото, медь и другие подобные металлы) и минералы, существенно отличающиеся по теплофизическим свойствам от пустой породы. Причем, изобретение направлено на создание технологии без энергозатрат, которую можно использовать, как на этапах добычи, так и на этапах обогащения полезных ископаемых.

Технический результат заявляемого изобретения заключается в повышении оперативности дифференцирования полезных минералов непосредственно с поверхности карьера, шахты, штольни разрабатываемого месторождения.

Технический результат заявляемого изобретения достигается тем, что в способе сортировки породы, включающем анализ посредством термического формирования изображений и идентификации частиц, содержащих ценный материал, и отделение частиц, содержащих по результатам анализа посредством формирования изображений ценный материал, согласно изобретению, осуществляют регистрацию распределений температуры в виде инфракрасных изображений путем сканирования поверхности месторождения, шахты, штольни, траншеи или штрека посредством тепловизора (или другого подобного устройства), а отделение ценного материала проводят по теплофизическим характеристикам минералов, зафиксированным на инфракрасных изображениях, собирая обнаруженный ценный материал непосредственно с поверхности карьера, шахты, штольни, траншеи или штрека разрабатываемого месторождения.

Заявляемый способ основан на различии теплофизических параметров (теплопроводности, теплоемкости) пустой породы и выделяемого полезного компонента (например, алмазов, самородных металлов и других минеральных частиц, имеющих различия в теплофизических параметрах. Отличия от прототипа доказывают новизну заявляемого способа.

Из уровня техники широко известно использование тепловизоров в ряде областей человеческой деятельности (http://www.thermoview.ru/articles/primenenie/), таких как строительство, энергетика и электротехника, металлургия и других.

Однако в перечисленных отраслях, не известно использование тепловизара для сортировки породы путем оперативного дифференцирования полезных минералов непосредственно с поверхности карьера, шахты, штольни разрабатываемого месторождения полезных ископаемых с помощью тепловизора. Таким образом, заявляемый способ позволяет получить новый технический результат, выражающийся в возможности оперативно на ранних стадиях разработки месторождения полезных ископаемых, выбрать крупные куски ценного материала (минерала). Например, добытый на ранней стадии в карьере (шахте или в любом другом месте месторождения) крупный алмаз не будет разбит в дальнейших технологических операциях на более мелкие алмазы. Следовательно, заявляемый способ соответствует условию патентоспособности «изобретательский уровень».

Изобретение поясняется графическими материалами в виде фотографий, полученных в инфракрасном диапазоне электромагнитных волн, температурных профилей и блок-схем технологии способа.

На фиг. 1 и фиг. 2 показаны две одинаковые по весу навески в стеклянных круглых банках с низкими бортами, расположенные на алюминиевой подложке.

На фиг. 1 представлена фотография навески безалмазного материала минералов кимберлитовой трубки крупностью от 0,6 до 0,8 мм, а на фиг. 2 - фотография навески алмазов той же крупности.

На фиг. 3 показан температурный профиль изменения температуры безалмазного материала по линии ab, показанной на фиг. 1 и полученной с помощью программного обеспечения тепловизора Testo 885-2.

На фиг. 4 показан температурный профиль изменения температуры алмазов по линии cd, показанной на фиг. 2 и полученной с помощью программного обеспечения тепловизора Testo 885-2.

На фиг. 5 показана фотография частиц: речная галька 1 и медные частицы 2 со средним размером 1,5 см на алюминиевой подложке.

На фиг. 6 показан температурный профиль изменения температуры речной гальки и медных частиц по линии ef, показанной на фиг. 5.

На фиг. 7 показана фотография частиц речной гальки и медных частиц в открытой стеклянной чашке Петри, расположенной на алюминиевой подложке, и соответствующие частицам средние температуры.

На фиг. 8 представлена технологическая блок-схема без принудительного охлаждения поверхности месторождения.

На фиг. 9 представлена технологическая блок-схема с принудительным охлаждением поверхности месторождения.

На фиг. 10 показана фотография алмазов 3 и безалмазного материала 4, представленная в цветной палитре тепловизора Testo 885-2. Алмазы 3 - синие, а безалмазный материал 4 - светло-голубой.

На фиг. 11 представлена фотография в цветной палитре тепловизора Testo 885-2 (повторяющая фотографию фиг. 5). Речная галька 5 - красного цвета, а медные частицы 6 - синего цвета.

На фиг. 12 показана фотография, повторяющая фотографию фиг. 7, но представленная в цветной палитре тепловизора Testo 885-2 с соответствующими средними температурами частиц.

Заявляемый способ может быть использован уже на этапе геологоразведки или на этапе вскрытия исходной породы месторождения, так как многие минеральные частицы, имеющие существенные различия в теплофизических свойствах, могут быть обнаружены на открытой поверхности месторождения посредством ее сканирования тепловизором и получения изображений в инфракрасном диапазоне электромагнитных волн и соответствующей их обработке с целью выявления ценных компонентов (см. Блок схема на фиг. 8), так как незначительный обдув породы в виде конвективного потока (сквозняка, ветерка) приводит к ее охлаждению. Основные варианты технологических схем выполнения заявляемого способа приведены на фиг. 8 и фиг. 9.

Способ сортировки породы осуществляют путем сканирования поверхности месторождения, шахты, штольни, траншеи или штрека посредством тепловизора и отбора обнаруженного ценного материала непосредственно с поверхности карьера, шахты, штольни, траншеи или штрека разрабатываемого месторождения. При этом регистрацию распределений температуры в виде инфракрасных изображений осуществляют в диапазоне от 0,74 мкм до 14 мкм длин электромагнитных волн с использованием тепловизора, например, марки Testo 885-2, а отделение ценного материала проводят по теплофизическим характеристикам минералов, зафиксированным на инфракрасных изображениях.

Примеры.

Брались две одинаковые по весу навески, изображенные на фиг. 1 и фиг. 2, в стеклянных круглых банках с низкими бортами, расположеные на алюминиевой подложке. Навеска алмазов крупностью от 0,6 до 0,8 мм на фиг. 2 выглядела на экране тепловизора темно-синего цвета, а навеска безалмазного материала минералов кимберлитовой трубки той же крупности на фиг. 1 - светло-синего.

Для имитации естественных условий при температуре навесок 37°C они обдувались легким потоком воздуха с температурой 22-25°C из вентилятора. Через 3 секунды установилась разность температур, показанная на температурных профилях фиг. 3 и фиг. 4. Средняя температура безалмазного материала стала 34,2°C, а средняя температура алмазной навески 33°C. При работе тепловизора в цветной шкале температуры изображения навесок будут отличаться цветами. Разумеется, данная разность температур определяется различной теплопроводностью и теплоемкостью безалмазного материала и алмазов, а ее небольшая величина объясняется тем, что у навесок алмазов и безалмазного материала имеются воздушные прослойки, которые влияют на их охлаждение и разность температур. На фиг. 3 показан температурный профиль изменения температуры по линии ab, показанной на фиг. 1. На фиг. 4 показан профиль изменения температуры по линии cd, показанной на фиг. 2. Такая разность температур безалмазного материала и алмазов наблюдалась с помощью тепловизора марки Testo 885-2 многократно, более десяти раз. Аналогичные результаты были получены на тепловизоре марки ThermoPro TP8S.

Способ можно осуществить путем одновременного нагрева с одной стороны и охлаждением с другой стороны, что приведет к большей разности температур между ценными и не ценными кусками породы. Например, подложку, по которой движется монослойный поток породы можно нагревать, а сверху охлаждать или наоборот - подложку охлаждать, а сверху породу нагревать. Можно только охлаждать породу с любой стороны - сверху, снизу, сбоку или в любом другом направлении.

На фиг. 5 показаны фотографии частиц: речная галька 1 и медные частицы 2 со средним размером 1,5 см. Галька и медные частицы располагались на алюминиевой подложке и охлаждались воздухом с температурой 22-25°C вентилятором для имитации естественных условий. При начальной температуре образцов 37°C через 10 секунд средняя температура речной гальки снизилась до 36,6°C (на фотографии они показаны светло-серыми частицами), средняя температура подложки составила 35°C, а средняя температура медных частиц (на фотографии выглядят черными) снизилась до 28°C. На фиг. 11 в цветной палитре работы тепловизора разница в цветах и их яркости у частиц, имеющих температурную разницу после охлаждения, существенна: галька 5 -красная, а медные 6 - сине-голубые.

На фиг. 6 показан профиль изменения температуры по линии ef, показанной на фиг. 5 и полученной с помощью программного обеспечения тепловизора Testo 885-2. В данном случае при охлаждении крупных частиц породы наблюдается и большая разница температур между медными частицами и частицами речной гальки.

На фиг. 7 представлены те же частицы речной гальки светлые и медные частицы темного цвета, нагретые естественным образом при комнатной температуре 37°C, в открытой стеклянной чашке Петри. Чашку Петри разместили на алюминиевую пластину со средней температурой равной - 9°C для имитации природных условий в весенний период, когда грунт проморожен, а температура воздуха высокая. На данной фотографии медные частицы и речная галька явно отличаются по цвету и температуре. Через 7 секунд средняя температура гальки установилась около 29°C, а медных частиц - средняя температура 9,9°C. Данный пример наиболее информативный для осуществления заявляемого способа при различных естественных условиях. Для каждой показанной на фотографии частицы приведена ее средняя температура. Например, средняя температура самой крупной частицы гальки равна 36,6°C, а температура самой мелкой частицы равна 21,5°C. У самой крупной медной частицы средняя температура равна 14,6°C, а у самой мелкой медной частицы средняя температура равна 4,6°C. Крупные частицы имеют меньшее отношение площади поверхности к объему, что способствует более медленному их охлаждению. Такой разброс температур показывает то, что, во-первых, для частиц более близких по своим теплофизическим свойствам следует предварительно сортировать исходную породу по крупности, по форме и другим геометрическим параметрам, во-вторых, различие исходных частиц по крупности не будет влиять на выявление минеральных частиц, имеющих значительные отличия по теплофизическим свойствам от другой породы. В данном примере медные частицы, имеющие существенные отличия теплофизических свойств по сравнению с речной галькой легко можно отделить от пустой породы. Поскольку медь по сравнению с речной галькой имеет очень высокую теплопроводность и низкую теплоемкость. Удельная теплоемкость меди равна 0,385 кДж/(кг⋅К), а удельная теплоемкость данной речной гальки равна 0,7-0,9 кДж/(кг⋅К). Теплопроводность меди равна 401 Вт/(м⋅К), а тепловодность данной речной гальки 2-4 Вт/(м⋅К). Для алмазов аналогичная разница температур с пустой породой на фотографиях, полученных в инфракрасном диапазоне электромагнитных волн, будет более значительной, так как теплопроводность алмаза равна 1000-2600 Вт/(м⋅К) при удельной его теплоемкости равной 0,502 кДж/(кг⋅К).

Способ сортировки породы, включающий анализ посредством термического формирования изображений и идентификации частиц, содержащих ценный материал, и отделение частиц, содержащих по результатам анализа посредством формирования изображений ценный материал, отличающийся тем, что осуществляют регистрацию распределений температуры в виде инфракрасных изображений в диапазоне от 0,74 до 14 мкм длин электромагнитных волн путем сканирования поверхности месторождения, шахты, штольни, траншеи или штрека посредством тепловизора, а отделение ценного материала проводят по теплофизическим характеристикам минералов, зафиксированным на инфракрасных изображениях, собирая обнаруженный ценный материал непосредственно с поверхности карьера, шахты, штольни, траншеи или штрека разрабатываемого месторождения.
Способ сортировки породы
Способ сортировки породы
Способ сортировки породы
Способ сортировки породы
Способ сортировки породы
Способ сортировки породы
Способ сортировки породы
Источник поступления информации: Роспатент

Показаны записи 51-60 из 60.
14.05.2023
№223.018.5542

Способ получения силуминов в электролизере для производства алюминия

Изобретение относится к металлургии цветных металлов, а именно к получению силуминов в электролизёре для производства алюминия с использованием в качестве источника кремния аморфного микрокремнезёма. Силумины получают восстановлением кремния из аморфного микрокремнезема, полученного из пыли...
Тип: Изобретение
Номер охранного документа: 0002736996
Дата охранного документа: 23.11.2020
15.05.2023
№223.018.5882

Устройство для круговой осцилляции рабочего инструмента

Изобретение относится к устройству для обработки наружных поверхностей вращения отделочно-упрочняющей обработкой поверхностным пластическим деформированием и предназначено для использования в различных отраслях металлообрабатывающей промышленности. Устройство содержит корпус, электродвигатель,...
Тип: Изобретение
Номер охранного документа: 0002764452
Дата охранного документа: 17.01.2022
15.05.2023
№223.018.589b

Способ автономного освещения при отрицательной температуре окружающей среды

Изобретение относится к способам автономного наружного электроосвещения в условиях отрицательных температур, предназначенным для освещения трасс, дорог и т.д. Способ автономного освещения при отрицательной температуре окружающей среды, где подключают осветительную лампу по сигналу датчика...
Тип: Изобретение
Номер охранного документа: 0002764172
Дата охранного документа: 13.01.2022
15.05.2023
№223.018.58c3

Способ автономного освещения при отрицательной температуре окружающей среды

Изобретение относится к способам автономного наружного электроосвещения в условиях отрицательных температур, предназначенным для освещения трасс, дорог и т.д. Способ автономного освещения при отрицательной температуре окружающей среды, где подключают осветительную лампу по сигналу датчика...
Тип: Изобретение
Номер охранного документа: 0002764126
Дата охранного документа: 13.01.2022
15.05.2023
№223.018.5cf3

Устройство для отделочно-упрочняющей обработки

Изобретение относится к устройству для отделочно-упрочняющей обработки. Устройство содержит мотор-редуктор, диск, закрепленный на оси мотор-редуктора, коромысло, палец, соединяющий диск с коромыслом, и неподвижную опору с осью, на которой смонтировано коромысло. На одном конце коромысла...
Тип: Изобретение
Номер охранного документа: 0002751947
Дата охранного документа: 21.07.2021
30.05.2023
№223.018.72f0

Топливо маловязкое судовое

Изобретение описывает топливо маловязкое судовое, содержащее в различных соотношениях смесь утяжеленных среднедистиллятных фракций первичной и вторичной переработки нефти: утяжеленное дизельное топливо, полученное при атмосферной перегонке нефти (222-368°С), - 0-61 мас.%, легкий газойль...
Тип: Изобретение
Номер охранного документа: 0002734259
Дата охранного документа: 13.10.2020
30.05.2023
№223.018.730c

Способ приготовления шихты для производства карбида кремния

Изобретение относится к приготовлению кремнезём-углеродсодержащей шихты и может быть использовано при электротермическом производстве карбида кремния. Способ включает смешивание кремнезёмсодержащего материала с углеродистым материалом. Причем в качестве кремнезёмсодержащего материала на...
Тип: Изобретение
Номер охранного документа: 0002771203
Дата охранного документа: 28.04.2022
17.06.2023
№223.018.8127

Устройство для осциллирующего движения рабочего инструмента

Изобретение относится к устройству для осциллирующего движения рабочего инструмента. Устройство содержит корпус, электродвигатель, четыре конические шестерни, подшипниковые узлы, ведущий вал и ведомый вал, соединенный с рабочим инструментом. Ведущая и ведомая конические шестерни находятся на...
Тип: Изобретение
Номер охранного документа: 0002763065
Дата охранного документа: 27.12.2021
17.06.2023
№223.018.813e

Способ обработки радиальным лепестковым кругом поверхности детали из алюминиевого сплава в95

Изобретение относится к технологии машиностроения, к абразивной обработке алюминиевого сплава В95 радиальным лепестковым кругом и может быть использовано при зачистке, шлифовании и полировании. Способ включает деформирование вращающегося круга по периферии посредством прижатия к детали и...
Тип: Изобретение
Номер охранного документа: 0002759165
Дата охранного документа: 09.11.2021
19.06.2023
№223.018.8215

Протонпроводящие полимерные мембраны и способ их получения

Изобретение относится к протонпроводящим полимерным мембранам, которые используют в твердополимерных топливных элементах. Предложены протонпроводящие мембраны, состоящие из сополимера на основе 4-стиролсульфоната натрия и N,N-метиленбисакриламида, и способ получения протонпроводящих мембран,...
Тип: Изобретение
Номер охранного документа: 0002797133
Дата охранного документа: 31.05.2023
Показаны записи 41-45 из 45.
26.06.2019
№219.017.9200

Способ извлечения наноразмерных частиц из техногенных отходов производства флотацией

Изобретение относится к получению кремний-углеродсодержащих наноструктур из техногенных отходов и может быть использовано для извлечения наноразмерных частиц диоксида кремния и углерода из шламов газоочистки электротермического производства кремния флотацией. Способ включает приготовление...
Тип: Изобретение
Номер охранного документа: 0002692386
Дата охранного документа: 24.06.2019
12.08.2019
№219.017.beeb

Способ разделения нано- и микроразмерных частиц при обогащении полезных ископаемых

Предложенное изобретение относится к области обогащения полезных ископаемых. Способ разделения частиц пыли при обогащении полезных ископаемых с использованием газового сепаратора включает стадию разделения частиц по крупности. Производят сепарацию нано- и микроразмерных частиц пыли с помощью...
Тип: Изобретение
Номер охранного документа: 0002696732
Дата охранного документа: 05.08.2019
14.08.2019
№219.017.bf6e

Способ модифицирования чугуна

Изобретение относится к металлургии и может быть использовано для производства модифицированного чугуна для изготовления быстроизнашивающихся деталей машин. Используют модификатор, мас. %: наноразмерные частицы углерода 74-89, мелкодисперсный карбид кремния 10-25, который вводят в ковш в...
Тип: Изобретение
Номер охранного документа: 0002697136
Дата охранного документа: 12.08.2019
01.11.2019
№219.017.dcbb

Способ модифицирования чугуна и модификатор для осуществления способа

Изобретение относится к металлургии и литейному производству и может быть использовано для производства модифицированного чугуна для изготовления быстроизнашивающихся деталей машин. Способ включает получение расплава чугуна, перелив расплава в ковш и введение в ковш модификатора. В качестве...
Тип: Изобретение
Номер охранного документа: 0002704678
Дата охранного документа: 30.10.2019
30.05.2020
№220.018.22a6

Способ получения нефтяного пека - композиционного материала для производства анодной массы

Изобретение относится к получению нефтяного пека, применяемого в качестве связующего или пропиточного материала при изготовлении различных углеродных изделий и может быть использовано в металлургической, нефтеперерабатывающей и химической промышленности, в частности в цветной металлургии при...
Тип: Изобретение
Номер охранного документа: 0002722291
Дата охранного документа: 28.05.2020
+ добавить свой РИД