×
23.11.2018
218.016.a02b

Результат интеллектуальной деятельности: Способ прогнозирования работоспособности термоэмиссионного электрогенерирующего элемента с вентилируемым твэлом

Вид РИД

Изобретение

№ охранного документа
0002673061
Дата охранного документа
22.11.2018
Аннотация: Изобретение относится к космической атомной энергетике, к разработке способов прогнозирования работоспособности термоэмиссионных электрогенерирующих элементов при их создании и наземной отработке. Способ прогнозирования работоспособности термоэмиссионного электрогенерирующего элемента с вентилируемым твэлом включает его установку в составе электрогенерирующего канала в реактор, контроль тепловой мощности твэла электрогенерирующего элемента при неизменной тепловой мощности реактора, оценку температуры эмиттерной оболочки и контроль величины активности газов вентилируемого твэла на выходе из электрогенерирующего канала. В процессе контроля активности и давления газов на выходе из электрогенерирующего канала определяют максимальное время переконденсации топливного материала в твэле электрогенерирующего элемента. Технический результат – обеспечение возможности прогнозирования работоспособности системы вентиляции твэлов высокотемпературных электрогенерирующих элементов, повышение точности и надежности процесса контроля, сокращение сроков экспериментальной отработки термоэмиссионных электрогенерирующих элементов. 5 ил.

Изобретение относится к космической атомной энергетике, к прогнозированию работоспособности термоэмиссионных электрогенерирующих элементов (ЭГЭ) при их создании и наземной отработке.

Важнейшим этапом разработки термоэмиссионного реактора-преобразователя (ТРП) является подтверждение ресурсно-энергетических характеристик электрогенерирующих каналов (ЭГК), образующих активную зону ТРП. ЭГК могут состоять из одного ЭГЭ или представлять последовательно соединенные сборки ЭГЭ, в которых совершается полный цикл преобразования тепловой энергии в электрическую. Поэтому ресурсные испытания термоэмиссионных ЭГЭ в реакторе (в составе петлевого канала в исследовательском реакторе или в составе ТРП) являются определяющим этапом при создании ЭГК и ТРП в целом [Ресурсные испытания термоэмиссионного преобразователя / Е.С. Бекмухамбетов и др. - Атомная энергия, т. 35, вып. 6, 1973, с. 387-390], [Испытания многоэлементных термоэмиссионных экспериментальных сборок. / В.И. Бержатый, Н.А. Грибоедов, В.П. Грицаенко и др. - Атомная энергия, т. 31, вып. 6, 1971, с. 585-588], [Об эффективности введения в программу создания энергонапряженных и долгоресурсных термоэмиссионных ЭГК этапа петлевых реакторных испытаний ампульных устройств с макетами топливно-эмиттерных узлов с нейтронографическим методом неразрушающего контроля/ В.А. Корнилов В.А. и др. Пятая международная конференция "Ядерная энергетика в космосе". Сб. докладов под общей ред. проф. И.И. Федика. Часть 2. Подольск, Моск. обл., 1999, с. 300-309]. Большинство испытанных в реакторах экспериментальных термоэмиссионных ЭГЭ имели оболочечные эмиттеры, когда нагрузка, создаваемая давлением газообразных продуктов деления (ГПД), воспринимается эмиттерной оболочкой. Причем за ресурс работы ЭГЭ принимается время до короткого замыкания эмиттера с коллектором, характеризующим прекращение генерации электроэнергии. В связи с этим для анализа результатов испытаний, поведения материалов, а также факторов, влияющих на ресурсные характеристики ЭГЭ, представляют интерес расчетно-теоретические исследования поведения ядерного горючего в твэле. Твэл ЭГЭ включает цилиндрическую эмиттерную оболочку (ЭО), с находящимся внутри нее топливным материалом (ТМ), и систему вентиляции ГПД, позволяющую решить проблему длительной работоспособности ЭГЭ. В процессе работы реактора ГПД, в основном это Xe и Kr [Дегальцев Ю.Г., Пономарев-Степной Н.Н., Кузнецов В.Ф. Поведение высокотемпературного ядерного топлива при облучении. Москва. Энергоатомиздат.1987, с. 15], выходят из ТМ в систему вентиляции ГПД и тем самым разгружают ЭО. Особенно актуальна надежная работа системы вентиляции ГПД в высокотемпературных термоэмиссионных ЭГК, использующих в качестве ТМ высоколетучий диоксид урана, где оболочки твэлов, выполненные, например из вольфрама или сплавов на его основе, работают при гомологической температуре ~ 0,5 и выше. Рассматриваем ЭГЭ с системой вентиляции ГПД из таких твэлов, выполненной в виде специального газоотводного устройства (ГОУ), состоящего из осесимметричной трубки с капиллярным наконечником (жиклером) [Корнилов В.А. Процессы тепло- и массопереноса в высокотемпературных твэлах термоэмиссионных электрогенерирующих каналов.// Ракетно-космическая техника. Сер. XII. РКК "Энергия", Королев, 1996. Вып. 2-3, с. 99-112]. В процессе работы ЭГЭ происходит переконденсация ТМ, его перераспределение по объему твэла, уплотнение с перестройкой исходной структуры. В результате со временем в твэле образуется изотермическая центральная газовая полость (ЦГП), куда стекаются ГПД [Нейтронографические исследования термоэмиссионных ЭГК при петлевых реакторных испытаниях / Е.С. Бекмухамбетов, А.С. Карнаухов, В.А. Корнилов и др. // Ракетно-космическая техника. Сер. XII. РКК "Энергия", Королев, 1996. Вып. 2-3, с. 113-131]. Объем газовой полости равен сумме объемов исходной технологической пористости ТМ и объема исходного зазора между ТМ и ЭО. При оптимальном конструировании ЭГЭ жиклер ГОУ будет находиться в зоне ЦГП, откуда ГПД через жиклер по трубке ГОУ выходят за пределы твэла. Причем расположение жиклера ГОУ в зоне ЦГП является необходимым условием работоспособности системы вентиляции рассматриваемой конструкции твэла термоэмиссионного ЭГЭ [Метод расчета температурных полей гетерогенного топливного сердечника термоэмиссионного электрогенерирующего элемента/В.А. Корнилов, Ю.И. Сухов, В.Д. Юдицкий - Атомная энергия, т. 49, вып. 6, 1980, с. 393-394]. Конструкция системы вывода ГПД через осесимметричную трубку с жиклером существенно снижает поток паров ТМ, выходящего вместе с ГПД, из твэла, что позволяет поднять энергоресурсные характеристики ЭГЭ, ЭГК и ТРП в целом.

Известен способ прогнозирования работоспособности термоэмиссионных электрогенерирующих элементов при ресурсных испытаниях ЭГЭ с вентилируемым твэлом, примененный при разработке ТРП космического назначения "ТОПАЗ-2" [Дегальцев Ю.Г., Слабкий В.Д., Гонтарь А.С. Обобщение результатов послереакторных исследований одноэлементных ЭГК, прошедших ЯЭИ в опытных установках Я-82, 81, и прогнозирование ресурса. Пятая международная конференция "Ядерная энергетика в космосе". Сб. докладов под общей ред. проф. И. И. Федика. Часть 2. Подольск, Моск. обл., 1999, с. 272-279]. Испытывались одноэлементные ЭГК с центральным вентиляционным каналом в топливном сердечнике и оптимизированной структурой ТМ. Основной особенностью ресурсных испытаний данных ЭГК являлось то, что испытания проводились при относительно "низкой" максимальной температуре эмиттерной оболочки (~1600 K и менее). В результате чего наблюдался незначительный осевой массоперенос ТМ в вентиляционном канале и зарастание его конденсатом ТМ не явилось основным фактором, определяющим запланированный ресурс работы данных ЭГК. Более значительный вклад в ресурсные характеристики этих ЭГК в данном температурном интервале дает деформация эмиттерной оболочки от распухания "захоложенного" ТМ в районе поясов дистанционаторов и, по-видимому, этот фактор явился определяющим в прогнозируемом ресурсе.

Основным недостатком данного способа ресурсных испытаний является то, что он не охватывает высокотемпературный диапазон (с температурой эмиттерной оболочки более 1600 K), где с возрастанием температуры резко активизируются процессы тепло- и массопереноса ТМ с перестройкой его структуры. Особенно это касается высоколетучих ТМ, как, например диоксид урана. В результате чего вклад в ресурсную составляющую таких факторов как исходная структура ТМ, нагрузки на эмиттерную оболочку от распухающего ТМ будут снижаться. При этом резко активизируются процессы массопереноса ТМ, приводящего к зарастанию вентиляционного канала и выходу его из строя. В результате быстрое возрастание давления ГПД, выходящих из ТМ в свободный объем твэла, приводит к высоким нагрузкам на ЭО, вплоть до короткого замыкания ЭО с коллектором и нарушению работоспособности ЭГЭ.

Известен способ прогнозирования работоспособности термоэмиссионных электрогенерирующих элементов при ресурсных испытаниях ЭГЭ с вентилируемым топливно-эмиттерным узлом, приведенный в [Патент RU №2223559. МПК G21C 3/40, G21D 7/04. Опубл. 10.02.2004.]. Система вентиляции твэла от ГПД выполнена в виде осесимметричного центрального канала, пронизывающего топливный сердечник. Ресурс работы рассматриваемой системы вентиляции определялся интенсивностью процессов массопереноса, а именно массопереносом ТМ в центральном канале и постепенным зарастанием его конденсатом ТМ в зонах конденсации. Зоны конденсации определяются, в первую очередь, температурными условиями на оболочке твэла. В случае многоэлементных ЭГК зоны конденсации ТМ в центральном канале, как правило, соответствуют местам наибольших потерь тепла через коммутационную перемычку и дистанционаторы ЭГЭ. Способ включает в себя установку электрогенерирующего элемента в составе электрогенерирующего канала в реактор. Сразу после вывода реактора на постоянный уровень тепловой мощности дополнительно измеряют температуру торцевой оболочки твэла. Определяют максимальную температуру в твэле и оценивают работоспособность системы вентиляции по определенному соотношению. Способ обеспечивает сокращение сроков экспериментальной отработки в реакторе термоэмиссионного ЭГЭ с системой вентиляции твэла.

Основным недостатком данного способа прогнозирования при ресурсных испытаниях является то, что способ применим только для конструкции ЭГЭ с вентиляцией ГПД из твэла через центральный канал в топливном сердечнике. Причем основной особенностью ресурсных испытаний данных ЭГК является ограничение времени испытаний при повышенных температурах эмиттерной оболочки твэлов ЭГЭ. Поскольку при этих условиях наблюдается значительный осевой массоперенос ТМ в центральном канале, что приводит к существенному выходу паров ТМ за пределы твэла. Пары ТМ, вышедшие из твэла, конденсируются на коллектор и одновременно проникают в межэлектродный зазор ЭГЭ, что нарушает термоэмиссионное преобразование энергии в плазменном диоде ЭГЭ.

Наиболее близким к изобретению по технической сущности является способ прогнозирования работоспособности термоэмиссионного электрогенерирующего элемента с вентилируемым твэлом, приведенный в [Патент RU №2165654. МПК G21D 7/04, H01J 45/00. Опубл. 20.04.2001]. Способ прогнозирования работоспособности термоэмиссионного электрогенерирующего элемента с вентилируемым твэлом включает его установку в составе электрогенерирующего канала в реактор, контроль тепловой мощности твэла электрогенерирующего элемента при неизменной тепловой мощности реактора, оценку температуры эмиттерной оболочки и контроль величины активности газов вентилируемого твэла на выходе из электрогенерирующего канала. Суть способа заключается в том, что в процессе эксперимента измеряют тепловую мощность ЭГЭ и оценивают температуру эмиттера в момент скачкообразного падения активности ГПД, затем определяют максимальный остаточный ресурс термоэмиссионного ЭГЭ по предлагаемому выражению, куда входят, кроме вышеперечисленных параметров, геометрические характеристики твэла и теплофизические характеристики материалов эмиттерной оболочки и ТМ. Ресурс работы термоэмиссионного ЭГЭ с вентилируемым твэлом разбивают как бы на два временных интервала: первый интервал характеризуется работоспособной системой вентиляции ГПД из твэла, снимающей нагрузку с эмиттерной оболочки ЭГЭ от ГПД; второй интервал определяет остаточный ресурс работы ЭГЭ при неработоспособной системе вентиляции, когда оболочка твэла воспринимает давление от распухающего ТМ и от ГПД, накапливающихся в центральном канале твэла. Причем в данном способе определяют максимальный остаточный ресурс работы ЭГЭ, когда величина межэлектродного зазора (МЭЗ) в начале второго интервала соответствует исходному значению.

Основным недостатком данного способа прогнозирования работоспособности термоэмиссионного электрогенерирующего элемента при ресурсных испытаниях является то, что не рассматривается наиболее важный в вопросе прогнозирования ресурса вентилируемых твэлов первый временной период, характеризующий прогнозируемый ресурс работы системы вентиляции термоэмиссионного ЭГЭ. Кроме того, в ходе испытаний не анализируется необходимое условие работоспособности системы вентиляции твэла, тем самым необоснованно продлеваются сроки дорогостоящих реакторных испытаний ЭГК.

Задачей изобретения является сокращение сроков и стоимости экспериментальной отработки в реакторе термоэмиссионного ЭГЭ с системой вентиляции газообразных продуктов деления из твэла, а также повышение точности прогнозирования работоспособности системы вентиляции термоэмиссионного ЭГЭ.

Техническим результатом изобретения является:

- возможность прогнозирования работоспособности системы вентиляции твэлов высокотемпературных электрогенерирующих элементов по фиксируемым параметрам контроля за процессом массопереноса топливного материала и процессом удаления ГПД;

- повышение точности и надежности контроля процесса удаления ГПД за пределы внутреннего объема твэла;

- сокращение сроков наземной экспериментальной отработки термоэмиссионных электрогенерирующих элементов и электрогенерирующего канала в целом при дорогостоящих реакторных испытаниях.

Технический результат достигается в способе прогнозирования работоспособности термоэмиссионного электрогенерирующего элемента с вентилируемым твэлом, включающем его установку в составе электрогенерирующего канала в реактор, контроль тепловой мощности твэла электрогенерирующего элемента при неизменной тепловой мощности реактора, оценку температуры эмиттерной оболочки и контроль величины активности газов вентилируемого твэла на выходе из электрогенерирующего канала, при этом вентилируют твэл термоэмиссионного электрогенерирующего элемента от газообразных продуктов деления через систему вентиляции, выполненную в виде осесимметричной трубки с капиллярным наконечником, одновременно с контролем активности газов вентилируемого твэла электрогенерирующего элемента проводят контроль давления газообразных продуктов деления на выходе из электрогенерирующего канала, в процессе контроля активности и давления газов на выходе из электрогенерирующего канала фиксируют момент времени скачкообразного падения активности и давления газообразных продуктов деления - τ1 затем в ходе ресурсных испытаний фиксируют момент времени скачкообразного всплеска активности и давления газообразных продуктов деления - τ2, причем во время контроля тепловой мощности твэла электрогенерирующего элемента фиксируют ее значение и соответствующий ей момент времени выхода тепловой мощности твэла электрогенерирующего элемента на стационарный режим - τС, после чего оценивают максимальную температуру эмиттерной оболочки ТЕ,макс и определяют время переконденсации топливного сердечника твэла на стационарном режиме - τП и определяют максимальное время переконденсации топливного материала в твэле электрогенерирующего элемента - τmах из выражения:

где

А и B - коэффициенты, зависящие от вида топливного материала;

εГ - относительное объемное содержание топливного материала в твэле;

RC - внутренний радиус цилиндрической оболочки твэла;

RH - наружный радиус топливного сердечника (исходное состояние);

RB - внутренний радиус топливного сердечника (исходное состояние), образующий центральный канал, в котором размещена осесимметричная трубка с капиллярным наконечником,

при этом о работоспособности системы вентиляции твэла в ходе ресурсных испытаний термоэмиссионного электрогенерирующего элемента судят по выполнению условия

Сущность изобретения поясняется чертежами (фиг. 1-5). На фиг. 1 представлена конструктивная схема ядерного реактора. На фиг. 2 представлен общий вид термоэмиссионного электрогенерирующего элемента в составе ЭГК. На фиг. 3 представлена конструктивная схема вентилируемого твэла с топливным сердечником, где топливный материал показан в исходном состоянии. Здесь RC - внутренний радиус цилиндрической оболочки твэла, RH - наружный радиус топливного сердечника, RB - внутренний радиус топливного сердечника. На фиг. 4 представлена конструктивная схема вентилируемого твэла с топливным сердечником после завершения процесса переконденсации топливного материала. На фиг. 5 приведена качественная картина изменения во времени некоторых характеристик в виде графиков зависимости Q(τ) - тепловыделения в твэле, ТЕ,макс(τ) - температуры эмиттера и J(τ) - массового потока ТМ на капиллярный наконечник. Здесь τ1 - фиксируемый момент времени скачкообразного падения активности и давления газообразных продуктов деления на выходе из электрогенерирующего канала, τ2 - фиксируемый момент времени скачкообразного всплеска активности и давления газообразных продуктов деления на выходе из электрогенерирующего канала, τС - момент времени выхода тепловой мощности твэла электрогенерирующего элемента на стационарный режим, τП - время переконденсации топливного сердечника твэла на стационарном режиме, τmах - максимальное время переконденсации топливного материала в твэле электрогенерирующего элемента.

На фиг. 1 - 4 обозначено:

1 - ядерный реактор;

2 - отражатель с органами системы управления и защиты;

3 - активная зона;

4 - петлевой канал (ПК);

5 - электрогенерирующий канал (ЭГК);

6 - электрогенерирующий элемент (ЭГЭ);

7 - датчик давления;

8 - датчик активности;

9 - резервуар-отстойник;

10 - тепловыделяющий элемент (твэл);

11 - коллектор;

12 - коллекторная изоляция;

13 - чехловая труба;

14 - дистанционатор;

15 - коммутационная перемычка;

16 - электроизоляция;

17 - датчик тепловой мощности;

18 - торцевая оболочка твэла;

19 - топливный материал (ТМ);

20 - технологический зазор;

21 - эмиттерная оболочка (ЭО);

22 - центральный канал;

23 - газоотводное устройство (ГОУ);

24 - осесимметричная трубка;

25 - капиллярный наконечник (жиклер);

26 - центральная газовая полость (ЦГП).

Измерение тепловой мощности ЭГЭ Q и оценку максимальной температуры эмиттера ТЕ,макс можно проводить по методам, изложенным, например в [Испытания многоэлементных термоэмиссионных экспериментальных сборок /В.И. Бержатый, Н.А. Грибоедов, В.П. Грицаенко и др. - Атомная энергия, т. 31, вып. 6, 1971, с. 585-588], [Некоторые результаты послереакторных исследований шестиэлементной термоэмиссионной сборки, проработавшей 2670 ч. /Г.А. Батырбеков, Е.С. Бекмухамбетов, В.И. Бержатый и др. - Атомная энергия, т. 40, вып. 5, 1976, с. 382-384], в частности контроль тепловой мощности Q можно проводить с помощью датчика, в качестве которого может быть использован секционированный калориметр интегрального теплового потока.

Способ реализуется следующим образом. Термоэмиссионный ЭГЭ 6 с вентилируемым твэлом 10 в составе электрогенерирующего канала 5 помещают в петлевой канал 4, снабженный необходимыми устройствами регистрации (датчиком 17 тепловой мощности, выделяемой в твэле 10, датчиком активности 8 ГПД, выходящих из твэла 10, датчиком давления 7 ГПД в вентилируемом твэле 10). ПК 4 с ЭГК 5 помещают в ячейку активной зоны 3 ядерного реактора 1 (фиг. 1, 2). Ядерный реактор 1 с отражателем с органами системы управления и защиты 2 выводят на планируемую тепловую мощность и поддерживают ее неизменной в течение ресурсных испытаний. В процессе работы ядерного реактора 1 в вентилируемом твэле 10 происходит деление ядерного горючего в ТМ 19. Причем, в исходном состоянии ТМ 19 в твэле 10 выполнен в виде цилиндрического топливного сердечника с наружным радиусом RH и с центральным каналом 22 радиуса RB, в котором размещена осесимметричная трубка 24 с капиллярным наконечником 25 (фиг. 3). Тепловую мощность, выделяемую в твэле 10 ЭГЭ 6, фиксируют с помощью датчика тепловой мощности 17 (фиг. 2).

При делении ядерного горючего в ТМ 19 образуются газообразные продукты деления, выходящие из ТМ 19 в свободный объем внутри твэла. Причем, в начальный период ресурсных испытаний ГПД выходят в технологический зазор 20 и в центральный канал 22. Откуда ГПД через жиклер 25 и осесимметричную трубку 24 ГОУ 23 выходят за пределы твэла 10, а затем и ядерного реактора 1 в резервуар-отстойник 9. В процессе эксперимента одновременно фиксируют величину активности газов датчиком активности 8 и давление газов датчиком давления 7 на выходе из электрогенерирующего канала 5. Тепло, выделяющееся при реакции деления ядерного горючего в ТМ 19, разогревает эмиттерную оболочку 21, вызывая, таким образом, эмиссию электронов с ЭО 21 и конденсацию их (электронов) на коллектор 11. Далее электроны с коллектора 11 по коммутационной перемычке 15 двигаются к ЭО 21 соседнего ЭГЭ 6. Причем межэлектродный зазор между ЭО 21 и коллектором 11 в ЭГЭ 6 поддерживается дистанционаторами 14, а коллектора 11 соседних ЭГЭ 6 отделены электроизоляцией 16. Тепло, не преобразованное в электроэнергию в ЭГЭ 6, с коллектора 11 через коллекторную изоляцию 12 и чехловую трубу 13 сбрасывается в систему охлаждения (на фигурах не показана) петлевого канала 4. При этом одновременно с ростом тепловой мощности в твэле 10 возрастает температура топливного сердечника с максимумом в центральной зоне твэла 10. Это обстоятельство приводит к интенсивной переконденсации ТМ 19 (особенно это касается топливных материалов с высокой упругостью пара и низкой теплопроводностью, как например, диоксида урана). Причем, перестройка структуры ТМ 19 по механизму испарение-конденсация как показывают расчетные и экспериментальные исследования идет по градиентам температур в топливном сердечнике и наиболее интенсивно в радиальном направлении в центральной зоне твэла, этот механизм рассмотрен например в [Корнилов В.А., Юдицкий В.Д. Моделирование тепло- и массопереноса в сердечнике термоэмиссионного твэла. Атомная энергия, 1982, том 53, вып. 2, с. 74-76] и в [Нейтронографические исследования термоэмиссионных ЭГК при петлевых реакторных испытаниях / Е.С. Бекмухамбетов, А.С. Карнаухов, В.А. Корнилов и др. // Ракетно-космическая техника. Сер. XII. РКК "Энергия", Королев, 1996. Вып. 2-3, с. 113-131]. Интенсивности процесса, особенно в начальный период, способствует технологический зазор 20, создающий термическое сопротивление тепловому потоку, идущему от ТМ 19 к ЭО 21. В результате наблюдается переконденсация ТМ 19 в технологическом зазоре 20 с наружной поверхности топливного сердечника, с начальным радиусом RH, на внутреннюю поверхность ЭО 21 с радиусом RС с постепенным «зарастанием» конденсатом ТМ 19 технологического зазора 20. Поскольку ГОУ 23 выполнено из материала с более высоким коэффициентом теплопроводности, чем ТМ 19, то часть тепла из центральной части твэла 10 отводится к периферии на торцевую оболочку 18 по ГОУ 23 более интенсивно. Это приводит к тому, что с внутренней поверхности топливного сердечника, с радиусом в исходном состоянии RB, идет переконденсация ТМ 19 на осесимметричную трубку 24 и на жиклер 25. В результате конденсат ТМ 19 временно перекрывает капиллярный наконечник 25, что сопровождается одновременным падением величины активности и давления ГПД на выходе из электрогенерирующего канала 5. Данная ситуация поясняется на фиг. 5, где приведена качественная картина изменения некоторых характеристик в процессе ресурсных испытаний: Q(τ) - тепловыделения в твэле 10, ТЕ,макс(τ) - максимальной температуры эмиттерной оболочки 21, J(τ) - массового потока ТМ 19 на капиллярный наконечник 25. Причем в процессе ресурсных испытаний влияние J(τ) в не явном виде отражается на динамике активности и давления ГПД фиксируемой показаниями датчика активности 8 и датчика давления 7. Фиксируют τ1 - момент времени скачкообразного падения активности и давления газообразных продуктов деления с помощью датчика активности 8 и датчика давления 7 (фиг. 1 и фиг. 5). Т.е. начиная с момента времени τ1 на жиклер 25 идет массовый поток ТМ 19, в результате жиклер 25 перекрыт конденсатом ТМ 19. При дальнейшем процессе ядерное горючее конденсата ТМ 19, в результате его деления на жиклере 25, будет перегревать жиклер 25 и конденсат с капиллярного наконечника 25 будет испаряться. Процесс испарения конденсата ТМ 19 с жиклера 25 завершается до момента времени τ2 с восстановлением работы ГОУ 23. В результате ГПД через жиклер 25 по осесимметричной трубке 24 будут свободно выходить из внутренней полости твэла 10 и далее из ЭГК 5 в резервуар-отстойник 9. В результате фиксируют τ2 - момент времени скачкообразного всплеска активности и давления ГПД с помощью датчика активности 8 и датчика давления 7. При выходе тепловой мощности твэла 10 электрогенерирующего элемента 6 на стационарный режим, что устанавливается датчиком тепловой мощности 17, фиксируют момент времени τС и тепловыделение Q. После чего оценивают максимальную температуру эмиттерной оболочки 21 ТЕ,макс (например, методом сравнения вольт-амперных характеристик, изложенным в [Испытания многоэлементных термоэмиссионных экспериментальных сборок. /В.И. Бержатый, Н.А. Грибоедов, В.П. Грицаенко и др. - Атомная энергия, т. 31, вып. 6, 1971, с. 585-588]). И далее по соотношению (2) определяют τП - время переконденсации топливного сердечника твэла на стационарном режиме. По соотношению (1) прогнозируют максимальное время τmax, за которое в процессе переконденсации и уплотнения ТМ 19 формируется в твэле 10 центральная газовая полость 26 (фиг. 4). Причем процесс переконденсации ТМ 19 сопровождается в зависимости от уровня тепловыделения, частичной или полной перестройкой структуры ТМ 19 из исходной равноосной структуры в столбчатую. После чего при выполнении условия (3) т2∈(τ1, τmах) считают, что на временном интервале Δτ=τ21 система вентиляции ЭГЭ 6 временно не работоспособна и с момента времени τ2 ее работоспособность восстановилась (фиг. 5). Выполнение условия т2∈(τ1, τmах) подтверждает оптимальный выбор конструктивных параметров ЭГЭ 6, для выбранного режима работы ЭГК 5, и правильный выбор относительного объемного содержания εГ ТМ 19, когда жиклер 25 ГОУ 23 будет находиться в зоне ЦГП 26. В этой ситуации температура жиклера 25 будет даже несколько выше температуры ТМ 19 на изотермической поверхности ЦГП 26 за счет γ-нагрева материала жиклера 25, выполненного, как правило, из тугоплавкого металла, например из вольфрама, что гарантирует не допущение конденсата ТМ 19 на капилляре жиклера 25. Если же на интервале (τ1, τmах) всплеска активности и давления на выходе из ЭГК 5 не наблюдается, то считают, что система вентиляции электрогенерирующего элемента 6 не работоспособна. Эта ситуация характерна случаю, когда процесс переконденсации ТМ 19 в твэле 10 завершен, но жиклер 25 не находится в зоне ЦГП 26, т.е. капилляр жиклера 25 перекрыт конденсатом ТМ 19.

Приведем вывод выражения (1) для определения максимального времени переконденсации ядерного горючего в твэле τmах, которое по максимуму будет складываться из τС - времени выхода тепловой мощности твэла электрогенерирующего элемента на стационарный режим и времени переконденсации ТМ на стационарном режиме τП. Для определения τП воспользуемся соотношением Мейера [С. Дешман. Научные основы вакуумной техники. М.: Из-во «Мир», 1964, с. 15]

где ν - число молекул ТМ покидающих, в условиях равновесия, с единицы площади наружную поверхность топливного сердечника за единицу времени;

n - концентрация молекул ТМ в паровой фазе в динамическом равновесии с конденсированной фазой ТМ;

va - средняя скорость теплового движения молекул ТМ.

Учитывая экспоненциальную зависимость давления пара ТМ (Р) от температуры Т для широкого класса ТМ [Котельников Р.Б. и др. Высокотемпературное ядерное топливо. Изд. 2-е. М.: Атомиздат, 1978, с. 40], [Горбань Ю.А. и др. Исследование испарения двуокиси и карбидов урана. Атомная энергия, 1967, т. 22, вып. 6, с. 465-467], можно записать

где А* и В - коэффициенты, зависящие от вида ТМ;

Т - температура паровой фазы ТМ.

С учетом соотношения Р=n⋅k⋅Т [С. Дешман. Научные основы вакуумной техники. Изд-во «Мир», М.: 1964, с. 12] и соотношения (5), запишем выражение для n в виде

где k - постоянная Больцмана.

Используем известное соотношение для средней скорости теплового движения молекул ТМ va [С. Дешман. Научные основы вакуумной техники. Из-во «Мир», М.: 1964, с. 21]

Полагая, что для цилиндрического топливного сердечника εГ=(RH2-RB2)/RC2, определим время τП переконденсации топливного сердечника твэла с образованием центральной газовой полости из соотношения

где ρ - плотность ТМ в конденсированной фазе;

mTM - масса молекулы ТМ;

εГ - относительное объемное содержание топливного материала в твэле;

RС - внутренний радиус цилиндрической оболочки твэла;

RH - наружный радиус топливного сердечника (исходное состояние);

RB - внутренний радиус топливного сердечника (исходное состояние), образующий центральный канал, в котором размещена осесимметричная трубка с капиллярным наконечником;

Выражение (8) оценивает время τП испарения радиального столба высотой Δ=RH-RB, вырезанного из топливного сердечника с единичной площадью поперечного сечения и отнесенное ко всему объему топливного сердечника. Время переконденсации топливного сердечника твэла τП оценено по максимуму, поскольку рассматривался процесс испарения-конденсации только в радиальном направлении на цилиндрическую оболочку твэла. Более детально процесс переконденсации топливного сердечника вентилируемого твэла с системой вывода ГПД через центральную трубку с капиллярным наконечником рассмотрен в [Корнилов В.А., Юдицкий В.Д. Моделирование тепло- и массопереноса в сердечнике термоэмиссионного твэла. Атомная энергия, 1982, том 53, вып. 2, с. 74-76].

Подставляем в соотношение (8) выражения из (6) и (7), причем температуру паровой фазы ТМ в первом приближении принимаем равной максимальной температуре эмиттерной оболочки твэла Т=ТЕ,макс получаем

где εГ - относительное объемное содержание топливного материала в твэле;

RС - внутренний радиус цилиндрической оболочки твэла;

RH - наружный радиус топливного сердечника (исходное состояние);

RB - внутренний радиус топливного сердечника (исходное состояние), образующий центральный канал, в котором размещена осесимметричная трубка с капиллярным наконечником;

ТЕ,макс - максимальная температура эмиттерной оболочки.

В (9) обозначим через А выражение:

причем коэффициент А зависит только от вида ТМ, откуда получаем соотношение (2)

Суммируя измеренное в эксперименте значение тC и вычисленное по соотношению (2) τП, определяем полное время переконденсации ТМ τmах, то есть получаем соотношение (1).

В качестве конкретного примера рассмотрим использование способа ресурсных испытаний термоэмиссионного электрогенерирующего элемента с вентилируемым твэлом, конструктивный вариант которого для исходного состояния топливного сердечника представлен на фиг. 3, где в качестве ТМ будем использовать диоксид урана с обогащением по 235U, равным 96%.

Термоэмиссионный ЭГЭ с вентилируемым твэлом в составе электрогенерирующего канала помещают в петлевой канал, снабженный необходимыми устройствами регистрации (датчиком тепловой мощности, выделяемой в твэле, датчиком активности ГПД, выходящих из твэла, датчиком давления ГПД в вентилируемом твэле). ПК с ЭГК помещают в ячейку активной зоны ядерного реактора. Ядерный реактор выводят на планируемую тепловую мощность и поддерживают ее неизменной в течение ресурсных испытаний.

Принимаем следующие геометрические параметры твэла, с топливным сердечником в исходном состоянии, характерные для типичного ЭГЭ: RC=7⋅10-3 м; LC=6⋅10-2 м; RH=6,5⋅10-3 м; RB=3,5⋅10-3 м; rT=3⋅10-3 м, где LC и rT - длина топливного сердечника и внешний радиус центральной трубки, соответственно, приведены для справки. Как вытекает из принятых геометрических параметров топливного сердечника, относительное объемное содержание диоксида урана в твэле примем для дальнейших расчетов εГ=0,61. Плотность диоксида урана ρ=10970 кг/м3. Массу молекулы диоксида урана (UO2) определяем из произведения относительной массы молекулы UO2 на а.е.м., т.е. mТM=267⋅1,66⋅10-27=4,43⋅10-25 кг. Постоянная Больцмана k=1,38⋅10-23 Дж/K.

В ходе ресурсных испытаний постоянно ведут контроль активности газов с помощью датчика активности, установленного на выходе из электрогенерирующего канала. При этом дополнительно проводят контроль давления газообразных продуктов деления датчиком давления, установленным на выходе из электрогенерирующего канала. Затем в ходе ресурсных испытаний фиксируют момент времени τ1, например зафиксировали τ1=2⋅105 со скачкообразного падения активности и давления ГПД. Далее, продолжая испытания, контролируют изменения активности и давления ГПД и, в случае скачкообразного всплеска активности и давления, фиксируют момент времени всплеска τ2, например зафиксировали τ2=4⋅105 с. По датчику тепловой мощности фиксируют время τC=3,5⋅105 с установления стационарного режима работы электрогенерирующего элемента, при этом зафиксировав, например, тепловыделение в твэле Q=1,0⋅103 Вт. Одновременно оценивают максимальную температуру эмиттерной оболочки ТЕмакс, например методом сравнения вольт-амперных характеристик [Испытания многоэлементных термоэмиссионных экспериментальных сборок. / В.И. Бержатый, Н.А. Грибоедов, В.П. Грицаенко и др. - Атомная энергия, т. 31, вып. 6, 1971, с. 585-588], в результате получают ТЕ,макс=2100 K. Определяют время переконденсации τП топливного материала в твэле по выражению (2). Предварительно находим коэффициенты А*, В и А для диоксида урана. Для чего преобразуют уравнение равновесия между паровой и адсорбированной фазой стехиометричного диоксида урана, приведенное в статье [Горбань Ю.А. и др. Исследование испарения двуокиси и карбидов урана. Атомная энергия, 1967, т. 22, вып. 6, с. 465-467] в виде

lgP[мм рт.ст.]=-32258/Т+12,183,

к экспоненциальной зависимости (5) Р[Па]=2⋅1014⋅ехр(-74200/Т).

Откуда для UO2 получают коэффициенты А*=2⋅1014 и В=74200, при этом давление Р приводится в Паскалях. Из выражения (10) определяют А=(ρ / А*)⋅(2π⋅k / mТМ)1/2=(10970 / 2⋅1014)⋅(2π⋅1,38⋅10-23 / 4,43⋅10-25)1/2=7,7⋅10-10 с/(м⋅K1/2).

По соотношению (2) определяют

τП=А⋅[εГ⋅RC2 / (RH+RB)]⋅ТЕ,макс1/2⋅ехр(В/ТЕ,макс)=7,7⋅10-10⋅[0,61⋅4,9-10-5 / (6,5⋅10-3+3,5⋅10-3)]⋅21001/2⋅ехр(74200/2100)=2,33⋅105 с.

Откуда по соотношению (1) определяют максимальное время переконденсации ТМ в твэле ЭГЭ τmахCП=3,5105+2,33⋅105=5,83⋅105 с.

После чего оценивают интервал времени Δτ=τ21=4⋅105-2⋅105=2⋅105 с и определяем интервал (τ1, τmax)=(2⋅105, 5,83⋅105). Проверяют выполнение условия (3) τ2∈(τ1 τmах), как видим 4⋅105∈(2⋅105, 5,83⋅105), т.е. условие выполняется. Таким образом, на интервале (τ12)=(2⋅105, 4⋅105) в течение времени Δτ=2⋅105 с система вентиляции электрогенерирующего элемента временно не работоспособна и с последующим, начиная с момента времени τ2=4⋅105 с, ее работоспособность восстановилась.


Способ прогнозирования работоспособности термоэмиссионного электрогенерирующего элемента с вентилируемым твэлом
Способ прогнозирования работоспособности термоэмиссионного электрогенерирующего элемента с вентилируемым твэлом
Способ прогнозирования работоспособности термоэмиссионного электрогенерирующего элемента с вентилируемым твэлом
Способ прогнозирования работоспособности термоэмиссионного электрогенерирующего элемента с вентилируемым твэлом
Способ прогнозирования работоспособности термоэмиссионного электрогенерирующего элемента с вентилируемым твэлом
Способ прогнозирования работоспособности термоэмиссионного электрогенерирующего элемента с вентилируемым твэлом
Источник поступления информации: Роспатент

Показаны записи 81-90 из 111.
31.01.2020
№220.017.fbe0

Устройство для вскрытия оболочки экранно-вакуумной теплоизоляции космонавтом в процессе внекорабельной деятельности и способ его эксплуатации

Группа изобретений относится, преимущественно к средствам обеспечения внекорабельной деятельности (ВКД). Устройство содержит режущий инструмент (не показан) и шаблон в виде двух параллельных направляющих (1, 2) уголкового профиля. Между направляющими установлены проставки (не показаны),...
Тип: Изобретение
Номер охранного документа: 0002712362
Дата охранного документа: 28.01.2020
04.02.2020
№220.017.fd0b

Способ измерения степени суммарной герметичности многополостных изделий

Изобретение относится к способам исследования устройств на герметичность. Сущность: заполняют полость с высокими требованиями к степени суммарной герметичности до испытательного давления контрольным газом, содержащим пробный газ в высокой концентрации. Заполняют полость с низкими требованиями к...
Тип: Изобретение
Номер охранного документа: 0002712762
Дата охранного документа: 31.01.2020
27.02.2020
№220.018.0671

Оптическая система формирования и наведения лазерного пучка

Изобретение относится к области оптико-электронного приборостроения и касается оптической системы формирования и наведения лазерного пучка. Система включает в себя устройство сканирования, передающий лазерный модуль с оптоволоконным выводом, внеосевое параболическое зеркало, конструктивно...
Тип: Изобретение
Номер охранного документа: 0002715083
Дата охранного документа: 25.02.2020
14.03.2020
№220.018.0c1c

Способ определения негерметичности изделий, работающих под внешним давлением и внутренним избыточным давлением

Изобретение относится к области исследования устройств на герметичность и может быть использовано для определения негерметичности изделий, работающих под внешним давлением и внутренним избыточным давлением, например изделий космической техники. Сущность: вакуумируют средствами (1)...
Тип: Изобретение
Номер охранного документа: 0002716474
Дата охранного документа: 11.03.2020
15.03.2020
№220.018.0c3c

Система контроля состояния внешней поверхности гермооболочки корпуса космического объекта под экранно-вакуумной теплоизоляцией, используемая космонавтом в процессе внекорабельной деятельности, и способ её эксплуатации

Группа изобретений относится к космической технике, в частности к средствам неразрушающего контроля технического состояния конструктивных элементов. Система контроля состояния внешней поверхности гермооболочки корпуса космического объекта под экранно-вакуумной теплоизоляцией содержит устройство...
Тип: Изобретение
Номер охранного документа: 0002716608
Дата охранного документа: 13.03.2020
15.03.2020
№220.018.0c7b

Радиатор-теплоаккумулятор пассивной системы терморегулирования космического объекта

Изобретение относится к теплоаккумулирующим устройствам, использующим скрытую теплоту фазовых переходов рабочего вещества для обеспечения требуемого теплового режима источников энергии при их циклической работе. Техническим результатом изобретения является обеспечение компактной конструкции,...
Тип: Изобретение
Номер охранного документа: 0002716591
Дата охранного документа: 13.03.2020
01.07.2020
№220.018.2d05

Система амортизации нагрузок на космический аппарат при посадке на безатмосферные объекты

Изобретение относится к космической технике, а именно к средствам амортизации нагрузок на космический аппарат (КА) при посадке. Система амортизации нагрузок на космический аппарат при посадке на безатмосферные объекты содержит мягкую U-образную в поперечном сечении оболочку, выполненную из...
Тип: Изобретение
Номер охранного документа: 0002725103
Дата охранного документа: 29.06.2020
01.07.2020
№220.018.2d15

Система амортизации нагрузок на космический аппарат при посадке на безатмосферные объекты

Изобретение относится к средствам амортизации ударных нагрузок при посадке, преимущественно малого космического аппарата (КА). Система содержит прикрепленную к днищу КА мешкообразную оболочку, выполненную из кольчужной сетки и заполненную гранулированными твердотельными сферическими элементами...
Тип: Изобретение
Номер охранного документа: 0002725098
Дата охранного документа: 29.06.2020
03.07.2020
№220.018.2dff

Модульный радиатор-теплоаккумулятор пассивной системы терморегулирования космического объекта

Изобретение относится к теплотехнике, а более конкретно к теплоаккумулирующим устройствам. Модульный радиатор-теплоаккумулятор пассивной системы терморегулирования космического объекта включает теплоаккумуляторы, тепловые трубы, теплоаккумулирующее вещество, теплоноситель, электронагреватели,...
Тип: Изобретение
Номер охранного документа: 0002725116
Дата охранного документа: 29.06.2020
15.07.2020
№220.018.326b

Устройство фиксации ботинок для обеспечения выхода космонавта из скафандра

Изобретение относится к космической технике, в частности к оборудованию для осуществления выхода космонавта из скафандра. Устройство фиксации ботинок для обеспечения выхода космонавта из скафандра содержит опорную площадку, изогнутую скобу, фиксаторы шпор ботинок скафандра, расположенные на...
Тип: Изобретение
Номер охранного документа: 0002726300
Дата охранного документа: 13.07.2020
Показаны записи 11-20 из 20.
26.08.2017
№217.015.df0b

Способ определения характеристик оптического канала передачи информационного сигнала

Способ определения характеристик оптического канала передачи информационного сигнала включает в себя измерение затухания оптического канала от источника оптического излучения до приемника оптического излучения. При этом производят перемещение лазерного пучка согласованно с линейным перемещением...
Тип: Изобретение
Номер охранного документа: 0002624976
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.fa09

Приёмник-преобразователь лазерного излучения

Изобретение может быть использовано в беспроводных системах дистанционного энергопитания воздушных или космических объектов. Предложенный приемник-преобразователь лазерного излучения включает несущую силовую конструкцию с установленной на ней приемной плоскостью площадью S, на внешней стороне...
Тип: Изобретение
Номер охранного документа: 0002639738
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.0266

Всенаправленный приёмник-преобразователь лазерного излучения (2 варианта)

Изобретение относится к области оптико-электронного приборостроения и касается всенаправленного приемника-преобразователя лазерного излучения. Приемник-преобразователь включает в себя приемную плоскость, выполненную в виде трех круговых панелей, взаимно пересекающихся между собой...
Тип: Изобретение
Номер охранного документа: 0002630190
Дата охранного документа: 05.09.2017
09.08.2018
№218.016.7a6f

Оптическая система формирования и наведения лазерного излучения

Изобретение относится к области создания систем доставки мощного излучения на воздушные и космические объекты и лазерных локационных систем наведения с высокой точностью лазерного канала передачи энергии на приемник-преобразователь на основе полупроводниковых фотоэлектрических преобразователей...
Тип: Изобретение
Номер охранного документа: 0002663121
Дата охранного документа: 07.08.2018
10.07.2019
№219.017.ad32

Устройство измерения интенсивности лучистых потоков при тепловакуумных испытаниях космических аппаратов и способ его эксплуатации

Изобретение относится к измерительной технике. Устройство включает металлический токопроводящий термочувствительный элемент, размещенный на электроизолирующей подложке. Термочувствительный элемент на подложке установлен внутри корпуса, выполненного из материала с высокой теплопроводностью, и...
Тип: Изобретение
Номер охранного документа: 0002354960
Дата охранного документа: 10.05.2009
10.07.2019
№219.017.ad60

Устройство измерения интенсивности лучистых потоков при тепловакуумных испытаниях космических аппаратов

Изобретение относится к измерительной технике. Устройство выполнено из двух рядом расположенных сборок, в каждой из которых чувствительный элемент на электроизолирующей подложке установлен внутри корпуса соответствующей сборки; упомянутые корпуса выполнены в виде правильной прямой призмы и/или...
Тип: Изобретение
Номер охранного документа: 0002353923
Дата охранного документа: 27.04.2009
12.09.2019
№219.017.ca4f

Оптическая система формирования и наведения лазерного излучения

Изобретение может быть использовано для доставки мощного излучения на воздушные и космические объекты и в лазерных локационных систем наведения. Оптическая система включает устройство сканирования, передающий лазерный модуль с оптоволоконным выводом, блок фокусировки, включающий коллимирующую...
Тип: Изобретение
Номер охранного документа: 0002699944
Дата охранного документа: 11.09.2019
27.02.2020
№220.018.0671

Оптическая система формирования и наведения лазерного пучка

Изобретение относится к области оптико-электронного приборостроения и касается оптической системы формирования и наведения лазерного пучка. Система включает в себя устройство сканирования, передающий лазерный модуль с оптоволоконным выводом, внеосевое параболическое зеркало, конструктивно...
Тип: Изобретение
Номер охранного документа: 0002715083
Дата охранного документа: 25.02.2020
15.03.2020
№220.018.0c7b

Радиатор-теплоаккумулятор пассивной системы терморегулирования космического объекта

Изобретение относится к теплоаккумулирующим устройствам, использующим скрытую теплоту фазовых переходов рабочего вещества для обеспечения требуемого теплового режима источников энергии при их циклической работе. Техническим результатом изобретения является обеспечение компактной конструкции,...
Тип: Изобретение
Номер охранного документа: 0002716591
Дата охранного документа: 13.03.2020
03.07.2020
№220.018.2dff

Модульный радиатор-теплоаккумулятор пассивной системы терморегулирования космического объекта

Изобретение относится к теплотехнике, а более конкретно к теплоаккумулирующим устройствам. Модульный радиатор-теплоаккумулятор пассивной системы терморегулирования космического объекта включает теплоаккумуляторы, тепловые трубы, теплоаккумулирующее вещество, теплоноситель, электронагреватели,...
Тип: Изобретение
Номер охранного документа: 0002725116
Дата охранного документа: 29.06.2020
+ добавить свой РИД