×
24.11.2018
218.016.a08f

Результат интеллектуальной деятельности: Противоточный теплообменник

Вид РИД

Изобретение

№ охранного документа
0002673305
Дата охранного документа
23.11.2018
Аннотация: Изобретение относится к энергетическому машиностроению, авиационной и ракетной технике и может быть использовано в теплообменниках. Изобретение заключается в том, что теплообменная секция состоит из основного и двух концевых участков, на которых сечение каналов меняется от прямоугольного к ромбовидному или восьмиугольному сечению каналов основного участка, и прямоугольные каналы концевого участка одного из теплоносителей повернуты в сторону от оси теплообменника, что позволяет вывести теплоносители в разные коллекторы. Технический результат - уменьшение гидравлического сопротивления и повышение эффективности теплообмена за счет преобразования расположения каналов из рядного в шахматное без существенного изменения площади проходного сечения и длин каналов каждого теплоносителя. 1 з.п. ф-лы, 4 ил.

Изобретение относится к энергетическому машиностроению, а именно к конструкции теплообменников, предназначенных для передачи тепла от одного теплоносителя к другому, и может быть применено в авиационной и ракетной технике.

В авиационной и ракетной технике важным условием является компактность теплообменника. Для обеспечения компактности и минимальной массы на единицу передаваемой мощности необходимо обеспечить максимальную площадь теплопередающей поверхности на единицу объема теплообменника. В большинстве конструкций (патент RU №2179692, патент RU №2099663 и др.) это достигается многослойным расположением каналов теплоносителей. При этом теплопередача происходит между этими слоями и каждый канал одного теплоносителя по двум своим граням (стенкам) контактирует с каналами другого теплоносителя, а по двум (по ребрам) - с каналами того же самого теплоносителя.

Известен теплообменник (патент RU №2535187) с шахматным расположением каналов квадратного поперечного сечения, принятый в качестве прототипа, в котором стенки каналов холодного теплоносителя контактируют со стенками каналов горячего теплоносителя по всему поперечному сечению каналов, что повышает эффективность теплообмена.

В этом случае площадь проходного сечения обоих теплоносителей оказывается одинаковой. Однако плотность, расход, допустимый перепад теплоносителей, а, следовательно, и необходимая по расчету проходная площадь сечения может отличаться, что ограничивает область эффективного применения прототипа. Кроме того, предлагаемое в прототипе преобразование расположения каналов горячего и холодного теплоносителей относительно друг друга в шахматный порядок с помощью вспомогательной разделяющей перегородки приводит к тому, что площадь проходного сечения обоих теплоносителей в месте преобразования уменьшается более чем в два раза по сравнению с сечением участка интенсивного теплообмена. На участках разведения каналов их сечение плавно изменяется более чем в 3 раза, а суммарная длина и гидравлическое сопротивление параллельных каналов одного теплоносителя на этих участках не остается постоянной.

Изобретение направлено на уменьшение гидравлического сопротивления, расширения пределов применимости данной конструктивной схемы по соотношению площадей проходных сечений и увеличение теплопередачи между теплоносителями.

Этот технический результат достигается за счет того, что в теплообменной секции, состоящей из основного участка интенсивного теплообмена и двух концевых участков разведения каналов, каналы одного из теплоносителей имеют прямоугольное сечение на концевых участках и ромбовидное или восьмигранное на основном, а прямоугольные каналы второго теплоносителя на концевых участках выполнены под углом к оси теплообменной секции и сопряжены с расположенными вдоль той же оси каналами основного участка, а их сечение в зоне сопряжения выполнено изменяющимся от прямоугольного сечения концевого участка к ромбовидному сечению основного участка.

Уменьшение гидравлического сопротивления достигается за счет сохранения на всей длине проходной площади каналов (ее изменение не превышает 20%). Для этого преобразование расположения каналов из рядного расположения в шахматное осуществляется за счет плавного изменения сечения канала без использования вспомогательной разделяющей перегородки. В простейшем случае переход от квадратного сечения к ромбовидному соответствует повороту сечения на 45 градусов. Практически переходная поверхность строится программами трехмерного проектирования по заданному начальному и конечному сечению. При этом не происходит закручивания жидкости и связанных с этим потерь давления.

Необходимое соотношение площади сечения каналов разных теплоносителей обеспечивается на основном участке восьмиугольной формой канала большего сечения. Восьмиугольник в общем случае не равносторонний. У него четыре грани имеют туже ширину, что и у каналов другого теплоносителя, а ширина четырех дополнительных граней определяется необходимым соотношением проходных площадей. В случае равенства площадей эта ширина становится нулевой, а восьмиугольник вырождается в ромб. На концевых участках необходимое соотношение проходных площадей сечений каналов обеспечивается соответствующим соотношением толщин слоев.

При необходимости дальнейшего уменьшения площади сечения меньшего из каналов, а также для увеличения теплопередачи между теплоносителями за счет увеличения теплоотдающей поверхности на гранях ромба могут быть выполнены продольные ребра. Если ребра имеют треугольное сечение, то сечение канала приобретает крестообразную форму.

Повышению эффективности теплообмена также способствует равная суммарная длина параллельных каналов каждого из теплоносителей, а, следовательно, одинаковые гидравлические сопротивления и расходы этих каналов.

Необходимыми условиями применимости предлагаемого изобретения являются:

1. Температура теплоносителей должна находиться в пределах допустимого диапазона для материала теплообменника.

2. Расчетная длина каналов теплоносителей должна как минимум в 2 раза превышать ширину теплообменной секции. В противном случае, не останется длины для основного участка, т.к. длина каналов на начальном и конечном участке в среднем составляет от коллектора до поворота около 0,8 от ширины секции плюс длина перехода от прямоугольного сечения к ромбовидному. Как правило, уменьшить ширину при заданной длине можно увеличив высоту теплообменной секции, либо разбив ее на несколько параллельно соединенных секций.

Условиями, при которых использование предлагаемого изобретения наиболее эффективно являются:

1. Требуемая разность температур между теплоносителями на входе и выходе мала по сравнению с изменением температуры каждым из них. В этом случае противоточной схеме нет альтернативы.

2. Расчетное сечение каналов первого и второго теплоносителей отличается не более чем на порядок. В противном случае контакт по всем четырем граням ромбовидного канала не столь эффективен.

3. Располагаемый перепад давления на каналах обоих теплоносителей мал по сравнению с изменением температуры каждого из них. В противном случае целесообразны конструктивные меры по турбулизации потока, не предусмотренные в данной конструкции.

Изобретение поясняется фигурами, где на фиг. 1 представлено трехмерное изображение теплообменника с разрезом, на фиг. 2 сечение основного участка теплообменника с ромбовидным сечением каналов одного из теплоносителей и продольными ребрами в каналах второго теплоносителя, на фиг. 3 сечение основного участка теплообменника с восьмиугольным сечением каналов одного из теплоносителей, а на фиг. 4 сечение основного участка теплообменника с восьмиугольным сечением каналов одного из теплоносителей и продольными ребрами в каналах второго теплоносителя.

Теплообменник состоит из подводящих 1 и отводящих коллекторов 2 с патрубками и теплообменной секции 3. Теплообменная секция состоит из основного 4 и двух концевых участков 5. На основном участке каналы двух теплоносителей расположены в шахматном порядке. Каналы одного из теплоносителей, расположенные вдоль оси теплообменника, имеют прямоугольное сечение на концевых участках 6 и ромбовидное или восьмигранное на основном 7. Прямоугольные каналы второго теплоносителя 8 на концевых участках выполнены под углом к оси теплообменной секции и сопряжены с расположенными вдоль той же оси каналами основного участка 9. Сечение каналов второго теплоносителя в зоне сопряжения 10 выполнено изменяющимся от прямоугольного сечения концевого участка к ромбовидному сечению основного участка. Сопряжение каналов обоих теплоносителей осуществляется за счет переходной поверхности без существенного изменения проходного сечения.

В частности, в каналах второго теплоносителя на основном участке выполнены продольные ребра 11 на каждой грани.

Первый теплоноситель подается через патрубок 12 в коллектор 1, проходит по каналам 6 и 7 теплообменной секции 3, собирается в коллектор 2 и отводится в патрубок 13. Второй теплоноситель подается через патрубок 14 в коллектор 1, проходит по каналам 9 и 8 теплообменной секции 3, собирается в коллектор 2 и отводится в патрубок 15. Теплообмен осуществляется на основном участке 4 между каналами 7 и 9, а на концевых участках 5 между каналами 6 и 8 через разделительную стенку.

Пережатие проходного сечения каналов у прототипа в районе с вспомогательной разделяющей перегородки в два раза приводит к увеличению скоростного напора, пропорционально которому определяются местные гидравлические потери, в четыре раза. Устранение этого пережатия и изменения площади проходного сечения на концевых участках может привести к общему уменьшению гидравлического сопротивления до двух раз по сравнению с прототипом.

Отличия в суммарной длине каналов у прототипа может привести к изменению в них расхода ~5%. Причем рядом с каналами меньшего расхода одного теплоносителя находятся каналы с большим расходом другого теплоносителя. Выравнивание длины каналов в предлагаемой конструкции приводит к выравниванию расходов и подогревов, что приводит к улучшению теплообмена.

Продольное оребрение обеспечивает уменьшение длины до 50%. При этом масса уменьшается до 40%, а гидравлическое сопротивление может даже возрасти.


Противоточный теплообменник
Противоточный теплообменник
Противоточный теплообменник
Противоточный теплообменник
Источник поступления информации: Роспатент

Показаны записи 51-60 из 120.
03.11.2018
№218.016.9a28

Способ тестирования арсенид-галиевых фотопреобразователей в составе солнечных батарей и устройство для его реализации

Изобретение относится к космической технике и может быть использовано при создании связных (телекоммуникационных) космических аппаратов (КА) для бесконтактного неразрушающего контроля качества полупроводниковых фотопреобразователей (ФП) солнечных батарей (БС). Заявленный способ тестирования...
Тип: Изобретение
Номер охранного документа: 0002671546
Дата охранного документа: 01.11.2018
03.11.2018
№218.016.9a34

Способ наземной эксплуатации системы электропитания космического аппарата

Изобретение относится к наземным электротехническим испытаниям космических аппаратов. Способ заключается в проведении заряда и разряда аккумуляторных батарей (АБ) с активным термостатированием и контролем температуры штатных АБ и в хранении их без проведения термостатирования. Вначале на...
Тип: Изобретение
Номер охранного документа: 0002671600
Дата охранного документа: 02.11.2018
03.11.2018
№218.016.9a36

Способ ориентации космического аппарата в солнечно-земной системе координат

Изобретение относится к управлению ориентацией космического аппарата (КА) с солнечными батареями (СБ). Способ включает ориентацию первой оси КА на центр Земли путем его разворотов вокруг второй и третьей осей по информации с прибора ориентации на Землю. Ориентацию второй оси КА относительно...
Тип: Изобретение
Номер охранного документа: 0002671597
Дата охранного документа: 02.11.2018
09.11.2018
№218.016.9bbd

Радиоэлектронный блок теплонагруженный

Изобретение может быть использовано при конструировании бортовых аналоговых и цифровых устройств с источниками питания, предназначенных для эксплуатации в составе космических аппаратов. Технический результат - повышение эффективности радиоэлектронного блока и его эксплуатационных возможностей....
Тип: Изобретение
Номер охранного документа: 0002671852
Дата охранного документа: 07.11.2018
11.11.2018
№218.016.9c5c

Катод плазменного ускорителя

Изобретение относится к плазменной технике, а именно к классу плазменных ускорителей (холловских, ионных), использующих в своем составе катоды, и может быть использовано при разработке электроракетных двигателей. Катод плазменного ускорителя содержит пусковой электрод с отверстием в торцевой...
Тип: Изобретение
Номер охранного документа: 0002672060
Дата охранного документа: 09.11.2018
28.11.2018
№218.016.a137

Космический аппарат

Изобретение относится к космической технике. Космический аппарат (КА) содержит два телескопа, закрепленных на опорных узлах верхнего пояса фермы, и модуль служебных систем. Верхний пояс фермы содержит шесть опорных узлов, а нижний - восемь. Четыре опорных узла верхнего пояса фермы совмещены с...
Тип: Изобретение
Номер охранного документа: 0002673447
Дата охранного документа: 26.11.2018
28.11.2018
№218.016.a169

Способ термостатирования бортовой аппаратуры полезного груза, размещенного внутри головного обтекателя космической головной части ракеты космического назначения, и устройство для его реализации

Группа изобретений относится к ракетно-космической технике. Способ термостатирования бортовой аппаратуры полезного груза (ПГ), размещенного внутри головного обтекателя (ГО) космической головной части (КГЧ) ракеты космического назначения (РКН), включает вдув термостатирующей среды во внутреннее...
Тип: Изобретение
Номер охранного документа: 0002673439
Дата охранного документа: 26.11.2018
30.11.2018
№218.016.a1ef

Способ изготовления статора электрической машины

Изобретение относится к электротехнике, к технологии изготовления электрических машин, и может быть использовано в электротехнической промышленности и приборостроении. Технический результат состоит в повышении КПД электрической машины в целом путем повышения точности геометрических размеров,...
Тип: Изобретение
Номер охранного документа: 0002673450
Дата охранного документа: 27.11.2018
15.12.2018
№218.016.a7c4

Теплозащитное покрытие

Изобретение относится к области порошковой металлургии, в частности к теплозащитным покрытиям для защиты поверхности деталей, подверженных воздействию высокотемпературных газовых потоков и выполненных, в том числе, из двухслойных паяных конструкций и может быть использовано для защиты изделий...
Тип: Изобретение
Номер охранного документа: 0002675005
Дата охранного документа: 14.12.2018
20.12.2018
№218.016.a941

Способ изготовления ротора электрической машины

Изобретение относится к области электротехники, а точнее к способам изготовления синхронных и шаговых электрических машин, в том числе для космических аппаратов (КА). Способ изготовления ротора электрической машины заключается в том, что переменно-полюсную магнитную систему, образованную путем...
Тип: Изобретение
Номер охранного документа: 0002675381
Дата охранного документа: 19.12.2018
Показаны записи 1-1 из 1.
09.06.2018
№218.016.5cc5

Способ дросселирования тяги жидкостного ракетного двигателя

Изобретение относится к ракетной технике. Способ дросселирования тяги ЖРД, основанный на снижении массовых расходов компонентов топлива в камеру с нерегулируемыми форсунками, при котором после уменьшения массовых расходов ниже заданных значений подают газ в полости магистралей питания камеры на...
Тип: Изобретение
Номер охранного документа: 0002656073
Дата охранного документа: 30.05.2018
+ добавить свой РИД