×
23.11.2018
218.016.a032

Результат интеллектуальной деятельности: Теплообменный аппарат

Вид РИД

Изобретение

Аннотация: Изобретение относится к области теплотехники, а именно к теплообменным аппаратам с трубами с развитой поверхностью теплообмена, и может быть использовано в аппаратах воздушного охлаждения, теплообменниках, холодильниках, рекуператорах, печах, которые применяются в различных отраслях промышленности. Теплообменный аппарат содержит корпус с входными и выходными патрубками ввода и вывода горячего и холодного потоков, профилированные теплообменные трубы, установленные внутри корпуса в трубных досках. Поперечное сечение центральной части каждой теплообменной трубы выполнено профилированным в виде прямоугольника со скругленными переходами между его сторонами, при этом соотношение сторон указанного прямоугольника составляет h=(0,1…0,5)b, где h - высота прямоугольника, b - ширина прямоугольника. Входная и выходная части упомянутых труб выполнены цилиндрическими с обеспечением переходной зоны от цилиндрических участков трубы к профилированному. Проходная площадь профилированного поперечного сечения теплообменной трубы равна или больше проходной площади каждого цилиндрического участка указанной трубы. В варианте исполнения, поперечное сечение трубы выполнено в виде плоской спирали. 3 з.п. ф-лы, 6 ил.

Изобретение относится к области теплотехники, а именно: к теплообменным аппаратам с трубами с развитой поверхностью теплообмена, и может быть использовано в аппаратах воздушного охлаждения, теплообменниках, холодильниках, рекуператорах, печах, которые применяются в различных отраслях промышленности.

Известны теплообменные аппараты, содержащие корпус, входной и выходной коллекторы и пучок теплообменных прямых труб (А.Г. Касаткин. Основные процессы и аппараты химической технологии. Издательство Альянс, Москва, 2008, стр. 326-333).

Основными недостатками указанных конструкций является недостаточно интенсивный теплообмен в связи с низким коэффициентом теплопередачи из-за слабой турбулизации потоков, проходящих как внутри труб, так и в межтрубном пространстве, высокая материалоемкость и значительные габариты.

Известны теплообменные аппараты, содержащие корпус, входной и выходной коллекторы и пучок теплообменных труб в виде пространственно-спиральных змеевиков, установленных в зазорах между витками друг друга (патенты РФ №2152574, МПК: F28D 7/02 от 16.09.1999 и №2238500, МПК: F28D 7/02 от 27.12.2002).

Основными недостатками указанных конструкций является сложность изготовления змеевиков, формирование трубных пучков в межтрубном пространстве теплообменного аппарата, теплообмен между средами недостаточно интенсивный, особенно в межтрубном пространстве, низкий коэффициент теплопередачи на уровне 150 ккал/ч*м2 («Теплообменное оборудование ООО «АНОД-ТЦ»»).

Известны теплообменные аппараты, содержащие корпус, входной и выходной коллекторы и змеевиковые элементы из труб, установленных в зазорах между витками змеевиковых элементов (патент РФ №2451875, МПК: F22B 37/00, F28D 7/02 от 14.10.2010).

Основным недостатком указанной конструкции является недостаточно интенсивный теплообмен между средами, особенно при движении теплопередающей среды снаружи змеевиковых элементов поперек оси пучка труб и изготовления змеевиковых пучков труб вложением одного пучка труб в другие пучки.

Наиболее близким по технической сущности и достигаемому результату к заявляемому изобретению является теплообменный аппарат с оребренными теплообменными трубами, в частности аппарат воздушного охлаждения, содержащий корпус, входной и выходной коллекторы с устройствами ввода и вывода горячего и холодного потоков и пучок теплообменных прямых оребренных труб (Основы расчета и проектирования теплообменников воздушного охлаждения.: Справочник А.Н. Бессонов, Г.А., Дрейцер, В.Б. Кунтыш и др. СПб, «Недра», 1996, стр. 89-104).

Основными недостатками указанной конструкции является недостаточно интенсивный теплообмен из-за слабой турбулизации потока, проходящего внутри прямых труб, и низкого коэффициента теплоотдачи от стенки к потоку внутри труб, лимитирующего общий коэффициент теплопередачи.

Задача, на решение которой направлено заявленное изобретение, заключается в интенсификации теплообмена как в трубном, так и межтрубном пространствах пучков теплообменных труб с одновременным увеличением удельной площади теплообмена.

Решение указанной задачи достигается тем, что, в предложенном теплообменном аппарате, содержащем корпус с входными и выходными патрубками ввода и вывода горячего и холодного потоков, теплообменные трубы, установленные внутри корпуса в трубных досках, при этом полости указанных труб сообщены с соответствующими полостями подвода и отвода, согласно изобретению, поперечное сечение центральной части каждой теплообменной трубы, выполнено профилированным в виде геометрической фигуры с несколькими лучами, причем полости лучей сообщаются между собой и с полостями соответствующих патрубков ввода и вывода потока, при этом входная и выходная части трубы выполнены цилиндрическими с обеспечением переходной зоны от цилиндрических участков трубы к профилированному, при этом проходная площадь профилированного поперечного сечения теплообменной трубы, равна или больше проходной площади каждого цилиндрического участка указанной трубы.

В варианте исполнения, поперечное сечение центральной части каждой теплообменной трубы выполнено профилированным в виде прямоугольника со скругленными переходами между его сторонами, при этом соотношение сторон указанного прямоугольника составляет h=(0,1…0,5)b, где: h - высота прямоугольника, b - ширина прямоугольника,

В варианте исполнения, каждая труба по длине выполнена в виде плоской спирали.

В варианте исполнения, поперечное сечение центральной части каждой теплообменной трубы, выполнено профилированным в виде трехлучевой звезды с полыми лучами, образованными монотонно чередующимися выступами и впадинами, при этом теплообменные трубы расположены таким образом, что выступ вертикального луча поперечного сечения каждой предыдущей трубы располагается во впадине между лучами поперечного сечения каждой последующей трубы в поперечном сечении пучка труб, причем лучи смежных участков труб расположены параллельно или практически параллельно между собой, при этом максимальное расстояние между плоскими поверхностями двух смежных лучей не превышает толщину луча.

В варианте исполнения, поперечное сечение центральной части каждой теплообменной трубы, выполнено профилированным в виде четырехлучевой звезды с полыми лучами, образованными монотонно чередующимися выступами и впадинами, при этом теплообменные трубы расположены таким образом, что расстояние между противоположно расположенными выступами равно ширине луча, причем лучи смежных участков труб расположены параллельно или практически параллельно между собой.

В варианте исполнения, поперечное сечение центральной части каждой теплообменной трубы, выполнено профилированным с радиальными каналами, проходящими по всей длине центральной части трубы и делящими поперечное сечение трубы на несколько секторов, причем полости указанных секторов сообщаются между собой.

В варианте исполнения, указанные радиальные каналы располагаются по спирали по длине трубы.

Сущность изобретения иллюстрируется чертежами, где на фиг. 1 показан продольный разрез предложенного теплообменного аппарата, на фиг. 2 - поперечное сечение предложенного теплообменного аппарата, на фиг. 3 показано поперечное сечение предложенного теплообменного аппарата в варианте исполнения поперечного сечения теплообменных труб плоским с двумя лучами, в виде прямоугольника со скругленными торцами, на фиг. 4 показано поперечное сечение предложенного теплообменного аппарата в варианте исполнения поперечного сечения теплообменной трубы профилированным в виде трехлучевой звезды с полыми лучами, на фиг. 5 показано поперечное сечение предложенного теплообменного аппарата в варианте исполнения поперечного сечения теплообменной трубы профилированным в виде четырехлучевой звезды с полыми лучами, на фиг. 6 показано поперечное сечение предложенного теплообменного аппарата в варианте исполнения поперечного сечения теплообменной трубы профилированным с радиальными каналами, проходящими по всей длине центральной части трубы и делящими поперечное сечение трубы на несколько секторов.

Описание основного варианта исполнения

Теплообменный аппарат содержит корпус 1 с входными 2, 3 и выходными 4, 5 патрубками ввода и вывода горячего и холодного потоков соответственно. Профилированные теплообменные трубы 6 установлены внутри корпуса 1 в трубных досках 7. Полости теплообменных труб 6 сообщены с соответствующими полостями подвода и отвода.

Поперечное сечение центральной части 8 каждой теплообменной трубы 6, выполнено профилированным в виде звезды с полыми лучами 9, образованными монотонно чередующимися выступами 10 и впадинами 11. Полости лучей 9 сообщаются между собой и с полостями соответствующих патрубков ввода и вывода потока. Входная 12 и выходная 13 части трубы 6 выполнены цилиндрическими с обеспечением переходной зоны 14 от цилиндрических участков трубы к профилированному. Проходная площадь поперечного сечения теплообменной трубы 6, выполненного в виде звезды, равна или больше проходной площади каждого цилиндрического участка указанной трубы.

Теплообменные трубы для предложенного теплообменного аппарата могут быть изготовлены следующим образом.

Концы трубы/входная 12 и выходная 13 части трубы 6 пластически деформируются, например, прокатываются роликом, ось вращения которого параллельна оси трубы, на токарном станке для уменьшения диаметра. В итоге получается труба 6 с концами, диаметр которых составляет 0,6…0,8 диаметра центральной части трубы, и с переходной зоной от деформированных мест к центральной недеформированной части трубы, после чего труба прокатывается на профилированных роликах, оси вращения которых расположены перпендикулярно продольной оси трубы, для придания ее поперечному сечению по всей длине трубы требуемой формы в виде звезды с полыми лучами 9, образованными монотонно чередующимися выступами 10 и впадинами 11.

Предложенный теплообменный аппарат работает следующим образом.

Во входные 2, 3 патрубки подается горячий и холодный потоки и отводятся через выходные патрубки 4 и 5. Из входных патрубков поток попадает в полости профилированных теплообменных труб 6, имеющих цилиндрические входные 12 и выходные 13 части с профилированной центральной частью. Проходя по трубе, поток изменяет свою форму со сплошной круглой на профилированную с лучами 9, образованными монотонно чередующимися выступами 10 и впадинами 11.

Такое изменение формы поперечного сечения трубы позволяет улучшить условия теплообмена за счет увеличения поверхности теплообмена при неизменной площади поперечного сечения.

Описание варианта исполнения с плоским сечением

Теплообменный аппарат содержит корпус 1 с входными 2, 3 и выходными 4, 5 патрубками ввода и вывода горячего и холодного потоков соответственно. Профилированные теплообменные трубы 6 установлены внутри корпуса 1 в трубных досках 7. Полости теплообменных труб 6 сообщены с соответствующими полостями подвода и отвода. Поперечное сечение центральной части 8 каждой теплообменной трубы 6, выполнено профилированным в виде прямоугольника 15, образованного сторонами 16 и 17. Входная 12 и выходная 13 части трубы 6 выполнены цилиндрическими с обеспечением переходной зоны 14 от цилиндрических участков трубы к профилированному. Проходная площадь поперечного сечения теплообменной трубы 6, выполненного в виде прямоугольника, равна или больше проходной площади каждого цилиндрического участка указанной трубы.

Теплообменные трубы для предложенного теплообменного аппарата могут быть изготовлены следующим образом.

Концы трубы/входная 12 и выходная 13 части теплообменной трубы 6 пластически деформируются, например, прокатываются роликом, ось вращения которого параллельна оси трубы, на токарном станке для уменьшения диаметра. В итоге получается труба 6 с концами, диаметр которых составляет (0,6…0,8) диаметра центральной части трубы, и с переходной зоной от деформированных мест к центральной недеформированной части трубы, после чего труба прокатывается на профилированных роликах, оси вращения которых расположены перпендикулярно продольной оси трубы, для придания ее поперечному сечению по всей длине трубы требуемой формы в виде прямоугольника, образованными сторонами 16 и 17.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,8…2,2 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в три раза. В этом случае толщина центральной части струи будет равна толщине луча. Изменение формы поперечного сечения - со сплошного круглого на профилированное прямоугольное с одновременным уменьшением толщины - позволит улучшить условия теплообмена, т.к. будет нагреваться/отдавать тепло не только периферийная часть сплошной струи, а вся профилированная струя с достаточно тонким поперечным сечением. Кроме того, такое исполнение поперечного сечения - переход от сплошного круглого к профилированному прямоугольному и обратно - позволяет дополнительно турбулизовать поток, так как в местах деформации потока будут возникать турбулентные явления, что также приводит к интенсификации теплообмена.

Предложенный теплообменный аппарат работает следующим образом.

Во входные 2, 3 патрубки подается горячий и холодный потоки и отводятся через выходные патрубки 4 и 5. Из входных патрубков поток попадает в полости профилированных теплообменных труб 6, имеющих цилиндрические входные 12 и выходные 13 части с профилированной центральной частью 8. Проходя по трубе, поток изменяет свою форму со сплошной круглой на профилированную, в виде прямоугольника 9, образованными сторонами 16 и 17.

Выполнение центральных участков теплообменных труб плоскими позволит более компактно разместить теплообменные трубы в полости корпуса, что, в конечном итоге, позволит на 30-40% уменьшить радиальные размеры теплообменного аппарата, улучшить условия теплообмена и улучшить массово-габаритные характеристики теплообменного аппарата за счет уменьшения его габаритных размеров при сохранении длины пути потока.

Описание варианта исполнения с трехлучевым сечением

Теплообменный аппарат содержит корпус 1 с входными 2, 3 и выходными 4, 5 патрубками ввода и вывода горячего и холодного потоков соответственно. Профилированные теплообменные трубы 6 установлены внутри корпуса 1 в трубных досках 7. Полости теплообменных труб 6 сообщены с соответствующими полостями подвода и отвода.

Поперечное сечение центральной части 8 каждой теплообменной трубы 6, выполнено профилированным в виде трехлучевой звезды с полыми лучами 18, образованными монотонно чередующимися выступами 19 и впадинами 20. Полости лучей 18 сообщаются между собой и с полостями соответствующих патрубков ввода и вывода потока. Входная 12 и выходная 13 части трубы 6 выполнены цилиндрическими с обеспечением переходной зоны 14 от цилиндрических участков трубы к профилированному. Проходная площадь поперечного сечения теплообменной трубы 6, выполненного в виде трехлучевой звезды, равна или больше проходной площади каждого цилиндрического участка указанной трубы. Теплообменные трубы 6 расположены таким образом, что выступ 19 вертикального луча 18 поперечного сечения каждой предыдущей трубы располагается во впадине 20 между лучами 18 поперечного сечения каждой последующей трубы в поперечном сечении пучка труб. Лучи 18 смежных участков труб 6 расположены параллельно или практически параллельно между собой, при этом максимальное расстояние между плоскими поверхностями двух смежных лучей 18 не превышает толщину луча.

Теплообменные трубы для предложенного теплообменного аппарата могут быть изготовлены следующим образом.

Концы трубы/входная 12 и выходная 13 части теплообменной трубы 6 пластически деформируются, например, прокатываются роликом, ось вращения которого параллельна оси трубы, на токарном станке для уменьшения диаметра. В итоге получается труба 6 с концами, диаметр которых составляет 0,6…0,8 диаметра центральной части трубы, и с переходной зоной от деформированных мест к центральной недеформированной части трубы, после чего труба прокатывается на профилированных роликах, оси вращения которых расположены перпендикулярно продольной оси трубы, для придания ее поперечному сечению по всей длине трубы требуемой формы в виде трехлучевой звезды с полыми лучами 18, образованными монотонно чередующимися выступами 19 и впадинами 20.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,6…1,8 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в три раза. В этом случае толщина центральной части струи будет равна толщине луча, что приведет к улучшению условий теплообмена, т.к. будет нагреваться/отдавать тепло не только периферийная часть сплошной струи, а вся профилированная струя с достаточно тонкими лучами без ярко выраженной центральной части струи. Кроме того, такое исполнение поперечного сечения - переход от сплошного к профилированному и обратно - позволяет дополнительно турбулизовать поток, так как в местах разделения/слияния потока будут возникать турбулентные явления, что также приводит к интенсификации теплообмена.

Предложенный теплообменный аппарат работает следующим образом.

Во входные 2, 3 патрубки подается горячий и холодный потоки и отводятся через выходные патрубки 4 и 5. Из входных патрубков поток попадает в полости профилированных теплообменных труб 6, имеющих цилиндрические входные 12 и выходные 13 части с профилированной центральной частью. Проходя по трубе, поток изменяет свою форму со сплошной круглой на профилированную, в виде трехлучевой звезды с лучами 18, образованными монотонно чередующимися выступами 19 и впадинами 20.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,6…1,8 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в три раза. В этом случае толщина центральной части струи будет равна толщине луча, что позволит улучшить условия теплообмена, т.к. будет нагреваться/отдавать тепло не периферийная часть струи, а вся струя, причем видоизменение формы струи приводит к ее дополнительной турбулизации за счет того, что в местах разделения сплошной струи на лучи и в местах слияния лучей в сплошную струю будет возникать турбулизация потока, что приведет к дополнительному перемешиванию слоев потока между собой и позволит улучшить условия теплообмена и теплопередачи.

Кроме того, расположение лучей смежных участков труб параллельно или практически параллельно между собой, таким образом, что максимальное расстояние между плоскими поверхностями двух смежных лучей не превышает толщину луча, позволит значительно увеличить длину пути другого потока от входного патрубка к выходному, что, в конечном итоге, также позволит улучшить условия теплообмена и улучшить массово-габаритные характеристики теплообменного аппарата за счет уменьшения его габаритных размеров при сохранении длины пути потока.

Описание варианта исполнения с четырехлучевым сечением

Теплообменный аппарат содержит корпус 1 с входными 2, 3 и выходными 4, 5 патрубками ввода и вывода горячего и холодного потоков соответственно. Профилированные теплообменные трубы 6 установлены внутри корпуса 1 в трубных досках 7. Полости теплообменных труб 6 сообщены с соответствующими полостями подвода и отвода. Поперечное сечение центральной части 8 каждой теплообменной трубы 6, выполнено профилированным в виде четырехлучевой звезды с полыми лучами 21, образованными монотонно чередующимися выступами 22 и впадинами 23. Полости лучей 21 сообщаются между собой и с полостями соответствующих патрубков ввода и вывода потока. Входная 12 и выходная 13 части трубы 6 выполнены цилиндрическими с обеспечением переходных зон 14 от цилиндрических участков трубы к профилированному. Проходная площадь поперечного сечения теплообменной трубы 6, выполненного в виде четырехлучевой звезды, равна или больше проходной площади каждого цилиндрического участка указанной трубы. Лучи 21 смежных участков труб 6 расположены параллельно или практически параллельно между собой, при этом максимальное расстояние между плоскими поверхностями двух смежных лучей 21 не превышает толщину луча.

Теплообменные трубы для предложенного теплообменного аппарата могут быть изготовлены следующим образом.

Концы трубы/входная 12 и выходная 13 части теплообменной трубы 6 пластически деформируются, например, прокатываются роликом, ось вращения которого параллельна оси трубы, на токарном станке для уменьшения диаметра. В итоге получается труба 6 с концами, диаметр которых составляет (0,6…0,8) диаметра центральной части трубы, и с переходной зоной от деформированных мест к центральной недеформированной части трубы, после чего труба прокатывается на профилированных роликах, оси вращения которых расположены перпендикулярно продольной оси трубы, для придания ее поперечному сечению по всей длине трубы требуемой формы в виде четырехлучевой звезды с полыми лучами 21, образованными монотонно чередующимися выступами 22 и впадинами 23.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,2…1,4 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в два-три раза и позволит улучшить условия теплообмена, т.к. будет нагреваться/отдавать тепло не только периферийная часть сплошной струи, а вся профилированная струя с достаточно тонкими лучами. Кроме того, такое исполнение поперечного сечения - переход от сплошного к профилированному и обратно - позволяет дополнительно турбулизовать поток, так как в местах разделения/слияния потока будут возникать турбулентные явления, что также приводит к интенсификации теплообмена.

Предложенный теплообменный аппарат работает следующим образом.

Во входные 2, 3 патрубки подается горячий и холодный потоки и отводятся через выходные патрубки 4 и 5. Из входных патрубков поток попадает в полости профилированных теплообменных труб 6, имеющих цилиндрические входные 12 и выходные 13 части с профилированной центральной частью 8. Проходя по трубе, поток изменяет свою форму со сплошной круглой на профилированную, в виде четырелучевой звезды с лучами 21, образованными монотонно чередующимися выступами 22 и впадинами 23.

Кроме того, расположение лучей смежных участков труб параллельно или практически параллельно между собой, таким образом, что максимальное расстояние между плоскими поверхностями двух смежных лучей не превышает толщину луча, позволит значительно увеличить длину пути другого потока от входного патрубка к выходному, что, в конечном итоге, также позволит улучшить условия теплообмена и улучшить массово-габаритные характеристики теплообменного аппарата за счет уменьшения его габаритных размеров при сохранении длины пути потока. При этом поток, проходя от входного патрубка к выходному, будет проходить через участки «расширения - сжатия», образованные монотонно чередующимися выступами 22 и впадинами 23, что приведет к дополнительному перемешиванию слоев внутри потока.

Описание варианта исполнения с полыми радиальными каналами Теплообменный аппарат содержит корпус 1 с входными 2, 3 и выходными 4, 5 патрубками ввода и вывода горячего и холодного потоков соответственно. Профилированные теплообменные трубы 6 установлены внутри корпуса 1 в трубных досках 7. Полости теплообменных труб 6 сообщены с соответствующими полостями подвода и отвода. Поперечное сечение центральной части 8 каждой теплообменной трубы 6, выполнено профилированным в виде трехлучевой звезды с полыми радиальными каналами 24, проходящими по всей длине центральной части трубы и делящими поперечное сечение трубы на несколько секторов 25, причем полости указанных секторов сообщаются между собой в центральной части сечения 26 и с полостями соответствующих патрубков ввода и вывода потока. Входная 12 и выходная 13 части трубы 6 выполнены цилиндрическими с обеспечением переходной зоны 14 от цилиндрических участков трубы к профилированному. Проходная площадь поперечного сечения теплообменной трубы 6, выполненного в виде трехлучевой звезды, равна или больше проходной площади каждого цилиндрического участка указанной трубы.

Теплообменные трубы для предложенного теплообменного аппарата могут быть изготовлены следующим образом.

Концы трубы/входная 12 и выходная 13 части теплообменной трубы 6 пластически деформируются, например, прокатываются роликом, ось вращения которого параллельна оси трубы, на токарном станке для уменьшения диаметра. В итоге получается труба 6 с концами, диаметр которых составляет 0,6…0,8 диаметра центральной части трубы, и с переходной зоной от деформированных мест к центральной недеформированной части трубы, после чего труба прокатывается на профилированных роликах, оси вращения которых расположены перпендикулярно продольной оси трубы, для придания ее поперечному сечению по всей длине трубы требуемой формы в виде трехлучевой звезды с полыми радиальными каналами 24, делящими поперечное сечение на несколько секторов 25.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,6…1,8 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в три раза и улучшить условия теплообмена, т.к. будет нагреваться/отдавать тепло не только периферийная часть сплошной струи, а вся профилированная струя с достаточно тонкими лучами, при этом прогрев/теплоотдача будут происходить не только по периметру теплообменной трубы, но и по стенкам полых радиальных каналов 24, расположенных в центральной части сечения. Кроме того, такое исполнение поперечного сечения - переход от сплошного к профилированному и обратно - позволяет дополнительно турбулизовать поток, так как в местах разделения/слияния потока будут возникать турбулентные явления, что также приводит к интенсификации теплообмена.

Предложенный теплообменный аппарат работает следующим образом.

Во входные 2, 3 патрубки подается горячий и холодный потоки и отводятся через выходные патрубки 4 и 5. Из входных патрубков поток попадает в полости профилированных теплообменных труб 6, имеющих цилиндрические входные 12 и выходные 13 части с профилированной центральной частью 8.

Проходя по трубе, поток изменяет свою форму со сплошной круглой на профилированную, в виде трехлучевой звезды с секторами 25, образованными монотонно чередующимися радиальными каналами 24.

Такое видоизменение формы поперечного сечения трубы позволяет при неизменной площади поперечного сечения трубы, и, следовательно, при неизменном перепаде давления на трубе, примерно в 1,6…1,8 раза увеличить периметр поверхностей теплообмена с одновременным уменьшением характерного поперечного размера-размера центральной части струи - примерно в три раза. Такое изменение формы поперечного сечения - со сплошного круглого на профилированное трехлучевое с одновременным уменьшением толщины - позволит улучшить условия теплообмена, т.к. будет нагреваться/отдавать тепло не периферийная часть струи, а вся струя. Такое видоизменение формы струи приводит к ее дополнительной турбулизации за счет того, что в местах разделения сплошной струи на лучи и в местах слияния лучей в сплошную струю будет возникать турбулизация потока, что приведет к дополнительному перемешиванию слоев потока между собой и позволит улучшить условия теплообмена и теплопередачи.

В варианте исполнения, монотонно чередующиеся радиальные каналы 24 выполнены по спирали. Такое исполнение позволяет придать дополнительное вращение потоку компонентов, находящихся как внутри канала 24, так и внутри секторов 25, что, в конечном итоге, дополнительно позволит интенсифицировать теплообмен за счет вращения потоков.

Использование предложенного технического решения позволит интенсифицировать теплообмен как в трубном, так и межтрубном пространствах пучков теплообменных труб с одновременным увеличением удельной площади теплообмена, что, в конечном итоге, позволит уменьшить габаритные размеры теплообменного аппарата, либо увеличить площадь теплообмена при неизменных габаритных размерах.


Теплообменный аппарат
Теплообменный аппарат
Теплообменный аппарат
Теплообменный аппарат
Теплообменный аппарат
Теплообменный аппарат
Теплообменный аппарат
Источник поступления информации: Роспатент

Показаны записи 11-20 из 244.
25.08.2017
№217.015.d032

Способ обеспечения посадки вертолета

Изобретение относится к области приборостроения и может найти применение для автоматизации процесса измерения параметров положения вертолета на посадке и оценить пригодность подстилающей земной поверхности для безопасной посадки в автоматическом режиме. Технический результат – повышение...
Тип: Изобретение
Номер охранного документа: 0002621215
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d043

Теплообменный аппарат

Изобретение относится к области теплотехники, а именно к теплообменным аппаратам. Теплообменный аппарат содержит цилиндрический корпус с патрубками подвода компонента внутрь корпуса и его отвода из корпуса, расположенными во входной и выходной частях корпуса соответственно, теплообменные трубы,...
Тип: Изобретение
Номер охранного документа: 0002621194
Дата охранного документа: 01.06.2017
26.08.2017
№217.015.d4ba

Способ определения процентного соотношения жидкой фазы в криогенном газожидкостном потоке

Изобретение относится к измерительной технике и может быть использовано при разработке способов и устройств для определения процентного содержания жидкой фазы в криогенном газожидкостном потоке. Способ определения процентного соотношения жидкой фазы в криогенном газожидкостном потоке...
Тип: Изобретение
Номер охранного документа: 0002622242
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.dc11

Способ ультразвукового контроля твердости полимеров

Использование: для определения твердости по Шору полимера. Сущность изобретения заключается в том, что испытуемый образец размещают между излучателем и приемником ультразвуковых колебаний, подают с генератора электрический сигнал определенной частоты и длительности на упомянутый излучатель...
Тип: Изобретение
Номер охранного документа: 0002624415
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dc3c

Способ извлечения тирозина и витамина b из водного раствора

Изобретение относится к области аналитической химии, в частности к способу извлечения тирозина и витамина В из водных растворов. Способ включает приготовление водно-солевого раствора смеси тирозина и витамина В путем их растворения в насыщенном растворе высаливателя, в качестве которого...
Тип: Изобретение
Номер охранного документа: 0002624217
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dcc7

Несущий винт вертолета

Изобретение относится к области авиации, в частности к конструкциям несущих винтов винтокрылых летательных аппаратов. Несущий винт вертолета состоит из втулки и лопастей, каждая из которых содержит лонжерон, хвостовые отсеки, наконечник и законцовку. Концевая часть каждой лопасти в поперечном...
Тип: Изобретение
Номер охранного документа: 0002624349
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dd1e

Глиссадный радиомаяк

Изобретение относится к области радионавигации, в частности к системам инструментального захода летательного аппарата на посадку, и может быть использовано при разработке радиомаячных систем посадки, предназначенных для вывода самолетов на взлетно-посадочную полосу (ВПП) аэродрома. Достигаемый...
Тип: Изобретение
Номер охранного документа: 0002624459
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.e311

Способ навигации подвижного объекта

Изобретение относится к навигации и предназначено для счисления координат (определения пространственного перемещения) подвижного объекта относительно земли. Достигаемый технический результат – автоматизация измерения параметров пространственного (углового и линейного) перемещения подвижного...
Тип: Изобретение
Номер охранного документа: 0002626017
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e464

Полосовой усилитель

Изобретение относится к радиотехнике и может быть использовано в радиотехнических установках. Технический результат заключается в увеличении динамического диапазона при усилении сигналов в узком диапазоне частот за счет снижения уровня шумов. Указанный результат достигается за счет того, что в...
Тип: Изобретение
Номер охранного документа: 0002626553
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e5b5

Способ обработки сигналов в тракте высокой частоты радиоприемных устройств

Изобретение относится к средствам обработки сигналов в тракте высокой частоты радиоприемных устройств. В известных устройствах осуществляется фильтрация и усиление сигнала, а в предлагаемом способе вводятся операции усиления в пассивной цепи и суммирования сигналов с выхода усилителя на входе...
Тип: Изобретение
Номер охранного документа: 0002626662
Дата охранного документа: 31.07.2017
Показаны записи 11-20 из 590.
10.05.2013
№216.012.3e2e

Камера жидкостного ракетного двигателя

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке форсунок, смесительных головок и камер жидкостных ракетных двигателей (ЖРД). Камера ЖРД содержит профилированные...
Тип: Изобретение
Номер охранного документа: 0002481485
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e2f

Жидкостный ракетный двигатель

Изобретение относится к области ракетного двигателестроения и может быть использовано при создании безгенераторных жидкостных ракетных двигателей, работающих на криогенных компонентах, например кислороде и водороде. Жидкостный ракетный двигатель содержит кольцевую камеру со смесительной...
Тип: Изобретение
Номер охранного документа: 0002481486
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e30

Камера жидкостного ракетного двигателя

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке форсунок, смесительных головок и камер жидкостных ракетных двигателей (ЖРД). Камера жидкостного ракетного двигателя...
Тип: Изобретение
Номер охранного документа: 0002481487
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e33

Соосно-струйная форсунка

Изобретение относится к области энергетических установок и может быть использовано при разработке форсунок и смесительных головок жидкостных ракетных двигателей (ЖРД). Соосно-струйная форсунка содержит имеющий осевой вход и выход трубчатый корпус с основным осевым каналом, а также не менее чем...
Тип: Изобретение
Номер охранного документа: 0002481490
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e34

Смесительная головка камеры жидкостного ракетного двигателя

Изобретение относится к смесительным головкам жидкостных ракетных двигателей (ЖРД). Смесительная головка камеры жидкостного ракетного двигателя содержит корпус, блок подачи окислителя, блок подачи водорода, блок подачи керосина. Соосно-струйные форсунки установлены в указанных блоках...
Тип: Изобретение
Номер охранного документа: 0002481491
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e35

Способ подачи компонентов топлива в камеру жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям (ЖРД). Способ подачи компонентов топлива в камеру жидкостного ракетного двигателя заключается в подаче окислителя, преимущественно кислорода, и горючего, преимущественно керосина и водорода, в полость камеры сгорания из соответствующих...
Тип: Изобретение
Номер охранного документа: 0002481492
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e36

Способ подачи компонентов топлива в камеру жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателей (ЖРД). Способ подачи компонентов топлива в камеру ЖРД включает подачу окислителя, преимущественно кислорода, и горючего, преимущественно керосина и водорода, в полость камеры сгорания из смесительной головки при помощи соосно-струйных...
Тип: Изобретение
Номер охранного документа: 0002481493
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e37

Способ подачи компонентов топлива в камеру жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям (ЖРД). Способ подачи компонентов топлива в камеру ЖРД заключается в подаче окислителя и горючего в полость камеры сгорания при помощи соосно-струйных форсунок, содержащих трубчатый корпус с основным осевым каналом, а также не менее чем на...
Тип: Изобретение
Номер охранного документа: 0002481494
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3e38

Соосно-струйная форсунка

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке форсунок и смесительных головок жидкостных ракетных двигателей (ЖРД). Соосно-струйная форсунка содержит имеющий осевой...
Тип: Изобретение
Номер охранного документа: 0002481495
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.4168

Камера жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям (ЖРД). Камера ЖРД содержит профилированные регенеративно охлаждаемые цилиндрическую часть, сопло, смесительную головку, содержащую корпус, блок подачи окислителя, блок подачи водорода, блок подачи керосина. Соосно-струйные форсунки...
Тип: Изобретение
Номер охранного документа: 0002482314
Дата охранного документа: 20.05.2013
+ добавить свой РИД