×
20.12.2018
218.016.a963

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОДЕТЕКТОРОВ МОЩНОГО ОПТОВОЛОКОННОГО СВЧ МОДУЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано для создания мощных СВЧ фотодетекторов на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ изготовления фотодетекторов мощного оптоволоконного СВЧ модуля включает создание на полупроводниковой подложке GaAs n-типа фоточувствительной области на основе эпитаксиальных структур GaAs/AlGaAs и широкозонного окна из AlGaAs, чувствительных к излучению на длине волны 810-860 нм, создание контактного слоя из GaAs р-типа, создание контактной площадки фронтального омического контакта на поверхности контактного слоя, создание сплошного тыльного омического контакта на тыльной поверхности подложки GaAs. На фоточувствительной области формируют антиотражающее покрытие, создают шины фронтального омического контакта шириной 4-8 мкм, формируют меза-структуру вне контактной площадки и фоточувствительной области на расстоянии 1-5 мкм от контактной площадки, создают дополнительный фронтальный контакт вне меза-структуры на фронтальной поверхности полупроводниковой подложки, проводят монтаж фотодетекторов на керамической плате из AlN, выполняют монтаж керамической платы на теплоотводящем основании модуля, выполняют монтаж оптических волокон и корпусирование СВЧ модуля. Изобретение обеспечивает возможность создания мощных СВЧ фотодетекторов с подводимым по оптоволокнам лазерным излучением, которые бы имели увеличенную рабочую мощность, сниженную величину коэффициента отражения излучения, увеличенное быстродействие, за счет снижения потерь на паразитных емкости и индуктивности, и соответственно высокий КПД преобразования излучения и быстродействие мощного оптоволоконного СВЧ модуля на их основе. 1 з.п. ф-лы, 5 ил.

Изобретение относится к оптоэлектронике и может быть использовано для создания мощных сверхвысокочастотных (СВЧ) фотодетекторов на основе эпитаксиальных структур GaAs/AlxGa1-xAs, чувствительных к излучению на длине волны 810-860 нм, для создания на их основе мощного оптоволоконного СВЧ модуля.

Известен способ изготовления фотодетектора на основе эпитаксиальных структур InGaAs/InP, чувствительного в ИК диапазоне (см. заявку US 20140264275 A1, МПК H01L 31/02, опубликована 18.09.2014). Фотодетектор включает: подложку, канал транзистора, исток транзистора и сток транзистора, расположенные на фронтальной поверхности структуры; исток и сток транзистора, расположенные на обратной стороне канала транзистора, барьер, расположенный на канале, и светочувствительный слой, расположенный на барьере. Светочувствительный слой необходим для поглощения света. При падении света на светочувствительный слой, сопротивление канала проводимости меняется при туннелировании носителей из светочувствительного слоя в канал.

Недостатком данного способа изготовления фотодетектора является использование материалов InGaAs/InP, с отсутствием чувствительности к излучению на длине волны 810-860 нм.

Известен способ изготовления фотодетектора на основе эпитаксиальных структур GaAs/AlxGa1-xAs, чувствительных к ИК-излучению (см. патент RU 2022411, МПК H01L 31/101, опубликован 30.10.1994). Данный фотодетектор на основе полупроводниковой структуры с квантовыми ямами включает подложку из полуизолирующего GaAs с буферным слоем GaAs, первый контактный слой n-GaAs, систему чередующихся слоев AlxGa1-xAs и GaAs, причем в один из материалов системы чередующихся слоев введена примесь кремния до уровня легирования 2*1018 см-3, и второй контактный слой n-GaAs, примесь кремния введена в слой AlxGai1-xAs в виде моноатомного слоя, расположенного на расстоянии, не большем Дебаевской длины экранирования от одной из границ раздела чередующихся слоев.

Недостатком известного фотодетектора является значительное затенение фоточувствительной поверхности фотодетектора и невысокое значение КПД преобразования излучения.

Известен способ изготовления фотодетектора на основе эпитаксиальных структур GaAs/AlGaAs (см. патент RU 2547004, МПК H01L 31/18, опубликован 10.04.2015). Способ изготовления фотодетектора на основе GaAs включает последовательное выращивание методом жидкофазной эпитаксии на подложке n-GaAs буферного слоя n-GaAs, базового слоя n-GaAs, эмиттерного слоя p-GaAs и слоя p-AlGaAs с содержанием Al в твердой фазе от 30-40 ат. % в начале роста слоя и при содержании Al в твердой фазе 10-15 ат. % в приповерхностной области слоя, а также осаждение тыльного контакта и лицевого контакта. На лицевую поверхность подложки наносят антиотражающее покрытие. Способ позволяет с меньшими затратами совместить в одном слое функции широкозонного окна и контактного слоя.

Недостатком данного способа изготовления фотодетектора является отсутствие процесса создания шин фронтального омического контакта, что приводит к уменьшению КПД и мощности фотодетектора. Также недостатком является отсутствие фронтального контакта к подложке, что приводит к снижению быстродействия и КПД СВЧ модуля на основе этих фотодетекторов.

Известен способ изготовления фотодетектора на основе InGaAs, работающего на длине волны 1,55 мкм с диапазоном перестройки 44 нм (C. Dhanavantri, H. Halbritter, O.P. Daga, J.P. Pachauh, F. Riemenschneider, P. Meissner, and B.R. Singh, Fabrication of PIN diodes for WDM tunable and wavelength selective receivers, in Proc. 7th Conference on Optoelectronics, Fiber Optics & Photonics (Photonics), Cochin, Indien, December 2004, p. 340). Фотодетектор включает мезу с чувствительной площадкой, сформированной на поверхности полупроводниковой гетероструктуры на основе А3В5, омические контакты. На первой стадии с фронтальной поверхности гетероструктуры вокруг чувствительной площадки мезы удалялись все слои до контактного n+-In0.53Ga0.47As слоя. На второй стадии ступенчатого травления с одной стороны от мезы удалялись все слои до подложки InP. Омические контакты р+ и n+ выполнены фронтальными. С противоположных сторон мезы на фронтальной поверхности сформированы две контактные площадки: n+-Ti/Pt/Au - на контактном n+-In0.53Ga-As слое, p+-Pd/AuGe/Au - на поверхности подложки InP. Омический контакт p+-Pd/AuGe/Au, усиленный электролитическим золотом толщиной 2,5 мкм, выполнен в мостиковой конфигурации. Один конец мостика в виде кольца с диаметром, близким к диаметру мезы, лежит на чувствительной площадке. Другой конец мостика соединен с контактной р+ площадкой на поверхности подложки InP.

Недостатком данного способа изготовления фотодетектора является использование материалов InGaAs/InP, с отсутствием чувствительности к излучению на длине волны 810-860 нм. Также недостатком фотодетектора является низкая надежность. Надежность конструкции фотодетектора снижается при механических напряжениях, возникающих из-за изгиба мостикового фронтального контакта.

Известен способ изготовления оптоволоконного модуля (см. патент RU 2610447, МПК H04B 10/80, опубликован 13.02.2017). Способ включает создание модуля, содержащего один или более волоконно-оптических функциональных блоков телекоммуникационной сети связи, имеющих возможность оптического подключения, посредством оптического волокна, к центральному узлу сети связи, для приема телекоммуникационных сигналов, предназначенных для одного или более абонентов, по оптическому волокну, от центрального узла сети связи. Модуль дополнительно содержит приемопередающее устройство, имеющее возможность формировать первые оптические сигналы, используя электрическую энергию, и имеющее возможность принимать ответные оптические сигналы от центрального узла сети связи, имеющее возможность оптического подключения к оптическому волокну таким образом, что первые оптические сигналы могут быть переданы по оптическому волокну на центральный узел сети связи, и таким образом, что ответные оптические сигналы могут быть переданы по оптическому волокну от центрального узла сети связи на приемопередающее устройство.

Недостатком известного способа изготовления оптоволоконного модуля является отсутствие возможности работы СВЧ фото детекторов в данной конструкции модуля с мощными оптическими сигналами, что соответственно приводит к снижению быстродействия модуля при работе с мощными импульсными сигналами.

Известен способ изготовления фотодетектора на основе полупроводниковых соединений А3В5, чувствительного в диапазоне 900-2400 нм (см. патент RU 2469438, МПК H01L 31/0224, опубликован 10.12.2012), принятый за прототип. Способ включает создание фоточувствительной области на основе полупроводниковых соединений А3В5 на подложке GaSb, формирование двух мез на гетероструктуре, создание тыльного и фронтального омических контактов к гетероструктуре, тыльный контакт выполнен сплошным и нанесен на подложку, а фронтальный выполнен в виде соединяющего мезы мостика, электрически изолированного от одной из мез слоем анодного окисла с нанесенным на этот слой по меньшей мере одним слоем диэлектрика. Техническим результатом при использовании - предлагаемого изобретения является увеличение эффективности фотодиода за счет одновременного увеличения быстродействия и обнаружительной способности прибора.

Недостатком данного способа изготовления фотодетектора является использование материалов InGaAsSb/GaSb (рабочий диапазон длин волн 900-2400 нм), с отсутствием чувствительности к излучению на длине волны 810-860 нм. Также недостатком является отсутствие фронтального контакта к подложке, что приводит к снижению быстродействия прибора, к возникновению дополнительных потерь на паразитных индуктивности и емкости, а также к снижению КПД фотодетекторов и быстродействия мощного оптоволоконного СВЧ модуля на основе этих фотодетекторов.

Задачей настоящего изобретения является разработка мощных СВЧ фотодетекторов с подводимым по оптоволокнам лазерным излучением, которые бы имели увеличенную рабочую мощность, сниженную величину коэффициента отражения излучения, увеличенное быстродействие, за счет снижения потерь на паразитных емкости и индуктивности, и соответственно высокий КПД преобразования излучения и быстродействие мощного оптоволоконного СВЧ модуля на их основе. Также задачей является увеличение эффективности преобразования оптической мощности фотодетекторов за счет коммутирования их в оптоволоконный модуль.

Поставленная задача достигается тем, что способ изготовления фотодетекторов мощного оптоволоконного СВЧ модуля включает создание на полупроводниковой подложке GaAs n-типа фоточувствительной области на основе эпитаксиальных структур GaAs/AlxGa1-xAs и широкозонного окна из AlxGa1-xAs, чувствительных к излучению в диапазоне длин волн 810-860 нм, создание контактного слоя из GaAs р-типа, формирование контактной площадки фронтального омического контакта на поверхности контактного слоя, создание сплошного тыльного омического контакта на тыльной поверхности подложки GaAs. Новым в способе является то, что на фоточувствительной области формируют антиотражающее покрытие, создают шины фронтального омического контакта шириной 4-8 мкм, формируют меза-структуру вне контактной площадки и фоточувствительной области на расстоянии 1-5 мкм от контактной площадки, создают дополнительный фронтальный контакт вне меза-структуры на фронтальной поверхности полупроводниковой подложки, проводят монтаж фотодетекторов на керамической плате из AlN, выполняют монтаж керамической платы на теплоотводящем основание модуля, выполняют монтаж оптоволокон и корпусирование СВЧ модуля.

Шины фронтального омического контакта могут быть выполнены путем электрохимического осаждения трехслойного покрытия, состоящего из нижнего слоя из серебра толщиной (2-5) мкм, промежуточного слоя из никеля толщиной (0,1-0,2) мкм и верхнего слоя из золота толщиной (0,1-0,2) мкм.

Антиотражающее покрытие формируют на фоточувствительной поверхности фотодетектора для увеличения степени поглощения падающего излучения.

Шины фронтального омического контакта на фоточувствительной области создают для увеличения рабочей мощности фотодетектора. Ширина шин 4-8 мкм обусловлена тем, что при ширине шин более 8 мкм происходит существенное затенение фоточувствительной области фотодетектора. Минимальная ширина шин 4 мкм обусловлена технологическими особенностями процессов изготовления фотодетектора. Толщина нижнего слоя серебра 2-5 мкм обусловлена тем, что при толщине менее 2 мкм происходит снижение проводимости омического контакта, толщина более 5 мкм технологически нецелесообразна и приводит к увеличению степени затенения фоточувствительной области ФД. Толщина среднего слоя никеля 0,1-0,2 мкм обусловлена тем, что при толщине менее 0,1 мкм снижается барьерная функция слоя, толщина более 0,2 мкм технологически нецелесообразна. Толщина верхнего слоя золота 0,1-0,2 мкм необходима для проведения последующего монтажа ФД, также за счет высокой стойкости слой золота выполняет защитную функцию.

Создание тыльного омического контакта проводят для последующего монтажа фотодетектора и обеспечения теплоотвода.

Создание меза-структуры вне контактной площадки и фоточувствительной области на расстоянии не более 5 мкм от контактной площадки осуществляют для снижения рабочей площади фотодетектора, соответственно для снижения емкости фотодетектора и увеличения быстродействия оптоволоконного СВЧ модуля на основе созданных фотодетекторов.

Создание дополнительного фронтального контакта вне меза-структуры на фронтальной поверхности полупроводниковой подложки осуществляют для увеличения быстродействия и КПД фотодетектора и оптоволоконного СВЧ модуля за счет снижения потерь на сопротивлении структуры, паразитных индуктивности и емкости, уменьшения межэлементного расстояния, уменьшения рабочей толщины полупроводниковой подложки GaAs, улучшения теплоотвода от рабочей области СВЧ ФД.

Последовательное соединение фотодетекторов в мощный оптоволоконный СВЧ модуль осуществляется для повышения выходной мощности СВЧ фотодетектора. Для этого необходимо обеспечить согласование мощности фотодетектора в точке оптимальной нагрузки в режиме генерации электрического импульса с сопротивлением внешней нагрузки. Коммутация СВЧ фотодетектора, работающего в импульсном режиме, с СВЧ излучателем осуществляется микрополосковой линией, при этом модуль фотодетекторов должен быть согласован с сопротивлением внешней нагрузки. Оптимальным сопротивлением нагрузки является величина 50 Ом. При работе в оптимальном режиме, близком к максимальной мощности в точке оптимальной нагрузки, напряжение вырабатываемое одним фотодетектором составляет 0,95-1,05 В. Таким образом максимальная вырабатываемая мощность в таком режиме составляет порядка 0,02 Вт. Величина выходной пиковой мощности фотодетектора возрастает пропорционально квадрату напряжения и при последовательном соединении 16 фотодетекторов в оптоволоконный модуль, выходная мощность оптоволоконного СВЧ модуля превышает 5 Вт. Соответственно для увеличения выходной мощности фотодетектора проводят последовательное соединение ряда фотодетекторов на керамической плате.

Использование для монтажа фотодетекторов керамической платы из AlN, выполняющей роль теплоотвода, обусловлено тем, что AlN является изолятором и обладает высокой теплопроводностью.

Заявляемое техническое решение поясняется чертежами, где: на фиг. 1 приведено схематическое изображение СВЧ фотодетектора, вид сверху;

на фиг. 2 изображена схема СВЧ фотодетектора, вид сбоку;

на фиг. 3 изображена схема мощного оптоволоконного СВЧ модуля;

на фиг. 1-3 указаны: 1 - фотодетектор, 2 - полупроводниковая подложка, 3 - фоточувствительная область, 4 - эпитаксиальная структура GaAs/AlxGa1-xAs, 5 - широкозонное окно из AlxGa1-xAs, 6 - контактный слой из GaAs р-типа, 7 - фронтальный омический контакт к р-типу GaAs, 8 - антиотражающее покрытие, 9 - контактная площадка фронтального омического контакта, 10 - шины фронтального омического контакта, 11 - тыльный омический контакт к n-типу GaAs, 12 - меза-структура, 13 -диэлектрическое покрытие, 14 - фронтальный омический контакт к подложке n-типа GaAs, 15 - тонкий слой из контактных материалов, 16 - нижний слой из серебра омического контакта, 17 - промежуточный слой из никеля омического контакта, 18 - слой из золота омического контакта, 19 - керамическая плата A1N фотодетекторного СВЧ модуля, 20 - золотая проволока, обеспечивающая последовательное соединение фотодетекторов в СВЧ модуль, 21 - теплоотводящее основание СВЧ модуля, 22 - оптоволокна в СВЧ модуле, 23 - корпус СВЧ модуля;

на фиг. 4 приведена зависимость КПД фотодетектора от мощности лазерного излучения для ФД с диаметром фоточувствительной области 500 мкм при импульсном (24) и постоянном (25) лазерном излучении (ЛИ);

на фиг. 5 приведена зависимость КПД фотодетектора от мощности лазерного излучения для ФД с диаметром фоточувствительной области 500 мкм при различных вариантах контактирования для измерения вольт-амперных характеристик: 26 - "р" фронтальный омический контакт (7), "n" - тыльный омический контакт (11); 27 - "р" фронтальный омический контакт (7), "n" - фронтальный омический контакт к подложке GaAs (14).

Диаметр фоточувствительной поверхности фотодетектора, изображенного на фиг. 1, составляет 500 мкм. На фоточувствительной поверхности расположено девять шин 10 фронтального омического контакта 7 шириной 5 мкм с шагом 50 мкм. Коэффициент затенения фоточувствительной поверхности фотодетектора контактными шинами составляет 9%.

Заявляемый способ изготовления мощного СВЧ фотодетектора 1 проводят в несколько стадий. На полупроводниковой подложке GaAs n-типа 2 создают фоточувствительную область 3 (см. фиг 1-2) на основе эпитаксиальных структур GaAs/AlxGa1-xAs 4 и широкозонного окна 5 из AlxGa1-xAs, создают контактный слой 6 из GaAs p-типа. Проводят локальное травление контактного слоя 6 в местах свободных от фронтального омического контакта 7. Далее формируют антиотражающее покрытие 8 на фоточувствительной области 3. Создают фронтальный омический контакт 7, состоящий из контактной площадки 9 и шин фронтального омического контакта 10 на поверхности контактного слоя 6. Затем создают сплошной тыльный омический контакт 11 на тыльной поверхности подложки 2.

Далее осуществляют формирование меза-структуры 12 вне контактной площадки 9 и фоточувствительной области 3 на расстоянии не более 5 мкм от контактной площадки 9 методом жидкостного химического травления. Проводят пассивацию боковой поверхности меза-структуры путем осаждения слоя диэлектрического покрытия 13.

Затем создают дополнительный фронтальный контакт 14 вне меза-структуры 12 на фронтальной поверхности полупроводниковой подложки 2.

Изготовление двух фронтальных 7 и 14 и сплошного тыльного 11 омических контактов осуществляют путем напыления тонких слоев контактных материалов 15, толщиной 0,2-0,4 мкм, вжигания при температуре 360-370°C в течение 10-60 сек. и электрохимического осаждения толстого слоя серебра 16 толщиной 2-5 мкм, промежуточного слоя никеля 17 толщиной 0,1-0,2 мкм и верхнего слоя золота 18 толщиной 0,1-0,2 мкм.

Затем проводят монтаж фотодетекторов 1 на керамическую плату A1N 19 (см. фиг. 3), фотодетекторы в оптоволоконном СВЧ модуле соединены последовательно золотой проволокой 20 при помощи ультразвуковой сварки. Далее проводят монтаж платы 19 на теплоотводящем основании СВЧ модуля 21. Далее выполняют монтаж оптоволокон 22 непосредственно над фоточувствительными областями фотодетекторов и проводят корпусирование СВЧ модуля 23.

Пример 1.

Были получены мощные СВЧ фотодетекторы в несколько стадий. На полупроводниковой подложке n-GaAs создана фоточувствительная область на основе эпитаксиальных структур GaAs/AlxGa1-xAs и широкозонного окна из AlxGa1-xAs. На поверхности широкозонного окна сформирован контактный слой из GaAs p-типа. Проведено локальное травление контактного слоя в местах свободных от фронтального омического контакта. Проведено формирование антиотражающего покрытия на поверхности фоточувствительной области путем осаждения слоя Ta2O5. Создан фронтальный омический контакт p-типа, состоящий из контактной площадки и шин фронтального омического контакта на поверхности контактного слоя GaAs путем напыления слоев Ag(Mn)/Ni/Au толщиной 0,2 мкм. Затем создан сплошной тыльный омический контакт на тыльной поверхности подложки GaAs путем напыления слоев Au(Ge)/Ni/Au толщиной 0,2 мкм. Проведено вжигание омических контактов при температуре 360°C в течение 10 с. Выполнено электрохимическое осаждение толстого слоя серебра толщиной 2 мкм, промежуточного слоя никеля толщиной 0,1 мкм и верхнего слоя золота толщиной 0,1 мкм на поверхность напыленных слоев контактных материалов фронтального и тыльного омических контактов.

Далее осуществлено формирование меза-структуры вне контактной площадки и фоточувствительной области на расстоянии 5 мкм от контактной площадки методом жидкостного химического травления в травителе на основе бихромата калия и бромоводорода. Проведена пассивация боковой поверхности меза-структуры путем осаждения слоя диэлектрического покрытия Si3N4.

Затем создан дополнительный фронтальный контакт n-типа вне меза-структуры на фронтальной поверхности полупроводниковой подложки GaAs путем напыления слоев Au(Ge)/Ni/Au толщиной 0,2. Проведено вжигание омических контактов при температуре 360°C в течение 10 с. Выполнено электрохимическое осаждение толстого слоя серебра толщиной 2 мкм, промежуточного слоя никеля толщиной 0,1 мкм и верхнего слоя золота толщиной 0,1 мкм на поверхность напыленных слоев контактных материалов фронтального омического контакта к подложке n-типа GaAs.

Затем проведен монтаж фотодетекторов на керамическую плату AlN, фотодетекторы в оптоволоконном СВЧ модуле соединены последовательно золотой проволокой при помощи ультразвуковой сварки. Проведен монтаж платы на теплоотводящее основание СВЧ модуля. Далее выполнен монтаж оптоволокон непосредственно над фоточувствительными областями фотодетекторов и проведено корпусирование СВЧ модуля.

Пример 2.

Были получены фотодетекторы способом, приведенным в примере 1 со следующими отличительными признаками. Антиотражающее покрытие на поверхности фоточувствительной области выполнено путем осаждения двуслойного покрытия TiOx/SiO2. Фронтальный омический контакт p-типа, выполнен путем напыления слоев Cr/Au толщиной 0,3 мкм. Затем создан сплошной тыльный омический контакт на тыльной поверхности подложки GaAs путем напыления слоев Au(Ge)/Ni/Ag толщиной 0,4 мкм. Вжигание омических контактов проведено при температуре 370°C в течение 30 с. Выполнено электрохимическое осаждение толстого слоя серебра толщиной 3 мкм, промежуточного слоя никеля толщиной 0,15 мкм и верхнего слоя золота толщиной 0,15 мкм на поверхность напыленных слоев контактных материалов фронтального и тыльного омических контактов.

Осуществлено формирование меза-структуры вне контактной площадки и фоточувствительной области на расстоянии 4 мкм от контактной площадки методом жидкостного химического травления в травителе на основе бихромата калия и бромоводорода.

Затем создан дополнительный фронтальный контакт n-типа вне меза-структуры на фронтальной поверхности полупроводниковой подложки GaAs путем напыления слоев Au(Ge)/Ni/Ag толщиной 0,4. Проведено вжигание омических контактов при температуре 370°C в течение 10 с. Выполнено электрохимическое осаждение толстого слоя серебра толщиной 4 мкм, промежуточного слоя никеля толщиной 0,2 мкм и верхнего слоя золота толщиной 0,1 мкм на поверхность напыленных слоев контактных материалов фронтального омического контакта к подложке n-типа GaAs.

Пример 3.

Были получены фотодетекторы способом, приведенным в примере 1 со следующими отличительными признаками. Антиотражающее покрытие на поверхности фоточувствительной области выполнено путем осаждения двуслойного покрытия TiOx/SiO2. Фронтальный омический контакт p-типа, выполнен путем напыления слоев Ag(Mn)/Ni/Au толщиной 0,4 мкм. Затем создан сплошной тыльный омический контакт на тыльной поверхности подложки GaAs путем напыления слоев Au(Ge)/Pt/Au толщиной 0,3 мкм. Вжигание омических контактов проведено при температуре 370°C в течение 60 с. Выполнено электрохимическое осаждение толстого слоя серебра толщиной 5 мкм, промежуточного слоя никеля толщиной 0,2 мкм и верхнего слоя золота толщиной 0,2 мкм на поверхность напыленных слоев контактных материалов фронтального и тыльного омических контактов.

Осуществлено формирование меза-структуры вне контактной площадки и фоточувствительной области на расстоянии 1 мкм от контактной площадки методом жидкостного химического травления в травителе на основе бихромата калия и бромоводорода.

Затем создан дополнительный фронтальный контакт n-типа вне меза-структуры на фронтальной поверхности полупроводниковой подложки GaAs путем напыления слоев Au(Ge)/Pt/Au толщиной 0,3 мкм. Проведено вжигание омических контактов при температуре 370°C в течение 60 с. Выполнено электрохимическое осаждение толстого слоя серебра толщиной 5 мкм, промежуточного слоя никеля толщиной 0,2 мкм и верхнего слоя золота толщиной 0,2 мкм на поверхность напыленных слоев контактных материалов фронтального омического контакта к подложке n-типа GaAs.

Пример 4.

Были получены фотодетекторы способом, приведенным в примере 1 со следующими отличительными признаками. Антиотражающее покрытие на поверхности фоточувствительной области выполнено путем осаждения двуслойного покрытия TiOx/SiO2. Фронтальный омический контакт p-типа, выполнен путем напыления слоев Ag(Mn)/Ni/Au толщиной 0,3 мкм. Затем создан сплошной тыльный омический контакт на тыльной поверхности подложки GaAs путем напыления слоев Au(Ge)/Ni/Au толщиной 0,4 мкм. Вжигание омических контактов проведено при температуре 360°C в течение 60 с. Выполнено электрохимическое осаждение толстого слоя серебра толщиной 4 мкм, промежуточного слоя никеля толщиной 0,1 мкм и верхнего слоя золота толщиной 0,2 мкм на поверхность напыленных слоев контактных материалов фронтального и тыльного омических контактов.

Осуществлено формирование меза-структуры вне контактной площадки и фоточувствительной области на расстоянии 3 мкм от контактной площадки методом жидкостного химического травления в травителе на основе бихромата калия и бромоводорода.

Затем создан дополнительный фронтальный контакт n-типа вне меза-структуры на фронтальной поверхности полупроводниковой подложки GaAs путем напыления слоев Au(Ge)/Ni/Au толщиной 0,4. Проведено вжигание омических контактов при температуре 360°C в течение 60 с. Выполнено электрохимическое осаждение толстого слоя серебра толщиной 4 мкм, промежуточного слоя никеля толщиной 0,1 мкм и верхнего слоя золота толщиной 0,2 мкм на поверхность напыленных слоев контактных материалов фронтального омического контакта к подложке n-типа GaAs.

Результатом процесса изготовления фотодетекторов мощного оптоволоконного СВЧ модуля стало снижение отражения падающего излучения от фоточувствительной поверхности фотодетектора до 1-2% за счет создания антиотражающего покрытия, увеличение быстродействия фотодетектора, за счет снижения потерь на паразитных емкости и индуктивности в СВЧ модуле, увеличение рабочей мощности фотодетектора, увеличение КПД на 1-2% за счет создания фронтального контакта к подложке GaAs. Достигнуто повышение выходной мощности СВЧ фотодетектора при комбинировании их в оптоволоконный СВЧ модуль. При последовательном соединении 16 СВЧ фотодетекторов величина выходной мощности превышает 5 Вт на длине волны 810 нм подводимого по оптоволокнам лазерного излучения.


СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОДЕТЕКТОРОВ МОЩНОГО ОПТОВОЛОКОННОГО СВЧ МОДУЛЯ
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОДЕТЕКТОРОВ МОЩНОГО ОПТОВОЛОКОННОГО СВЧ МОДУЛЯ
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОДЕТЕКТОРОВ МОЩНОГО ОПТОВОЛОКОННОГО СВЧ МОДУЛЯ
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОДЕТЕКТОРОВ МОЩНОГО ОПТОВОЛОКОННОГО СВЧ МОДУЛЯ
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОДЕТЕКТОРОВ МОЩНОГО ОПТОВОЛОКОННОГО СВЧ МОДУЛЯ
Источник поступления информации: Роспатент

Показаны записи 101-110 из 174.
02.10.2019
№219.017.cebb

Способ получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната с оксидами редкоземельных элементов

Изобретение относится к области получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната, легированных редкоземельными элементами для производства керамики, используемой в качестве активной среды твердотельного лазера, термостойкого высокотемпературного...
Тип: Изобретение
Номер охранного документа: 0002700062
Дата охранного документа: 12.09.2019
10.10.2019
№219.017.d411

Способ реализации и устройство чувствительного элемента для контроля параметров движения в составе многоуровневого многокристального модуля

Использование: для изготовлении узла пьезоэлектрического чувствительного элемента акселерометра. Сущность изобретения заключается в том, что устройство представляет собой многокристальный модуль, включающий несколько плат с размещенными на них электрическими элементами и интерпозерами, при этом...
Тип: Изобретение
Номер охранного документа: 0002702401
Дата охранного документа: 08.10.2019
12.10.2019
№219.017.d541

Многокристальный модуль

Изобретение относится к электронной технике и может быть использовано при изготовлении многоуровневых многокристальных модулей в трехмерной сборке с повышенными эксплуатационными характеристиками. Многоуровневый многокристальный модуль содержит по меньшей мере две монтажные платы и две...
Тип: Изобретение
Номер охранного документа: 0002702705
Дата охранного документа: 09.10.2019
18.10.2019
№219.017.d767

Термоэмиссионный преобразователь с пассивным охлаждением для бортового источника электроэнергии высокоскоростного летательного аппарата с прямоточным воздушно-реактивным двигателем

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям (ТЭП), которые могут использоваться в составе бортовых источников электрической энергии для высокоскоростных летательных аппаратов (ВЛА) с прямоточными...
Тип: Изобретение
Номер охранного документа: 0002703272
Дата охранного документа: 16.10.2019
18.10.2019
№219.017.d79f

Пакетная сеть для мультипроцессорных систем и способ коммутации с использованием такой сети

Изобретение относится к области вычислительной техники. Техническим результатом является уменьшение задержки при передаче данных между ядрами и сокращение аппаратных ресурсов, а также расширение функциональных возможностей в части реализации прямого доступа в память любого абонента. Он...
Тип: Изобретение
Номер охранного документа: 0002703231
Дата охранного документа: 15.10.2019
24.10.2019
№219.017.d951

Способ электрического и механического соединения плат и интерпозеров в 3d электронных сборках

Изобретение относится к электронной технике и может быть использовано при изготовлении 3D сборок с гибридными электронными компонентами. Сущность: способ электрического и механического соединения плат в 3D электронных сборках заключается в реализации вертикальных линий коммутации за счет пайки...
Тип: Изобретение
Номер охранного документа: 0002703831
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.d975

Способ изготовления массивов регулярных субмикронных отверстий в тонких металлических пленках на подложках

Изобретение относится к области микро- и нанотехнологий и может быть использовано для изготовления упорядоченного массива субмикронных отверстий в тонких металлических пленках, предназначенных для создания устройств микроэлектроники, фотоники, наноплазмоники, а также квантовых вычислительных...
Тип: Изобретение
Номер охранного документа: 0002703773
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.da22

Устройство для возбуждения далеко бегущей плазмонной моды плазмонного волновода

Изобретение относится к плазмонной интегральной оптике и может быть использовано при конструировании интегральных схем различного назначения на основе плазмонных волноводов с далеко бегущей плазмонной модой. Технический результат изобретения - обеспечение эффективного возбуждения падающим...
Тип: Изобретение
Номер охранного документа: 0002703833
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.da4f

Средство для повышения работоспособности организма на основе α-циклодекстрина и его применение

Изобретение относится к фармацевтической промышленности, а именно к средству для повышения работоспособности организма. Средство для повышения работоспособности организма млекопитающего, которое содержит первый компонент, представляющий собой лиофилизированный порошок на основе...
Тип: Изобретение
Номер охранного документа: 0002704024
Дата охранного документа: 23.10.2019
26.10.2019
№219.017.dad7

Термоэмиссионный преобразователь для термоэмиссионной тепловой защиты кромки малого радиуса закругления крыла высокоскоростного летательного аппарата

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к использованию термоэмиссионных преобразователей (ТЭП) в составе систем тепловой защиты высокоскоростных летательных аппаратов (ВЛА). Согласно изобретению в термоэмиссионном...
Тип: Изобретение
Номер охранного документа: 0002704106
Дата охранного документа: 24.10.2019
Показаны записи 61-67 из 67.
20.04.2023
№223.018.4d1e

Фотоэлектрический преобразователь

Изобретение относится к солнечной энергетике, в частности, к фотоэлектрическим преобразователям, и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую. Фотоэлектрический преобразователь включает подложку, фоточувствительную АВ гетероструктуру...
Тип: Изобретение
Номер охранного документа: 0002756171
Дата охранного документа: 28.09.2021
16.05.2023
№223.018.606e

Концентраторная солнечная энергетическая установка

Концентраторная солнечная энергетическая установка содержит основание (1) с размещенной на нем солнечной батареей (2), набранной из рядов концентраторных фотоэлектрических модулей (3) с корпусами (4) прямоугольной или квадратной формы с отбортовками (5) для прикрепления силиконом-герметиком (6)...
Тип: Изобретение
Номер охранного документа: 0002740437
Дата охранного документа: 14.01.2021
16.05.2023
№223.018.606f

Концентраторная солнечная энергетическая установка

Концентраторная солнечная энергетическая установка содержит основание (1) с размещенной на нем солнечной батареей (2), набранной из рядов концентраторных фотоэлектрических модулей (3) с корпусами (4) прямоугольной или квадратной формы с отбортовками (5) для прикрепления силиконом-герметиком (6)...
Тип: Изобретение
Номер охранного документа: 0002740437
Дата охранного документа: 14.01.2021
16.05.2023
№223.018.60a4

Мощный концентраторный фотоэлектрический модуль

Концентраторный фотоэлектрический модуль содержит монолитную фронтальную панель (3), боковые стенки (1) и тыльную панель (2), по меньшей мере один первичный оптический концентратор (4), по меньшей мере один вторичный оптический концентратор в форме фокона (9), меньшим основанием обращенным к...
Тип: Изобретение
Номер охранного документа: 0002740738
Дата охранного документа: 20.01.2021
29.05.2023
№223.018.727a

Инфракрасный светодиод

Изобретение относится к электронной технике, в частности к полупроводниковым приборам. Инфракрасный светодиод включает световыводящий слой (1), активную область (3), выполненную на основе нескольких квантовых ям InGaAs, окруженную барьерными широкозонными слоями (2, 4), брегговский отражатель...
Тип: Изобретение
Номер охранного документа: 0002796327
Дата охранного документа: 22.05.2023
16.06.2023
№223.018.7c95

Способ изготовления фотоэлектрического концентраторного модуля

Способ изготовления фотоэлектрического концентраторного модуля включает формирование множества солнечных элементов, формирование вторичных концентраторов солнечного излучения, расположенных соосно над солнечными элементами, формирование панели первичных концентраторов, расположенных соосно над...
Тип: Изобретение
Номер охранного документа: 0002740862
Дата охранного документа: 21.01.2021
17.06.2023
№223.018.8105

Солнечный фотоэлектрический модуль

Солнечный фотоэлектрический модуль включает, по меньшей мере, два субмодуля (1), каждый субмодуль (1) содержит зеркальный параболический концентратор (5) солнечного излучения и солнечный элемент (6), расположенный в фокусе зеркального параболического концентратора (5). Зеркальный параболический...
Тип: Изобретение
Номер охранного документа: 0002763386
Дата охранного документа: 28.12.2021
+ добавить свой РИД