×
20.12.2018
218.016.a9e5

Результат интеллектуальной деятельности: СПОСОБ ПОСТРОЕНИЯ ОРИЕНТАЦИИ КОСМИЧЕСКОГО ОБЪЕКТА, ОТДЕЛЯЕМОГО ОТ ДРУГОГО КОСМИЧЕСКОГО ОБЪЕКТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к космической технике. Способ построения ориентации космического объекта (КО), отделяемого от другого космического объекта (ДКО), включает выполнение импульсов для разворота связки ДКО и КО в необходимую ориентацию, используя для определения параметров разворота данные об ориентации ДКО и ориентации КО в составе связки. Предварительно определяют угол разворота связки КО и ДКО из текущей ориентации в требуемую ориентацию, прикладывают серию импульсов для их разворота в требуемую ориентацию, после расстыковки происходит определение импульсов поддержания ориентации по текущим угловым скоростям КО и по известному угловому положению ДКО в момент расстыковки, после чего прикладывают серию импульсов для реализации поддержания ориентации. Техническим результатом изобретения является сокращение продолжительности построения ориентации после отделения от ДКО независимо от светотеневых условий на орбите. 3 ил.

Предлагаемый способ может быть использован в космической технике при управлении движением космического объекта (КО), например пилотируемого космического корабля (ПКК), после его отделения в заданном направлении от другого космического объекта (ДКО), например орбитальной пилотируемой станции (ОПС).

Известен способ управления движением КО после его отделения от другого КО, выбранный в качестве аналога, в котором для определения ориентации используется датчик инфракрасной вертикали (ИКВ) (Легостаев В.П., Микрин Е.А., Орловский И.В., Борисенко Ю.Н., Платонов В.Н., Евдокимов С.Н. Создание и развитие систем управления движением космических кораблей «Союз» и «Прогресс»: опыт эксплуатации, планируемая модернизация // Сборник статей. Москва, МФТИ, 2009.) (фиг. 2). В этом способе, после поступления первых измерений угловой скорости через время Δt к КО прикладывают серию импульсов, совершающих ряд последовательных разворотов для обеспечения нахождения диска Земли в поле зрения датчика ИКВ. Затем, уже по показаниям датчика ИКВ, к КО прикладывают серию импульсов, совмещающих видимый центр Земли с центром обзора датчика ИКВ. Далее, по изменению компонент угловой скорости в плоскости перпендикулярной направлению на центр Земли определяют текущее направление орбитальной угловой скорости и, соответственно, орбитальную систему координат (ОСК), описанную в труде Аппазов Р.Ф., Сытин О.Г. «Методы проектирования траекторий носителей и спутников Земли», Москва, Наука, 1987., после чего прикладывают серию импульсов для разворота КО в требуемую ориентацию.

Основными недостатками этого способа управления движением являются требование обеспечения определенных светотеневых условий на орбите и продолжительное (7-10 минут) время, затрачиваемое на поиск Земли.

Известен способ управления движением КО в котором для построения ориентации сразу после отделения от ДКО используются априорные данные о положении ДКО в момент отделения и измерения угловой скорости после их включения (Борисенко Н.Ю., Сумароков А.В. Об ускоренном построении орбитальной ориентации грузовых и транспортных кораблей серий «Союз МС» и «Прогресс МС» // Известия РАН. Теория и системы управления. 2017. №5, С. 131-141), выбранный в качестве прототипа (фиг. 1). При этом в момент отделения датчики угловой скорости отключены. Далее, после их включения, на основе информации об угловой скорости, с помощью итеративного процесса, определяется угловая скорость в момент разделения по формуле:

где ω - угловая скорость КО, τ - шаг интегрирования, J - тензор инерции КО. После чего, используя априорную информацию об ориентации в момент разделения при помощи итеративного процесса определяется текущее угловое рассогласование по формулам:

Где Λ - кватернион ориентации КО. После определения угловых рассогласований между текущим и требуемым угловым положением к КО прикладывается серия импульсов для осуществления разворота в требуемую угловую ориентацию.

Основным недостатком этого способа является то, что на включение датчиков угловой скорости и определение ориентации требуется время, в течение которого КО находится в процессе свободного вращения. В процессе свободного вращения может произойти столкновение с ДКО, по этой причине данный способ не может быть использован при разделении со многими ДКО.

Техническим результатом изобретения является сокращение продолжительности построения ориентации после отделения от ДКО, независимо от светотеневых условий на орбите.

Технический результат достигается тем, что в способе построения ориентации космического объекта, отделяемого от другого космического объекта, содержащий определение величин импульсов для его последующего разворота и последующего поддержания ориентации по разнице между текущей и требуемой ориентацией космического объекта, и приложения рассчитанных импульсов поддержания ориентации к космическому объекту, отличающегося тем, что определение импульсов для разворота и поддержания начальной ориентации производят перед расстыковкой, и приложение импульсов производят к объекту, от которого произойдет отстыковка, определение импульсов поддержания ориентации космического объекта, отделенного от другого космического объекта, производят после расстыковки, и приложение импульсов к космическому объекту, отделенному от другого космического объекта, производят после расстыковки.

Технический результат достигается тем, что в отличие от прототипа, требуемое положение КО в пространстве после расстыковки обеспечивается определением угла разворота связки КО и ДКО из текущей ориентации в требуемую для ориентации КО, и приложением импульсов к ДКО для осуществления разворота связки в требуемую ориентацию.

Информация о том, что ДКО выполнил задачу разворота в нужную для КО ориентацию, передается одним из следующих путей:

- заданием в КО определенного момента времени, когда разворот связки КО и ДКО будет непременно завершен;

- специализированным сообщением по межбортовому обмену КО и ДКО;

- по команде из Центра Управления Полетом;

- в момент отстыковки КО от ДКО.

Во всех этих случаях, в отличие от прототипа, датчики угловых скоростей КО включаются и готовы к использованию до расстыковки, с расчетом ориентации КО в пространстве, начиная с момента поступления в КО от ДКО данных о завершении разворота связки.

Результат достигается тем, что с момента TSINS включения датчика угловой скорости происходит непрерывное интегрирование кватерниона В по измерениям угловой скорости со при помощи кинематических уравнений с коррекцией нормы:

,

В0=(1 0 0 0).

В начальный момент времени TSINS значение кватерниона В принимается рыным B(TSINS)=B0. После получения информации от ДКО об ориентации связки КО и ДКО в момент времени tДКО относительно орбитального базиса в виде кватерниона Q в КО вычисляется кватернион N1, такой что:

.

Таким образом кватернионом N1 фиксируется рассогласование связанного базиса от орбитального.

После отстыковки КО от ДКО, КО самостоятельно определяет необходимые угловые маневры КО в виде необходимого кватерниона разворота от требуемого положения к связанному базису N(t) с использованием следующего соотношения:

,

здесь R - требуемый кватернион разворота относительно орбитального базиса, ΔL(t-tДКО) - кватернион поворота самого орбитального базиса за время tДКО. После расчета N(t) КО прилагает необходимую серию импульсовт для осуществления разворота.

После приведения КО в заданное в пространстве положение, КО выдает серию импульсов для безопасного отхода от ДКО и выполнения целевых задач, например, для проведения космических экспериментов.

Фактическая ориентация ОПС определена с точностью 0.12° и данной ошибкой для управления ориентацией можно пренебречь.

Сущность изобретения поясняется фиг. 1-3, где

на фиг. 1 представлен способ управления движением по прогнозу ориентации при отделении от ракетоносителя,

на фиг. 2 представлен способ управления движением при помощи ИКВ,

на фиг. 3 представлена циклограмма управления движением по предлагаемому способу.

На фигурах стрелкой обозначено направление орбитального движения КО и ДКО.

поз. 1 обозначен ДКО;

поз. 2 обозначен КО;

поз. 3 обозначена Земля;

поз. 4 обозначена орбита КО;

поз. 5 обозначено отделене КО от ракетоносителя;

поз. 6 обозначено свободное вращение КО;

поз. 7 обозначен разворот КО в ориентацию по прогнозу;

поз. 8 обозначено окончание построения орбитальной ориентации КО;

поз. 9 обозначен датчик ИКВ;

поз. 10 обозначен процесс поиска Земли;

поз. 11 обозначены показания датчика ИКВ;

поз. 12 обозначено направление местной вертикали;

поз. 13 обозначен процесс построения местной вертикали;

поз. 14 обозначен разворот для построения местной вертикали;

поз. 15 обозначен процесс определения угла рысканья и разворот

вокруг местной вертикали в орбитальную систему координат;

поз. 16 обозначен процесс разворот связки КО и ДКО в необходимую

для разделения ориентацию;

поз. 17 обозначен процесс передачи данных о текущей ориентации ДКО передаются в КО;

поз.18 обозначен процесс разделения КО и ДКО.

Фиг. 1 представлена циклограмма управления движением при построении ориентации используя информацию о номинальных параметрах отделения и измерения угловой скорости. После отделения от ракеты-носителя (РН) в момент Т0 (поз. 5). КО находится в свободном, неуправляемом движении в течение времени Δt (поз. 6). За это время происходит подготовка двигательной установки, раскрытие элементов конструкции включение и тестирование бортового оборудования, необходимого для осуществления автономного полета. В момент времени T0+Δt завершается раскрутка гироскопов датчиков угловой скорости и их измерения начинают поступать в бортовой компьютер и на основе этих измерений строится прогноз положения орбитальной ориентации и осуществляется разворот (поз. 7). После окончания разворота КО оказывается в орбитальной ориентации (поз. 8).

Фиг. 2 демонстрирует управление движением в процессе построения ОСК при помощи датчика ИКВ (поз. 9). Вначале КО совершает ряд разворотов для обеспечения нахождения диска Земли в поле зрения датчика ИКВ (поз. 10). Затем, по показаниям датчика ИКВ (поз. 11) строится местная вертикаль (поз. 12), за счет приведения с помощью двигателей КО видимого центра Земли в центр обзора датчика ИКВ (поз. 13). По изменению компонент угловой скорости в плоскости перпендикулярной направлению на центр Земли определяется текущее направление орбитальной угловой скорости, после чего осуществляется разворот КО вокруг местной вертикали (поз. 14) в ОСК (поз. 15).

На фиг. 3 представлена циклограмма управления движением по предлагаемому способу. До отделения от ОПС проводится разворот связки КО и ДКО в необходимую для разделения ориентацию (поз. 16). После завершения разворота данные о текущей ориентации ДКО передаются в КО (поз. 17), за это время происходит подготовка двигательной установки, включение и тестирование бортового оборудования, необходимого для осуществления автономного полета, включающего измерители угловых скоростей. После чего осуществляется разделение КО и ДКО (поз. 18).

Способ построения ориентации космического объекта, отделяемого от другого космического объекта, содержащий определение величин импульсов для его последующего разворота и последующего поддержания ориентации по разнице между текущей и требуемой ориентацией космического объекта и приложение рассчитанных импульсов поддержания ориентации к космическому объекту, отличающийся тем, что определение импульсов для разворота и поддержания начальной ориентации производят перед расстыковкой и приложение импульсов производят к объекту, от которого произойдет отстыковка, определение импульсов поддержания ориентации космического объекта, отделенного от другого космического объекта, производят после расстыковки и приложение импульсов к космическому объекту, отделенному от другого космического объекта, производят после расстыковки.
СПОСОБ ПОСТРОЕНИЯ ОРИЕНТАЦИИ КОСМИЧЕСКОГО ОБЪЕКТА, ОТДЕЛЯЕМОГО ОТ ДРУГОГО КОСМИЧЕСКОГО ОБЪЕКТА
СПОСОБ ПОСТРОЕНИЯ ОРИЕНТАЦИИ КОСМИЧЕСКОГО ОБЪЕКТА, ОТДЕЛЯЕМОГО ОТ ДРУГОГО КОСМИЧЕСКОГО ОБЪЕКТА
СПОСОБ ПОСТРОЕНИЯ ОРИЕНТАЦИИ КОСМИЧЕСКОГО ОБЪЕКТА, ОТДЕЛЯЕМОГО ОТ ДРУГОГО КОСМИЧЕСКОГО ОБЪЕКТА
Источник поступления информации: Роспатент

Показаны записи 51-60 из 111.
11.10.2018
№218.016.8fce

Герметизированное устройство

Изобретение относится к машиностроению и может быть использовано, например, при испытаниях полостей устройств авиационной и ракетной техники. Сущность: устройство содержит корпус (1), состоящий из стационарной (5) и съемной (6) частей, между которыми размещено эластомерное уплотнение (19). С...
Тип: Изобретение
Номер охранного документа: 0002669161
Дата охранного документа: 08.10.2018
11.10.2018
№218.016.8fdd

Способ управления передвижением космонавта к идентифицируемым объектам на космической станции и система для его осуществления

Изобретение относится к космической технике. Способ управления передвижением космонавта к идентифицируемым объектам на космической станции включает определение параметров текущего положения космонавта и формирование команд на передвижение космонавта к идентифицируемым объектам. Дополнительно...
Тип: Изобретение
Номер охранного документа: 0002669155
Дата охранного документа: 08.10.2018
11.10.2018
№218.016.9004

Способ подачи топлива из бака в камеру сгорания жидкостного ракетного двигателя космического аппарата

Изобретение относится к области космической техники. Способ подачи топлива из бака в камеру сгорания жидкостного ракетного двигателя (ЖРД) космического аппарата (КА) включает вытеснение топлива из сжимающей полости, образованной эластичной перегородкой бака, внешним механическим давлением газа...
Тип: Изобретение
Номер охранного документа: 0002669243
Дата охранного документа: 09.10.2018
11.10.2018
№218.016.906f

Способ тарировки датчика микроускорений в условиях космического полета

Изобретение относится к космической технике и может быть использовано при тарировке датчика микроускорений на космическом аппарате (КА) в условиях штатного космического полета. Сущность изобретения заключается в том, что в способе тарировки датчика микроускорений в условиях космического полета...
Тип: Изобретение
Номер охранного документа: 0002669164
Дата охранного документа: 08.10.2018
13.10.2018
№218.016.91b0

Бесконтактный электродвигатель постоянного тока

Изобретение относится к области электротехники, в частности к бесконтактному электродвигателю постоянного тока, и может быть использовано в составе агрегатов терморегулирования и приводов изделий космической техники. Технический результат – снижение массы, повышение технологичности и...
Тип: Изобретение
Номер охранного документа: 0002669373
Дата охранного документа: 11.10.2018
23.11.2018
№218.016.a011

Спутниковый ретранслятор

Изобретение относится к технике связи и может использоваться для ретрансляции информации через спутниковые ретрансляторы. Технический результат состоит в увеличении пропускной способности межспутникового тракта за счет применения лазерной связи. Для этого в спутниковый ретранслятор, содержащий...
Тип: Изобретение
Номер охранного документа: 0002673060
Дата охранного документа: 22.11.2018
23.11.2018
№218.016.a02b

Способ прогнозирования работоспособности термоэмиссионного электрогенерирующего элемента с вентилируемым твэлом

Изобретение относится к космической атомной энергетике, к разработке способов прогнозирования работоспособности термоэмиссионных электрогенерирующих элементов при их создании и наземной отработке. Способ прогнозирования работоспособности термоэмиссионного электрогенерирующего элемента с...
Тип: Изобретение
Номер охранного документа: 0002673061
Дата охранного документа: 22.11.2018
23.11.2018
№218.016.a06c

Способ обнаружения кометного вещества и идентификации его с источником происхождения

Изобретение относится к исследованиям космической среды на борту, в частности, орбитальных станций. Согласно способу выполняют отбор проб-мазков с поверхности станции посредством стерилизованного и гермоизолированного на Земле пробоотборника. Затем последний гермоизолируют в вакууме и...
Тип: Изобретение
Номер охранного документа: 0002673128
Дата охранного документа: 22.11.2018
30.11.2018
№218.016.a19f

Электролизная ракетная двигательная установка и способ её эксплуатации

Изобретение относится к двигательным установкам (ДУ) космических аппаратов и может быть использовано в кислородно-водородных двигательных установках с электролизным производством этих газов на космическом аппарате (КА). Электролизная ракетная двигательная установка включает электролизер воды с...
Тип: Изобретение
Номер охранного документа: 0002673640
Дата охранного документа: 28.11.2018
05.12.2018
№218.016.a333

Способ создания реактивной тяги пилотируемого космического аппарата

Изобретение относится к ракетно-космической технике и может использоваться при разработке реактивных двигательных установок (ДУ), предназначенных для маневрирования пилотируемых космических аппаратов (КА). Способ создания реактивной тяги пилотируемого космического аппарата, включающий...
Тип: Изобретение
Номер охранного документа: 0002673920
Дата охранного документа: 03.12.2018
Показаны записи 21-21 из 21.
23.05.2023
№223.018.6df1

Способ управления движением космического объекта при сближении с другим космическим объектом

Изобретение относится к космической технике, а более конкретно к сближению космических объектов. Способ управления движением космического объекта (КО) при сближении с другим космическим объектом (ДКО) включает выведение КО на опорную орбиту с отклонением от плоскости орбиты ДКО по долготе...
Тип: Изобретение
Номер охранного документа: 0002759360
Дата охранного документа: 12.11.2021
+ добавить свой РИД