×
26.12.2018
218.016.ab0b

Результат интеллектуальной деятельности: Микросистемный индикатор электрических полей космических аппаратов

Вид РИД

Изобретение

№ охранного документа
0002676059
Дата охранного документа
25.12.2018
Аннотация: Использование: для изготовления микромеханических датчиков. Сущность изобретения заключается в том, что микросистемный индикатор электрических полей космических аппаратов включает: а) микромеханический исполнительный элемент, состоящий из подложки; подвижного экранирующего электрода с отверстием по центру; как минимум четырех упругих гибких подвесов, симметрично закрепленных относительно друг друга и чувствительного электрода на подложке и удерживающих подвижный экранирующий электрод; чувствительного электрода, сформированного на подложке в центре отверстия подвижного экранирующего электрода, при этом диаметр чувствительного электрода меньше диаметра отверстия подвижного экранирующего электрода; металлизированных дорожек с контактными площадками на подложке для электрического контакта усилителя тока одним выводом с одним из четырех упругих гибких подвесов, а другим выводом с чувствительным электродом; подвижного экранирующего электрода, расположенного так, что ось симметрии чувствительного электрода равноудалена от внутреннего края отверстия подвижного экранирующего электрода; б) катушку индуктивности; в) усилитель тока; г) аналого-цифровой преобразователь, при этом подвижный экранирующий электрод с помощью катушки индуктивности приводится в колебательное движение на частоте механического резонанса, чувствительный электрод соединен с усилителем тока, выход усилителя тока соединен с входом аналого-цифрового преобразователя, выход которого является выходом микросистемного индикатора электрических полей, обеспечивающих детектирование напряженности электрического поля на поверхности конструкции космического аппарата. Технический результат: обеспечение возможности уменьшения массогабаритных характеристик прибора. 4 з.п. ф-лы, 5 ил.

Изобретение относится к области микросистемной измерительной техники и может быть использовано для детектирования напряженности электрического поля на поверхности конструкции космического аппарата.

Из уровня техники известен ротационный измеритель напряженности электрического поля [1-6], действие которого основано на детектировании электрического поля при вращении двигателем измерительного электрода, при этом экранирующий электрод неподвижен.

Из уровня техники также известен флюксметр [7-13], в устройстве которого двигатель производит вращение экранирующего электрода, при котором измерительный электрод неподвижен, а также вибрационные датчики приборы, в которых измерительный или экранирующий электроды совершают колебательное, возвратно-поступательное движение.

Недостатками вышеуказанных конструкций является невозможность длительной работы в условиях вакуума при воздействии значительных перепадов температуры, вибрации, ударов. Из-за нестабильности скорости вращения двигателя, приводящей к ошибкам измерений. Кроме того, двигатель создает значительные помехи в измерительной системе. Другими недостатками известных технических решений, являются невозможность длительных непрерывных измерений, довольно низкая их чувствительность и крупногабаритность конструкции.

Известны датчики вибрационного типа [14-21], в которых измерительный или экранирующий электрод колеблются в области неоднородного поля под действием электромагнитного возбудителя. Приборы данного вида свободны от большинства недостатков приборов первых двух классов, однако они имеют недостаточную чувствительность вследствие того, что размеры и амплитуда перемещения электродов в них меньше чем в флюксметрах и ротационных датчиках.

Наиболее близким аналогом предлагаемого технического решения является датчик электростатического поля, описанный в авторском свидетельстве СССР №881628. В данном техническом решении датчик содержит чувствительный электрод, подключенный к блоку регистрации и две катушки индуктивности, расположенные соосно и подключенные к генератору переменного напряжения, при этом чувствительный электрод расположен под углом 3-10° к оси катушек индуктивности.

Недостатком ближайшего аналога являются существенные массогабаритные параметры.

Техническим результатом, на достижение которого направлено предлагаемое техническое решение, является уменьшение массогабаритных характеристик прибора по сравнению с известными аналогами.

Предлагаемый микросистемный индикатор электрических полей космических аппаратов состоит из последовательно соединенных микромеханического исполнительного элемента на подложке, усилителя тока, и аналого-цифрового преобразователя.

Признаки и сущность заявленного изобретения поясняются чертежами, где показано следующее.

На фиг. 1а, 6 представлен вид сверху и вид в аксонометрии варианта конструкции микромеханического исполнительного элемента на подложке, где ссылочными позициями обозначено следующее:

1 - подложка;

2 - отверстие в подвижном экранирующем электроде;

3 - чувствительный электрод;

4 - подвижный экранирующий электрод;

5 - упругие гибкие подвесы подвижного экранирующего электрода;

6 - контактные площадки;

7 - металлизированные дорожки.

Конструкция имеет минимум четырех упругих гибких подвеса, симметрично закрепленных относительно друг друга и чувствительного электрода на подложке и удерживающих подвижный экранирующий электрод.

Подвижный экранирующий электрод с отверстием по центру расположен так, что ось симметрии чувствительного электрода равноудалена от внутреннего края отверстия подвижного экранирующего электрода. Диаметр подвижного экранирующего электрода составляет не менее 1/3 габаритного размера микромеханического исполнительного элемента. Подвижный экранирующий электрод выполнен из магнитомягкого материала.

Чувствительный электрод, сформирован на подложке в центре отверстия подвижного экранирующего электрода, при этом диаметр чувствительного электрода меньше диаметра отверстия подвижного экранирующего электрода. Чувствительный электрод имеет возможность углубления внутрь или выдвижения из отверстия подвижного экранирующего электрода при его колебаниях. Чувствительный электрод выполнен из твердого материала, обладающего свойствами ферромагнетика с высокой магнитной проницаемостью.

Чувствительный и экранирующий электроды изготовлены в едином цикле на подложке с помощью технологии поверхностной микрообработки линейного перемещения подвижного элемента в одной плоскости.

Металлизированные дорожки с контактными площадками на подложке для электрического контакта усилителя тока одним выводом соединены с одним из четырех упругих гибких подвесов, а другим выводом с чувствительным электродом.

На фиг. 2 представлено поперечное сечение (А-А) микромеханического исполнительного элемента на подложке, где 8 - катушка индуктивности.

На фиг. 3 приведены основные размеры составных частей исполнительного элемента сформированного на подложке:

а - габаритные размеры исполнительного элемента микросистемного индикатора электрических полей - не более 1,2⋅103 мкм;

b - диаметр подвижного экранирующего электрода - не более 4⋅102 мкм;

с - габаритные размеры опор - не более 10 мкм.

На фиг. 4 представлена структурная схема микросистемного индикатора электрических полей, где:

9 - усилитель тока;

10 - аналого-цифровой преобразователь (АЦП).

На фиг. 5 представлена электрическая схема микросистемного индикатора электрических полей, отражающая взаимосвязь исполнительного элемента с усилителем и аналого-цифровым преобразователем.

Устройство работает следующим образом.

Входящий в состав микромеханического исполнительного элемента экранирующий электрод (3) находится под влиянием магнитного поля катушки индуктивности. При колебаниях экранирующего электрода (4) под влиянием магнитного поля катушки индуктивности, чувствительный электрод (3) имеет постоянное значение потенциала. При появлении электрического поля порового уровня, значение потенциала чувствительного электрод (3) изменится. Чувствительный электрод (3) подключен к входному усилителю тока. Сигнал об изменении потенциала чувствительного электрода (3) поступает на усилитель (9). После усиления сигнала, происходит детектирование сигнала аналого-цифровым преобразователем (10). После усиления и синхронного детектирования на выходе получается напряжение, пропорциональное напряженности электрического поля, имеющее соответствующий знак. Напряжение с выхода микросистемного индикатора электрических полей поступает на передающее устройство.

Заявленное изобретение обеспечивает создание миниатюрных устройств для детектирования электрических полей, образовавшихся в результате накопления поверхностью космических аппаратов электростатических зарядов.

Кроме снижения массогабаритных характеристик разработанная конструкция позволяет повысить радиационную стойкость до 106 рад, вследствие слабой чувствительности исполнительных элементов микросистемной техники к данному типу воздействия, уменьшить мощность потребления устройства (не менее 10%), повысить работоспособность в условиях открытого космоса, а также устойчивость к жестким климатическим условиям эксплуатации.

Взаимодействие индикаторов электрических полей с активными системами защиты от электростатических зарядов космических аппаратов позволит существенно повысить надежность бортовой аппаратуры КА.

Источники информации

1. Авторское свидетельство 580525 от 15.11.77 «Датчик электростатического поля».

2. Авторское свидетельство 593165 от 15.02.78 «Датчик для регистрации плотности статистического электричества».

3. Патент RU 2199761 от 27.02.2003 «Устройство для измерения напряженности статического и квазистатического электрического поля».

4. Патент США на изобретение US 6483223 "Method to prevent charging effects in electrostatic devices". Victor Donald Samper, Uppili Sridhar, Olaf Knueppel, Feng Han Hua, Hui Wing, Cheong. Institute of Microelectronics. 19.11.2002.

5. Авторское свидетельство 653583 от 11.05.77 «Датчик электростатического поля».

6. Авторское свидетельство 769455 от 26.12.78 «Датчик электростатического поля».

7. Авторское свидетельство 629513 от 28.08.78 «Датчик электростатического поля».

8. Авторское свидетельство 718809 от 28.02.80 «Измеритель напряженности электростатического поля».

9. Авторское свидетельство 1116399 от 21.04.83 «Устройство для измерения напряженности электрического поля».

10. Авторское свидетельство 1201784 от 16.12.83 «Устройство для измерения напряженности электрического поля СВЧ».

11. Патент RU 2020497 от 30.09.1994 «Датчик электростатического поля»

12. Патент RU 2028636 от 09.02.1995 «Устройство для измерения напряженности электростатического поля».

13. Патент RU 2442183 от 10.02.2012 «Датчик измерителя напряженности электростатического поля».

14. Авторское свидетельство 845119 от 20.03.78 «Датчик электростатического поля».

15. Авторское свидетельство 881628 от 05.10.79 Датчик электростатического поля».

16. Авторское свидетельство 1709246 от 07.04.88 «Датчик электростатического поля».

17. Патент RU 2212678 от 20.09.2003 «Устройство для измерения напряженности электростатического поля».

18. Патент RU 2414717 от 20.03.2011 «Датчик электростатического поля и способ измерения электростатического поля».

19. Патент RU 2445639 от 20.03.2012 «Способ измерения напряженности электрического поля».

20. Заявка США на изобретение US 2009/0273337 «Electric field sensor with electrode interleaving vibration». Shanhong XIA, Chao YE, Chao GONG, Xianxiang CHEN, Qiang BAI, Shaofeng CHEN, 5.11.2009.

21. Патент WO 2014045406 от 27.03.2014 «Potential measuring device»


Микросистемный индикатор электрических полей космических аппаратов
Микросистемный индикатор электрических полей космических аппаратов
Микросистемный индикатор электрических полей космических аппаратов
Микросистемный индикатор электрических полей космических аппаратов
Микросистемный индикатор электрических полей космических аппаратов
Микросистемный индикатор электрических полей космических аппаратов
Источник поступления информации: Роспатент

Показаны записи 111-120 из 120.
05.03.2020
№220.018.08f1

Способ радиометрической калибровки, контроля характеристик и испытаний оптико-электронных и оптико-механических устройств и криогенно-вакуумная установка, реализующая этот способ

Заявленная группа изобретений относится к оптико-электронной, оптико-механической и криогенно-вакуумной технике и предназначено для точной радиометрической калибровки, исследований и испытаний оптико-электронных и оптико-механических устройств, а также систем радиационного захолаживания в...
Тип: Изобретение
Номер охранного документа: 0002715814
Дата охранного документа: 03.03.2020
25.03.2020
№220.018.0f4e

Устройство для ориентации космического аппарата по направлению лазерного луча

Изобретение относится к области оптического приборостроения и касается устройства для ориентации космического аппарата по направлению лазерного луча. Устройство содержит плоскопараллельную пластину, выполненную из прозрачного материала с высоким показателем преломления. В нижней части пластины...
Тип: Изобретение
Номер охранного документа: 0002717385
Дата охранного документа: 23.03.2020
27.03.2020
№220.018.106e

Установка селективного лазерного спекания и способ получения крупногабаритных изделий на этой установке

Группа изобретений относится к изготовлению металлических изделий селективным лазерным спеканием. Установка содержит герметичную камеру, вакуумную систему, блок подачи инертного газа, систему очистки инертного газа, систему циркуляции инертного газа, систему водоохлаждения инертного газа,...
Тип: Изобретение
Номер охранного документа: 0002717761
Дата охранного документа: 25.03.2020
14.05.2020
№220.018.1c34

Способ ориентации космического аппарата

Изобретение относится к космической технике. В способе ориентации космического аппарата (КА) ориентируют КА относительно направления на Солнце и Землю. После обеспечения ориентации КА относительно направления на Солнце в заданном диапазоне углов с использованием автономного контура управления...
Тип: Изобретение
Номер охранного документа: 0002720577
Дата охранного документа: 12.05.2020
14.05.2020
№220.018.1c51

Способ управления сервисным космическим аппаратом при бесконтактном удалении фрагментов космического мусора

Изобретение относится к управлению движением космических аппаратов (КА), в частности, при удалении крупногабаритных фрагментов космического мусора (ФКМ) из области рабочих орбит КА в зону захоронения. Способ включает облучение ФКМ с борта КА пучком ускоренных ионов в направлении увода ФКМ....
Тип: Изобретение
Номер охранного документа: 0002720606
Дата охранного документа: 12.05.2020
14.05.2020
№220.018.1cca

Способ инспекции космических аппаратов в области низких околоземных круговых орбит

Изобретение относится к управлению движением космических аппаратов (КА), производящих инспекцию других КА на орбите. Способ включает выведение КА-инспектора на опорную орбиту, аргумент широты которой совпадает с аргументом широты инспектируемого КА. При этом данную опорную орбиту располагают в...
Тип: Изобретение
Номер охранного документа: 0002720758
Дата охранного документа: 13.05.2020
15.05.2020
№220.018.1ce6

Способ определения направления лазерного луча на космический аппарат, принимающий сигналы лазерной космической связи

Изобретение относится к области управления движением космических аппаратов. Способ определения направления лазерного луча на космический аппарат, принимающий сигналы лазерной космической связи, заключается в том, что устанавливают на передающем и принимающем космических аппаратах...
Тип: Изобретение
Номер охранного документа: 0002720856
Дата охранного документа: 13.05.2020
21.05.2020
№220.018.1ee3

Устройство очистки околоземного космического пространства от крупногабаритных объектов космического мусора

Изобретение относится к космической технике и может быть использовано для очистки околоземного космического пространства (ОКП) от относительно крупного по размеру космического мусора, такого как прекратившие активное существование космические аппараты (КА), разгонные блоки (РБ), последние...
Тип: Изобретение
Номер охранного документа: 0002721368
Дата охранного документа: 19.05.2020
24.06.2020
№220.018.2a16

Способ уменьшения погрешности прогнозирования движения центра масс навигационного космического аппарата

Изобретение относится к области космической техники и может быть использовано для уменьшения погрешности прогнозирования движения центра масс навигационного космического аппарата (КА). Способ прогнозирования движения центра масс навигационного КА включает прогнозирование ухода центра масс...
Тип: Изобретение
Номер охранного документа: 0002724216
Дата охранного документа: 22.06.2020
12.04.2023
№223.018.48b3

Полимерная клеевая композиция праймера для крепления низкомодульных резин к металлу

Настоящее изобретение относится к клеевой композиции для крепления низкомодульных резиновых смесей к металлу при совмещенной вулканизации. Данная композиция включает в мас.ч.: хлорсодержащий каучук – 100, инден-кумароновая смола 3,8-5,6, канифоль сосновая 0,5-1,5, миволл 4,0-6,1, булая сажа...
Тип: Изобретение
Номер охранного документа: 0002761551
Дата охранного документа: 09.12.2021
Показаны записи 1-1 из 1.
23.07.2019
№219.017.b6fa

Миниатюрный измеритель параметров электризации космических аппаратов с микросистемным вибрационным модулятором электрического поля

Использование: для детектирования напряженности электрического поля на поверхности конструкции космического аппарата. Сущность изобретения заключается в том, что миниатюрный измеритель параметров электризации космических аппаратов включает: микросистемный вибрационный модулятор, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002695111
Дата охранного документа: 19.07.2019
+ добавить свой РИД