×
19.12.2018
218.016.a881

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОЛУФАБРИКАТА ИЗ СПЛАВА НА ОСНОВЕ ЦИРКОНИЯ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к способам получения полуфабриката из сплава на основе циркония, и может быть использовано для производства мишеней для реакционного магнетронного распыления в окислительной среде с плазмохимическим осаждением керамических слоев на основе оксидов, а также для изготовления деталей конструкций и экранов защиты от рентгеновского излучения. Способ включает размещение тигля из оксида циркония или иттрия в вакуумной индукционной печи, загрузку в тигель шихтовых материалов в виде циркония и по меньшей мере одного редкоземельного металла в количестве от 4 до 21 мас.%, вакуумную индукционную выплавку сплава с формированием отливки в среде аргона, получение слитка с последующей горячей прокаткой. Выплавку отливки производят при температуре 1450-1950°C, которую подвергают нагреву в процессе одно-четырехстадийного переплава вакуумным дуговым методом при силе тока от 1,8 до 3,6 кА в течение от 5 до 12 мин, а затем полученный слиток подвергают ковке при температуре 950-1150°C, горячей прокатке при температуре 900-1050°C и отжигу при температуре 740-760°C. В качестве редкоземельных металлов используют иттрий, гадолиний, неодим, самарий, лантан, празеодим, диспрозий. Изобретение позволяет получить полуфабрикат из сплава на основе циркония с равномерным распределением РЗМ, пониженной пористостью от 0,4 до 1,9%, а также увеличить коэффициент использования металлов. 2 н. и 2 з.п. ф-лы, 5 пр.

Изобретение относится к области металлургии, а именно к способам получения полуфабриката из сплава на основе циркония и может быть использовано для производства мишеней для реакционного магнетронного распыления в окислительной среде с плазмохимическим осаждением керамических слоев на основе оксидов, а также для изготовления деталей конструкций и экранов защиты от рентгеновского излучения.

Актуальность вопроса обусловлена необходимостью повышения ресурса рабочих лопаток турбины высокого давления, ограниченного стойкостью жаростойкого защитного покрытия и высокими рабочими температурами, достигающими значений 1100-1150°C. Теплозащитное покрытие (ТЗП), состоящее из металлического жаростойкого слоя (подслоя) и внешнего керамического слоя, позволит снизить температуру тела лопатки на 100°C, что обеспечивает увеличение ресурса покрытия и лопатки турбины более чем в 2 раза. Основным направлением в данной области является создание ТЗП с внешним керамическим слоем на основе стабилизированного диоксида циркония, наносимого электронно-лучевым способом испарения керамики на основе стабилизированного диоксида циркония, а также процессы высокоскоростного и атмосферного плазменного напыления. Для получения керамического слоя ТЗП могут использовать магнетронную установку типа УОКС, на которой реализован способ среднечастотного распыления материала мишеней в окислительной среде и плазмохимического осаждения керамических слоев на основе оксидов редкоземельных металлов (РЗМ).

Из уровня техники (Патент РФ №2613005, опубликован 14.03.2017 г.) известно керамическое теплозащитное покрытие, которое наносят методом магнетронного распыления. Известное изобретение не обеспечивает требуемого качества керамического слоя ТЗП из-за сильной ликвации элементов в материале мишени. Из-за высокой активности редкоземельных металлов в жидком состоянии получение качественных мишеней с равномерным распределением в них легирующих редкоземельных металлов требует разработки специальных вакуумных технологий их выплавки и передела с использованием методов горячей деформации.

Аналогом предлагаемого изобретения может быть описанный в изобретении (Патент РФ 2596696, опубликован 10.09.2016 г.) сплав на основе циркония и способ его получения в условиях низкого вакуума. Способ получения сплава на основе циркония характеризуется тем, что осуществляют загрузку в тигель из оксида циркония меди (20-25% ат.), железа (5% ат.), алюминия (10% ат.), самария (0,5% ат.) и циркония чистотой 99,9%, размещают тигель в индукционной печи и осуществляют плавку при остаточном давлении 10-2-10-3 торр с последующей разливкой расплава при температуре 1100-1200°C в медную изложницу в среде аргона. К недостаткам описанного способа следует отнести невозможность выплавки сплавов на основе циркония с относительно высоким содержанием редкоземельных элементов, в виду низкой стойкости тиглей из оксида циркония к воздействию расплавов редкоземельных металлов.

Еще одним аналогом предлагаемого изобретения является описанный в Патенте РФ 2141540, опубликован 20.11.1999 г. сплав на основе циркония с содержанием в своем составе следующих легирующих элементов, % масс: ниобий 0,5-3,0, олово 0,5-2,0, железо 0,3-1,0, хром 0,002-0,2, углерод 0,003-0,04, кислород 0,04-0,15, кремний 0,002-0,15, а также одного из группы следующих элементов: вольфрам, молибден, ванадий в количестве 0,001-0,4. Слитки из сплава указанного выше состава изготавливают методом вакуумной дуговой плавки с последующей ковкой при температуре от 1070°C до 900°C, нагревом до температуры 1050°C и закалкой в воде. Далее отливки отжигали при температуре 620°C и подвергали прессованию при температуре 620°C, после чего проводили повторную закалку при температуре 950°C со скоростью 500°C/с и отжиг при температуре 425°C. Окончательный отжиг при температуре 580°C проводили после холодной прокатки. К недостаткам описанного способа получения сплава следует отнести длительный энергозатратный и многоступенчатый технологический процесс его изготовления.

Наиболее близким аналогом предлагаемого способа является способ изготовления полуфабриката из сплава на основе циркония для мишеней (CN 101629276, опубликован 20.01.2010 г.), в котором для получения сплава проводят вакуумную индукционную выплавку в среде инертного газа, а именно аргона. Отливку формируют в печи подогрева форм при температуре, позволяющей сформировать отливку из сплава на основе циркония, с последующим приданием формы мишени посредством горячей накатки, закалки и отжига для снятия напряжений. Содержание иттрия в сплаве на основе циркония составляет от 5 до 20% масс., при относительном отклонении его содержания в сплаве ±1% масс. и плотности полученного сплава на уровне 98% от теоритически достижимой, при размере зерен на уровне 5 класса. К недостаткам описанного способа изготовления полуфабриката из сплава на основе циркония для мишеней следует отнести довольно высокую пористость слитка, получаемого методом вакуумной индукционной выплавки, которая при последующей горячей обработке давлением может приводить к образованию протяженных полостей и несплошностей, по всей видимости и формирующей собой пористость от 2%, как по границе накатки, так и непосредственно в сплаве на основе циркония для мишеней, что в свою очередь приводит к образованию капельной фазы в процессе плазмохимического синтеза оксидной керамики при нанесении теплозащитных покрытий магнетронным способом в окислительной среде.

Технической задачей предлагаемой группы изобретений является получение полуфабриката из сплава на основе циркония, который не содержит перечисленных выше недостатков, применимого для изготовления и использования в качестве мишеней для магнетронного распыления в реакционной (окислительной) среде, а также в атомной энергетике.

Техническим результатом является получение полуфабриката из сплава на основе циркония с равномерным распределением РЗМ, пониженной пористостью (от 0,4 до 1,9%), увеличение коэффициента использования металлов.

Технический результат достигается способом получения полуфабриката из сплава на основе циркония, включающим в себя размещение тигля из оксида циркония или иттрия в вакуумной индукционной печи, загрузку в тигель шихтовых материалов - циркония и, по меньшей мере, одного редкоземельного металла в количестве от 4 до 21 масс %, вакуумную индукционную выплавку сплава в среде аргона, получение отливки с последующей горячей прокаткой и отжигом, причем, выплавку сплава производят при температуре 1450-1950°C с формированием отливки, которую подвергают одно-четырех стадийному переплаву вакуумным дуговым методом при силе тока от 1,8 до 3,6 кА в течение от 5 до 12 минут, а затем полученный слиток подвергают ковке при температуре 950-1150°C, горячей прокатке при температуре 900-1050°C с получением полуфабриката и его отжигу при температуре 740-760°C.

Предпочтительно, в качестве редкоземельных металлов используют иттрий, гадолиний, неодим, самарий, лантан, празеодим, диспрозий.

Технический результат также достигается способом получения полуфабриката из сплава на основе циркония, включающим в себя размещение тигля из оксида циркония или иттрия в вакуумной индукционной печи, загрузку в тигель шихтовых материалов - циркония и, по меньшей мере, одного редкоземельного металла, получение отливки с последующей горячей прокаткой и отжигом, отличающийся тем, что получают отливку лигатуры путем введения редкоземельного металла в количестве от 21 до 75% в процессе вакуумной индукционной выплавки в среде аргона при температуре 1450-1800°C, полученную отливку лигатуры подвергают одно-четырех стадийному переплаву вакуумным дуговым методом при силе тока от 1,8 до 3,6 кА в течение от 5 до 12 минут с введением иодидного циркония в количестве 15-50 масс. %, а затем полученный слиток подвергают ковке при температуре 950-1150°C, горячей прокатке при температуре 900-1050°C с получением полуфабриката и его и отжигу при температуре 740-760°C.

Предпочтительно, в качестве редкоземельных металлов используют иттрий, гадолиний, неодим, самарий, лантан, празеодим, диспрозий.

Технический результат обеспечивается предлагаемыми вариантами способа получения полуфабриката из сплава на основе циркония, легированного, по меньшей мере, одним редкоземельным металлом: иттрием, гадолинием, неодимом, самарием, лантаном, празеодимом, диспрозием и др. РЗМ, причем РЗМ в сплаве должен быть равномерно распределен, что обеспечивает его равномерное распределение в паро-газовой фазе в процессе плазмохимического синтеза оксидов металлов, и пористость от 0,4 до 1,9%. Повышение коэффициента использования материала достигается за счет применения ковки при температуре 950-1150°C, горячей прокатки при температуре 900-1050°C и отжига при температуре 740-760°C.

Для достижения описанного выше технического результата в предлагаемом изобретении используется либо вакуумная индукционная выплавка сплава на свежих шихтовых материалах в тигле из оксида циркония или иттрия в условиях инертного газа: аргона с, по меньшей мере, одним РЗМ в количестве от 4 до 21 масс %, и цирконий остальное, либо вакуумная индукционная выплавка отливки лигатуры обогащенной, по меньшей мере, одним редкоземельным металлом с содержанием последнего от 21 до 75 масс % и разбавлением иодидным цирконием в количестве от 15 до 50 масс % в условиях инертного газа: аргона в тигле из оксида циркония или иттрия с последующей разливкой расплава и формированием отливки. Практическое исполнение выплавки отливки лигатуры требует применения специальных огнеупорных материалов, стойких к воздействию реакционно-активного расплава с высоким содержанием редкоземельного металла. Выплавка отливки лигатуры позволяет постепенно вводить в основу искомого сплава - циркония, легирующие редкоземельные элементы, благодаря чему стало возможным обеспечить их равномерное распределение в искомом циркониевом сплаве. Следует отметить, что полученная отливка лигатуры, как и сплава с заданным составом, характеризуется довольно распространенной пористостью, что препятствует получению качественной листовой заготовки при прокатке слитка непосредственно после этапа выплавки вакуумным индукционным способом. В этой связи в предлагаемых вариантах способа получения полуфабриката из сплава на основе циркония применен метод вакуумного дугового переплава.

В одном случае проводят вакуумный дуговой переплав отливки сплава, а в другом варианте предлагаемого способа проводят вакуумный дуговой переплав отливки лигатуры. В обоих вариантах предлагаемого способа проводят одно-четырех стадийный переплав вакуумным дуговым методом. Полученную отливку лигатуры подвергают, одно, двух, трех или четырех стадийному вакуумному дуговому переплаву, с введением иодидного циркония в количестве 15-50 масс %. В процессе переплава вакуумным дуговым методом в обоих вариантах предлагаемого изобретения достигается плотность слитка близкой к теоретической при обеспечении условия равномерного распределения легирующего редкоземельного металла. Переплав вакуумным дуговым методом проводили при силе тока от 1,8 до 3,6 кА в течение от 5 до 12 минут, с предварительным прогревом. Предварительный прогрев переплавляемой отливки осуществляли по стандартному режиму при силе тока от 1,4 до 1,8 кА в течение от 1 до 4 мин, известного из уровня техники. Рабочая сила тока поддерживалась при первичном переплаве от 1,8 до 2,6 кА в течение от 5 до 9 минут, при вторичном переплаве от 2,4 до 3,1 кА в течение от 5 до 9 минут, при третьем переплаве - от 2,9 до 3,6 кА в течение от 5 до 9 минут, а при четвертом переплаве поддерживали режим от 2,4 до 3,1 кА в течение от 5 до 12 минут, с учетом выведения усадочной раковины. Выведение усадочной раковины проводили при постепенном снижении силы тока от рабочих значений до 1,4, 1,9 и 2,4 кА, соответственно. Напряжение поддерживали в диапазоне значений от 22 до 25 В. Далее следовала ковка, которая проводилась при температуре от 950-1150°C, горячая прокатка, проводимая при температуре от 900-1050°C и отжиг при температуре 740-760°C с формированием полуфабриката, например, листовой заготовки мишеней и для изготовления деталей конструкций и экранов защиты от рентгеновского излучения. При температурах ниже 900°C сплав не достигает необходимого уровня технологической пластичности, что приводит к его растрескиванию в процессе горячей деформации, как при ковке, так и при горячей прокатке, тогда как при повышенных температурах более 1150°C происходит интенсивное окисление сплава. Отжиг при температуре 740-760°C позволяет снять внутренние напряжения и исключить коробление полуфабриката. Предлагаемые варианты способа обеспечивают, таким образом, повышение коэффициента использования металла с формированием полуфабриката из сплава на основе циркония с максимально возможной плотностью (до 99,6% от теоретически возможной) и пористостью от 0,4 до 1,9% при равномерном распределении в нем, по меньшей мере, одного РЗМ (с отклонением от среднего значения не более 0,5% масс.) и требуемом уровне (до 50 ррм) газовых включений (азот).

Пример 1

Полуфабрикат из сплава на основе циркония получали следующим образом.

Выплавка сплава на основе циркония производилась с использованием свежих шихтовых материалов вакуумным индукционным способом в тигле на основе оксида иттрия. В тигель загружали шихтовые материалы: редкоземельный металл - иттрий в количестве 4% масс., цирконий - остальное. Выплавку сплава производили при температуре 1900±50°C. Сформированная отливка содержала в прибыльной части усадочную раковину, после удаления которой на поверхности реза отмечена довольно существенная пористость. Далее слиток резали на штабики из которых формировали расходуемую переплавляемую отливку для вакуумного дугового переплава. Вакуумный дуговой переплав проводили при силе тока 2,6 кА в течение 5 минут при первичном переплаве и при силе тока 3,1 кА в течение 7 минут при переплаве вторичном. Предварительный прогрев расходуемой переплавляемой отливки проводили в течение 1 минуты при силе тока 1,7 кА. Выведение усадочной раковины проводили при постепенном снижении силы тока с рабочих значений - с 3,1 кА до 1,9 кА за совокупное время не более 3-х минут. Напряжение дуги поддерживали на уровне от 22,5 до 24,5 В. После двойного вакуумного дугового переплава и резки донной и «корончатой» частей слиток подвергали ковке на сутунку при температуре 960±10°C, из которой методом горячей прокатки при температуре 910±10°C с последующим отжигом при температуре 750±10°C формировали полуфабрикат, например, листовую заготовку мишени.

Пример 2

Полуфабрикат из сплава на основе циркония получали следующим образом.

Выплавка сплава на основе циркония производилась с использованием свежих шихтовых материалов вакуумным индукционным способом в тигле на основе оксида циркония. В тигель загружали шихтовые материалы: редкоземельные металлы - иттрий и гадолиний в совокупном количестве 21% масс., цирконий - остальное. Выплавку производили при температуре 1500±50°C. Сформированная отливка содержала в прибыльной части усадочную раковину, после удаления которой на поверхности реза отмечена довольно существенная пористость. Далее слиток резали на штабики, из которых формировали расходуемую переплавляемую отливку для вакуумного дугового переплава. Вакуумный дуговой переплав проводили один раз при силе тока от 1,8 кА в течение 12 минут. Предварительный прогрев расходуемой переплавляемой отливки проводили в течение от 1 минуты при силе тока от 1,5 кА. Выведение усадочной раковины в этом случае не проводили. Напряжение дуги поддерживали на уровне от 22,5 до 24,5 В. После вакуумного дугового переплава и резки донной и «корончатой» частей слиток подвергали ковке на сутунку при температуре 1140±10°C, из которой методом горячей прокатки при температуре 1040±10°C с последующим отжигом при температуре 750±10°C формировали полуфабрикат, например, горячедеформированную полосу.

Пример 3

Полуфабрикат из сплава на основе циркония получали следующим образом.

Выплавка сплава лигатуры на основе циркония с, по меньшей мере, одним РЗМ производилась с использованием свежих шихтовых материалов вакуумным индукционным способом в тигле на основе оксида циркония. В тигель загружали шихтовые материалы: редкоземельные металлы - гадолиний, лантан и празеодим в совокупном количестве 21% масс., цирконий - остальное. Выплавку производили при температуре 1750±50°C. Сформированная отливка лигатуры содержала в прибыльной части усадочную раковину, после удаления которой на поверхности реза отмечена довольно существенная пористость. Далее слиток резали на штабики из которых, располагая на прутках иодидного циркония в количестве 15% масс, формировали расходуемую переплавляемую отливку для вакуумного дугового переплава. Первичный вакуумный дуговой переплав проводили при силе тока от 2,1 кА в течение 9 минут. Вторичный вакуумный дуговой переплав проводили при силе тока от 2,9 кА в течение 7 минут, тогда как третий вакуумный дуговой переплав вели при силе тока от 3,6 кА в течение 9 минут с последующим выведением усадочной раковины со снижением силы тока до 1,9 кА в течение не более 2-3 минут. Предварительный прогрев расходуемой переплавляемой отливки проводили в течение от 1 минуты при силе тока от 1,6 кА. Выведение усадочной раковины в этом случае не проводили. Напряжение дуги поддерживали на уровне от 22,5 до 24,5 В. После вакуумного дугового переплава и резки донной и «корончатой» частей слиток подвергали ковке на сутунку при температуре 1040±10°C, из которой методом горячей прокатки при температуре 960±10°C с последующим отжигом при температуре 740-760°C формировали полуфабрикат, например листовую заготовку мишени.

Пример 4

Полуфабрикат из сплава на основе циркония получали следующим образом.

Выплавка сплава лигатуры металла редких земель на основе циркония производилась с использованием свежих шихтовых материалов вакуумным индукционным способом в тигле из инертной оксидной керамики на основе оксида иттрия. В тигель загружали шихтовые материалы: редкоземельные металлы - иттрий, гадолиний, самарий и неодим в совокупном количестве 50% масс., цирконий - остальное. Выплавку производили при температуре 1500±50°C. Сформированная отливка содержала в прибыльной части усадочную раковину, после удаления которой на поверхности реза отмечена довольно существенная пористость. Далее слиток резали на штабики из которых, располагая на прутках иодидного циркония в количестве 35% масс, формировали расходуемую переплавляемую отливку для вакуумного дугового переплава. Вакуумный дуговой переплав проводили при силе тока от 2,3 кА в течение 5 минут при первичном переплаве и при силе тока от 2,9 кА в течение 7 минут при переплаве вторичном. Предварительный прогрев переплавляемой отливки проводили в течение от 1 минуты при силе тока от 1,6 кА. Выведение усадочной раковины проводили при постепенном снижении силы тока с рабочих значений - с 2,9 кА до 1,7 кА за совокупное время не более 3-х минут. Напряжение дуги поддерживали на уровне от 22,5 до 24,5 В. После тройного вакуумного дугового переплава и резки донной и «корончатой» частей слиток подвергали ковке на сутунку при температуре 1060±10°C, из которой методом горячей прокатки при температуре 960±10°C с последующим отжигом при температуре 75±10°C формировали горячекатаную ленту.

Пример 5

Полуфабрикат из сплава на основе циркония получали следующим образом.

Выплавка сплава лигатуры металла редких земель на основе циркония производилась с использованием свежих шихтовых материалов вакуумным индукционным способом в тигле из инертной оксидной керамики на основе оксида иттрия. В тигель загружали шихтовые материалы: редкоземельные металлы - иттрий, гадолиний, лантан, неодим и диспрозий в совокупном количестве 75% масс, цирконий - остальное. Выплавку производили при температуре 1550±50°C.Сформированная отливка содержала в прибыльной части усадочную раковину, после удаления которой на поверхности реза отмечена довольно существенная пористость. Далее слиток резали на штабики из которых, располагая на прутках иодидного циркония в количестве 50%, формировали переплавляемую отливку для вакуумного дугового переплава. Вакуумный дуговой переплав проводили при силе тока от 1,8 кА при первичном переплаве в течение 7 минут и при силе тока от 2,8 кА при переплаве вторичном в течение 9 минут, а при третьем переплаве сила тока составила 3,6 кА в течение 9 минут. Окончательный четвертый переплав проводили на режимах вторичного переплава - при силе тока от 2,8 кА в течение 12 минут с учетом времени на выведение усадочной раковины. Предварительный прогрев переплавляемой отливки проводили в течение от 1 минуты при силе тока от 1,5 кА. Выведение усадочной раковины проводили при постепенном снижении силы тока с рабочих значений - с 2,8 кА до 1,7 кА за совокупное время не более 3-х минут. Напряжение дуги поддерживали на уровне от 22,5 до 24,5 В. После четвертного вакуумного дугового переплава и резки донной и «корончатой» частей слиток подвергали ковке на сутунку при температуре 960±10°C, из которой методом горячей прокатки при температуре 940±10С и отжигом при температуре 750±10°C. формировали полуфабрикат листовой заготовки для формирования рабочего слоя мишени.

Источник поступления информации: Роспатент

Показаны записи 281-290 из 354.
19.04.2019
№219.017.2de1

Состав для получения покрытия

Изобретение относится к области машиностроения и металлургии и может использоваться в авиационном и энергетическом турбостроении для защиты деталей из сталей, никелевых и титановых сплавов от солевой и фреттинг-коррозии и контактного износа. Состав для получения покрытия на деталях,...
Тип: Изобретение
Номер охранного документа: 0002349681
Дата охранного документа: 20.03.2009
19.04.2019
№219.017.2e20

Керамический композиционный материал

Изобретение относится к керамическим композиционным материалам и может быть использовано в авиационной технике и машиностроении при изготовлении теплонагруженных деталей газотурбинных установок и двигателей газо-, нефтеперекачивающих, энергетических и транспортных систем и др., эксплуатируемых...
Тип: Изобретение
Номер охранного документа: 0002397969
Дата охранного документа: 27.08.2010
19.04.2019
№219.017.2e2a

Припой на основе никеля

Изобретение может найти применение при изготовлении деталей из деформированных и литых жаропрочных никелевых сплавов, в частности, для горячего тракта газотурбинных двигателей, таких как направляющие аппараты компрессоров и сопловые аппараты турбин. Припой имеет следующий состав, мас.%: Cr...
Тип: Изобретение
Номер охранного документа: 0002393074
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.2e2f

Способ получения отливок

Изобретение относится к литейному производству. Способ включает заливку расплава в форму с последующим его охлаждением, предварительную механическую обработку отливок. Для создания разрежения отливку подвергают вакуумной обработке в автоклаве. Затем отливку под давлением 0,1-0,8 МПа пропитывают...
Тип: Изобретение
Номер охранного документа: 0002393053
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.2e73

Композиционный материал и изделие, выполненное из него

Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стекломатриц, армированных углеродными волокнистыми наполнителями, используемым для изготовления теплонагруженных деталей, например бандажных колец, применяющихся в авиационной, космической технике...
Тип: Изобретение
Номер охранного документа: 0002310628
Дата охранного документа: 20.11.2007
19.04.2019
№219.017.2ebd

Способ нанесения цинковых покрытий

Изобретение относится к области электрохимического нанесения покрытий, в частности к локальному осаждению цинковых покрытий на токопроводящую поверхность деталей, например, для ремонта поврежденных цинковых покрытий. Способ включает электролитическое натирание поверхности анодом, к которому...
Тип: Изобретение
Номер охранного документа: 0002389828
Дата охранного документа: 20.05.2010
19.04.2019
№219.017.2ed9

Способ получения пористого истираемого материала из металлических волокон

Изобретение относится к области машиностроения, а именно к способам получения истираемых материалов из металлических волокон, и может быть использовано при изготовлении уплотнений проточной части компрессора и турбины газотурбинного двигателя, в газонефтеперекачивающих установках для...
Тип: Изобретение
Номер охранного документа: 0002382828
Дата охранного документа: 27.02.2010
19.04.2019
№219.017.3102

Стеклокерамический композиционный материал

Изобретение относится к стеклокерамическим композиционным материалам на основе наноструктурированных стеклокерамических матриц, армированных углеродными наполнителями, для изготовления кольцевых элементов и деталей перспективной авиационно-космической техники с рабочей температурой до 1300°С,...
Тип: Изобретение
Номер охранного документа: 0002412135
Дата охранного документа: 20.02.2011
27.04.2019
№219.017.3bb6

Жаропрочный литейный сплав на основе кобальта и изделие, выполненное из него

Изобретение относится к металлургии, в частности к жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 750-1000°С. Жаропрочный литейный сплав на основе кобальта содержит, мас.%: углерод 0,15-0,35,...
Тип: Изобретение
Номер охранного документа: 0002685895
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bd4

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 800-1000°С. Жаропрочный литейный сплав на основе никеля...
Тип: Изобретение
Номер охранного документа: 0002685908
Дата охранного документа: 23.04.2019
Показаны записи 281-290 из 329.
27.04.2019
№219.017.3bea

Интерметаллидный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе никеля, предназначенным для изготовления методами точного литья деталей газотурбинных двигателей. Сплав на основе интерметаллида никеля содержит, мас.%: 8,1 - 8,6 Аl, 5,6 - 6,3 Сr 4,5 - 5,5...
Тип: Изобретение
Номер охранного документа: 0002685926
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bf1

Антибликовый экран на основе силикатного стекла, антибликовое и антибликовое электрообогревное покрытия для него

Изобретение относится к области антибликового остекления приборов радиоэлектронной техники. Антибликовое покрытие содержит первый внутренний слой из TiO толщиной 10-17 нм, второй слой из SiO толщиной 27-36 нм, третий слой из TiO толщиной 102-120 нм и четвертый слой из SiO толщиной 87-95 нм....
Тип: Изобретение
Номер охранного документа: 0002685887
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3ca1

Теплостойкое термореактивное связующее для полимерной оснастки из полимерных композиционных материалов

Изобретение относится к теплостойкому связующему для полимерной оснастки из полимерных композиционных материалов, которое может быть использовано в изделиях авиакосмической техники. Теплостойкое термореактивное бисмалеимидное связующее содержит, мас.% от общей массы компонентов: бисмалеимид -...
Тип: Изобретение
Номер охранного документа: 0002686036
Дата охранного документа: 23.04.2019
29.04.2019
№219.017.4540

Сплав на основе интерметаллида nial

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической и направленной столбчатой структурами, таким как, например, сопловые лопатки, блоки сопловых лопаток,...
Тип: Изобретение
Номер охранного документа: 0002405851
Дата охранного документа: 10.12.2010
08.05.2019
№219.017.48f9

Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения

Изобретение относится к металлургии, а именно к высокотемпературным композиционным материалам на основе интерметаллидной матрицы для обеспечения двигателей повышенной мощности и ресурса. Металлокерамический композиционный материал с интерметаллидной матрицей на основе NiAl содержит, масс.%: Al...
Тип: Изобретение
Номер охранного документа: 0002686831
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4a54

Состав для удаления лакокрасочных покрытий с внешних металлических поверхностей

Изобретение относится к области материалов для лакокрасочной промышленности. Описан состав для удаления полимерных лакокрасочных покрытий с внешних металлических поверхностей, включающий растворитель метиленхлорид, загуститель, замедлитель испарения и разрыхлитель, который дополнительно...
Тип: Изобретение
Номер охранного документа: 0002686928
Дата охранного документа: 06.05.2019
18.05.2019
№219.017.5447

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение может быть использовано для получения деталей турбин авиационного и энергетического назначения. Устройство содержит вакуумную камеру, загрузочную шлюзовую камеру, направляющие для перемещения литейных форм, печь подогрева форм и плавильно-заливочную печь, расположенные в вакуумной...
Тип: Изобретение
Номер охранного документа: 0002267380
Дата охранного документа: 10.01.2006
18.05.2019
№219.017.5683

Полиимидное связующее для армированных пластиков, препрег на его основе и изделие, выполненное из него

Изобретение относится к области получения полиимидов, а именно к области получения полиимидного связующего для армированных пластиков. Полиимидное связующее представляет собой продукт взаимодействия диангидрида бензофенон-3,3′-4,4′-тетракарбоновой кислоты и м-фенилендиамина и модифицирующую...
Тип: Изобретение
Номер охранного документа: 0002394857
Дата охранного документа: 20.07.2010
18.05.2019
№219.017.56b8

Способ получения пористо-волокнистого металлического материала

Изобретение относится к способам получения пористых материалов из металлических волокон, а именно к способам получения волокнистых металлических материалов с высокой пористостью (до 95%) из жаростойких сплавов для звукопоглощающих конструкций горячего тракта газотурбинного двигателя на рабочие...
Тип: Изобретение
Номер охранного документа: 0002311262
Дата охранного документа: 27.11.2007
18.05.2019
№219.017.576d

Устройство для получения отливок из жаропрочных сплавов с монокристаллической структурой

Изобретение относится к области литейного производства. Устройство содержит керамическую форму, в основании которой выполнены затравочная полость с размещенной в ней монокристаллической затравкой, полость кристалловода и коническая стартовая полость, соединенная с полостью формы, образующей...
Тип: Изобретение
Номер охранного документа: 0002353471
Дата охранного документа: 27.04.2009
+ добавить свой РИД