×
14.11.2018
218.016.9d63

Результат интеллектуальной деятельности: Способ определения протяженности и очередности замены участков линейной части магистральных трубопроводов

Вид РИД

Изобретение

Аннотация: Изобретение относится к магистральному трубопроводному транспорту углеводородов, в частности к обеспечению надежности транспортировки и безопасности эксплуатации магистральных трубопроводов за счет эффективного планирования работ по капитальному ремонту, в частности, определения протяженности и очередности замены участков линейной части магистрального трубопровода. Сущность способа определения протяженности и очередности замены участков линейной части магистрального трубопровода заключается в том, что участки магистрального трубопровода разделяют на расчетные участки протяженности не более 200 м. Затем осуществляют внутритрубную диагностику расчетного участка магистрального трубопровода, по результатам которой получают данные о фактической толщине стенок трубопровода и параметрах коррозионных дефектов, определяют прогнозное значение относительного объема коррозии на трубной секции на первый год периода, на который выполняется определение протяженности и очередности замены. Для каждого j-го расчетного участка определяют суммарный показатель К технического состояния магистрального трубопровода на участке линейной части магистрального трубопровода, значение общего показателя приоритетности замены труб K. Для определения протяженности участков замены линейной части магистрального трубопровода под замену трубы выделяют расчетные участки линейной части магистрального трубопровода, для которых K не менее К. Для определения значения К проводят расчет суммы протяженностей трубных секций по j-м расчетным участкам, для которых K не менее задаваемых значений К. Для каждого выделенного под замену участка рассчитывают средние показатели приоритетности замены участка линейной части магистрального трубопровода K. Все выделенные под замену участки ранжируются по значениям среднего показателя приоритетности с определением номера очередности по убыванию, при этом приоритет проведения замены участка проводится в соответствии с номерами очередности каждого участка. Технический результат заключается в обеспечении возможности расчета протяженности и очередности замены участков линейной части магистральных трубопроводов на основании количественной оценки показателей, характеризующих техническое состояние трубопровода на линейном участке магистрального трубопровода, а также потенциальную опасность отказа и системную значимость участков магистрального трубопровода. 5 табл.

Область техники, к которой относится изобретение

Изобретение относится к трубопроводному транспорту углеводородов, в частности к обеспечению надежности транспортировки и безопасности эксплуатации магистральных трубопроводов за счет эффективного планирования работ по капитальному ремонту, в частности, определения протяженности и очередности замены участков линейной части магистральных трубопроводов.

Уровень техники

Тенденция к ухудшению технического состояния магистральных трубопроводов (далее - МТ) по мере увеличения срока их эксплуатации сверх срока амортизации, необходимость оптимального, экономного расходования финансовых ресурсов на поддержание системы транспорта нефти и нефтепродуктов в работоспособном состоянии требуют разработки мероприятий по восстановление несущей способности только на тех конкретных участках МТ, где произошла ее потеря или снижение до опасного уровня.

Для достоверного определения таких участков и тем самым обеспечения безопасной эксплуатации и продления срока службы действующих МТ необходимо в полном объеме учитывать всю имеющуюся информацию о состоянии МТ, их дефектах и особенностях.

Используемые в настоящее время подходы к планированию работ по капитальному ремонту МТ описаны в различных источниках информации. Из уровня техники известно, что обеспечение рационального использования ресурсов и достижение установленных результатов при эксплуатации и ремонте объектов линейной части магистрального газопровода базируется на обоснованной оценке технического состояния входящих в линейную часть объектов. Достоверность результатов оценки зависит от качества и полноты данных технического диагностирования.

В известном источнике информации предложены направления повышения достоверности результатов оценки технического состояния газопроводов, не подготовленных к внутритрубному диагностированию, включающие ранжирование участков по приоритету для поэтапного формирования плана реконструкции газопровода под пропуск внутритрубных дефектоскопов, использование специальных дефектоскопов повышенной проходимости, разработку нормативной и конструкторской документации для применения переносных камер приема-запуска [«Разработка системы оценки технического состояния линейной части магистральных трубопроводов, не подготовленных к внутритрубному диагностированию», A.M. Ангалев, И.И, Велиюлин, А.В. Захаров, А.Н. Горшков, Газовая промышленность, 2014 г., №5, с. 50-52]. Из уровня техники известны основные положения разработанной технологии выявления зон непроектных напряжений на магистральных газопроводах по результатам внутритрубной диагностики. Доказано, что, несмотря на высокую подверженность длительно эксплуатируемых газопроводов стресс-коррозионным дефектам, аварии по такой причине маловероятны. Это позволяет отказаться от сравнительно высоких темпов переизоляции в пользу ремонта посредством замены трубами в заводской изоляции или в комбинации с трубами, восстановленными в заводских условиях.

Переход на эту принятую мировой практикой технологию позволит «обновить» газотранспортную систему и обеспечить ее безаварийную эксплуатацию на срок до 50 лет и более [«Концепция безаварийной эксплуатации и капитального ремонта магистральных газопроводов», ОАО «Газпром», P.P. Усманов, М.В. Чучкалов, P.M. Аскаров, Газовая промышленность, 2015 г., №1, с. 28-31].

Существующие подходы по обеспечению надежности транспортировки и безопасности эксплуатации МТ за счет эффективного планирования работ по капитальному ремонту не учитывают:

а) показатели системной значимости участков МТ, определяющую значимость местоположения МТ, исходя из схемы потоков и чувствительности потребителей нефти и нефтепродуктов, а именно, загрузку МТ, возможности технологического резервирования, приоритет по направления поставок (принадлежность к технологическим коридорам);

б) потенциальную опасность линейных участков МТ с точки зрения возможных отказов, а именно отсутствие результатов или неполнота данных диагностических обследований, принадлежность к переходам через водные преграды и малые водотоки, доступность для ликвидации последствий аварий, близость к населенным пунктам.

Сущность изобретения

Технической проблемой, на решение которой направлено заявляемое изобретение, является создание способа определения протяженности и очередности замены участков линейной части магистральных трубопроводов, устраняющего вышеперечисленные недостатки и приводящего к улучшению планирования работ по капитальному ремонту МТ.

Технический результат, достигаемый при реализации заявляемого изобретения, заключается в повышении надежности эксплуатации МТ за счет обеспечения возможности расчета протяженности и очередности замены участков линейной части МТ на основании количественной оценки показателей, характеризующих техническое состояние МТ на линейных участках, а также потенциальную опасность отказа и системную значимость участков линейной части МТ.

Заявляемый технический результат достигается за счет того, что способ определения протяженности и очередности замены участков линейной части магистрального трубопровода характеризуется тем, что участки магистрального трубопровода, для которых проводится расчет протяженности и очередности замены разделяют на расчетные участки протяженностью не более 200 м; осуществляют внутритрубную диагностику расчетного участка магистрального трубопровода, по результатам которой получают данные о фактической толщине стенок трубопровода и параметрах коррозионных дефектов; по полученным данным о фактической толщине стенок трубопровода и параметрах коррозионных дефектов определяют прогнозное значение относительного объема коррозии на трубной секции на первый год периода, на который выполняется определение протяженности и очередности замены; для каждого j-го расчетного участка определяют суммарный показатель КTCj технического состояния магистрального трубопровода на участке линейной части магистрального трубопровода; для каждого j-го расчетного участка определяют значение общего показателя приоритетности замены труб Kj, для определения протяженности участков замены линейной части магистрального трубопровода по всем j-м расчетным участкам проводится расчет значений Kj, при этом под замену трубы выделяют расчетные участки линейной части магистрального трубопровода, для которых Kj не менее Кзам; для определения значения Кзам проводят расчет суммы протяженностей трубных секций по j-м расчетным участкам, для которых Kj не менее задаваемых значений Кзам; для каждого выделенного под замену участка рассчитывают средние показатели приоритетности замены участка линейной части магистрального трубопровода Kср,z; все выделенные под замену участки, ранжируются по значениям среднего показателя приоритетности с определением номера очередности по убыванию, при этом приоритет проведения замены участка проводится в соответствии с номерами очередности каждого участка.

Сведения, подтверждающие возможность осуществления изобретения

Определение протяженности и очередности замены участков линейной части магистральных трубопроводов (далее - ЛЧ МТ) производят следующим образом:

1. Участки ЛЧ МТ, для которых проводится расчет протяженности и очередности замены, условно разделяются по длине на расчетные участки протяженностью 200 м (j - порядковый номер расчетного участка) с округлением до целых расчетных участков в большую сторону.

Если расчетный участок пересекает границу подводного перехода магистрального трубопровода (далее - ППМТ), то граница расчетного участка устанавливается на границе ППМТ. Границы ППМТ определяются положением задвижек, а при их отсутствии уровнем воды в водоеме 10%-ной обеспеченности, границей смежного ППМТ или затвором камеры пуска-приема средств очистки и диагностирования, или через 50 м после входа трубы в грунт.

Тройники и задвижки не учитываются при расчете, их протяженность не прибавляется к протяженности расчетного участка.

2. В результате прохождения по ЛЧ МТ внутритрубные инспекционные приборы (ультразвуковой дефектоскоп - WM и магнитный дефектоскоп - MFL) выполняют сканирование всей поверхности участка трубопровода и запись на флеш-носитель полученных сигналов.

Записанная информация подлежит обработке:

- распаковка (трансляция) данных, скопированных с внутренней памяти внутритрубного инспекционного прибора (далее - ВИП), в формат, пригодный для их обработки в специализированных графических программах интерпретации.

- интерпретация данных средствами программ интерпретации, в которой формируются электронные таблицы: таблицы раскладки труб (фактические толщины стенок трубы), таблицы дефектов и особенностей трубопровода.

3. По полученным данным о фактической толщине стенок труб и параметрам коррозионных дефектов (длина, ширина и глубина) определяется прогнозное значение относительного объема коррозии на трубной секции на первый год периода, на который выполняется определение протяженности и очередности замены, для WM и MFL.

Относительный объем коррозии на трубной секции - это отношение суммы объемов всех выявленных при прохождении ВИП коррозионных дефектов на отдельной трубной секции к номинальному первоначальному объему металла трубной секции.

Прогнозный объем коррозии для коррозионных дефектов для WM и MFL определяется как объем эллиптического параболоида, вписанного в габариты, определяемые длиной, шириной и глубиной дефекта с учетом скорости роста относительного объема коррозии по формулам:

где j - порядковый номер расчетного участка;

UjmWM - относительный объем коррозии на m-ой секции j-го расчетного участка по данным последней инспекции WM, %;

UjmMFL - относительный объем коррозии на m-ой секции j-го расчетного участка по данным последней инспекции MFL, %;

ZjmWM - скорость роста относительного объема коррозии на m-ой секции j-го расчетного участка по данным последней инспекции WM, %/год;

ZjmMFL - скорость роста относительного объема коррозии по данным MFL на m-ой секции j-го расчетного участка, %/год;

Tg - дата начала периода, на который планируются замены, год (с точностью до 0,001);

TjWM - дата последней инспекции WM на j-ом расчетном участке, год (с точностью до 0,001);

TjMFL - дата последней инспекции MFL на j-ом расчетном участке, год (с точностью до 0,001).

Значения скорости роста объема коррозии ZjmWM и ZjmMFL, %/год, определяются по формулам:

где UjmWM - относительный объем вынесенного металла по данным последней инспекции WM на m-ой секции j-го расчетного участка, %;

- относительный объем вынесенного металла по данным предпоследней инспекции WM на m-ой секции j-го расчетного участка, %;

TjWM - дата последней инспекции WM на j-м расчетном участке, год;

- дата предпоследней инспекции WM j-м расчетном участке, год;

UjmMFL - относительный объем вынесенного металла по данным последней инспекции MFL на m-ой секции j-го расчетного участка, %;

- относительный объем вынесенного металла по данным предпоследней инспекции MFL на m-й секции j-го расчетного участка, %;

TjMFL - дата последней инспекции MFL на j-м расчетном участке, год;

- дата предпоследней инспекции MFL на j-м расчетном участке, год.

При первичной инспекции соответствующим типом ВИП скорость роста относительного объема, %/год, определяется по среднему значению линейной скорости коррозии по формуле:

где νср - среднее значение линейной скорости коррозии, принимается равным 0,15 мм/год;

Dн - наружный диаметр трубопровода, мм;

Ljm - длина m-ой секции j-го расчетного участка, мм;

δjm - толщина стенки m-ой секции j-расчетного участка, мм;

m - порядковый номер секции;

j - порядковый номер расчетного участка;

Кjm - общее количество потерь металла на m-ой секции j-го расчетного участка, шт;

- длина k-ой потери металла m-ой секции j-го расчетного участка, мм;

wjmk - ширина k-ой потери металла m-ой секции j-го расчетного участка, мм.

4. При отсутствии результатов пропусков WM или MFL по коррозионному состоянию участков МТ, полученных в течение 6 лет перед проведением расчетов, для оценки коррозионного состояния по результатам наземных коррозионных обследований выполняют определение следующих параметров по ГОСТ 9.602-2005 «Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии» (далее - ГОСТ 9.602-2005):

- удельное сопротивление грунта на m-ой секции j-го расчетного участка, Rгjm, Ом⋅м;

- наличие блуждающих токов на m-ой секции j-го расчетного участка;

- плотность защитного тока станции катодной защиты i и (i+1) (далее - СКЗ) на каждой секции j-го расчетного участка, Jф,jm, А/м2 по формуле:

где Ii и Ii+1 - токи на i и (i+1) СКЗ соответственно, А;

Li,i+1 - расстояние между точками дренажа i и (i+1) СКЗ, м;

Dн - наружный диаметр трубопровода, мм.

5. Для каждого j-го расчетного участка определяется суммарный показатель KTC,j по формуле:

где - нормированный показатель среднего на j-м расчетном участке прогнозируемого относительного объема вынесенного металла (коррозии) на трубной секции на первый год периода, на который планируются замены;

- нормированный показатель среднего на j-м расчетном участке значения отношения сопротивления грунта при высокой коррозионной агрессивности по ГОСТ 9.602 к удельному сопротивлению грунта;

- нормированный показатель среднего на j-м расчетном участке значения показателя наличия блуждающих токов;

- нормированный показатель среднего на j-м расчетном участке отношения фактического значения плотности защитного тока СКЗ на m-ой секции j-го расчетного участка к плотности защитного тока, соответствующей высокой коррозионной активности;

- нормированный показатель среднего на j-м расчетном участке значения показателя, характеризующего тип антикоррозионного защитного покрытия (далее - АКП);

- нормированный показатель среднего на j-м расчетном участке значения показателя наличия трубных секций, изготовленных из марок сталей, имеющих повышенную склонность к трещинообразованию.

αi-весовой коэффициент показателя. Значения весовых коэффициентов нормированных показателей технического состояния приведены в таблице 1.

Нормированный показатель определяется на основании соответствующего значения ненормированного показателя по формуле

где Е - среднее значение показателя для всех рассчитываемых расчетных участков, определяемое по формуле

σ - среднеквадратическое отклонение значений показателя для всех рассчитываемых расчетных участков, определяемое по формуле

где С - количество рассчитываемых расчетных участков.

Нормированные показатели переводятся из соответствующих ненормированных показателей в пределах от 0 до 1. Если значение Pi,j больше 1, то значение Ni,j принимается равным 1.

Показатель , %, определяется на начало первого года периода, на который планируются замены, как среднее значение прогнозируемых относительных объемов коррозии по данным WM и MFL по формуле

где Lj - длина j-го расчетного участка, м;

Mj - количество трубных секций в j-м расчетном участке, шт.;

UgjmWM - прогнозируемый на начало первого года замены относительный объем коррозии по данным WM на m-ой секции j-го расчетного участка, %;

UgjmMFL - прогнозируемый на начало первого года замены относительный объем коррозии по данным MFL на m-ой секции j-го расчетного участка, %;

Ljm - длина m-ой секции j-го расчетного участка, м.

Показатель , учитывающий удельное сопротивление грунта, определяется как средний на j-ом расчетном участке показатель по формуле:

где Rг,ва - значение сопротивления грунта, равное 20 Ом⋅м, при высокой коррозионной агрессивности в соответствии с ГОСТ 9.602;

Lj - длина j-го расчетного участка, м;

Mj - количество трубных секций в j-м расчетном участке;

Ljm - длина m-ой секции j-го расчетного участка, м;

Rгjm - удельное сопротивление грунта на m-ой секции j-го расчетного участка, Ом⋅м.

Показатель , учитывающий наличие опасного влияния переменных и постоянных блуждающих токов на j-м расчетном участке, определяется как средний показатель по формуле

где Lj - длина j-го расчетного участка, м;

Mj - количество трубных секций в j-м расчетном участке;

Ljm - длина m-ой секции j-го расчетного участка, м;

Ijm - показатель наличия блуждающих токов на m-ой секции j-го расчетного участка (принимается равным 1 при наличии опасного влияния блуждающих токов и 0 - при его отсутствии на m-ой секции j-го расчетного участка).

Показатель , учитывающий эффективность АКП, определяемый плотностью защитного тока в зоне действия СКЗ на j-ом диапазоне, как средний показатель по формуле

где Lj - длина j-го расчетного участка, м;

Mj - количество трубных секций в j-м расчетном участке;

Ljm - длина m-ой секции j-го расчетного участка, м;

Qjm - отношение фактического значения плотности защитного тока СКЗ на m-ой секции j-го расчетного участка к плотности защитного тока, соответствующей высокой коррозионной, определяемое по формуле

где Jф,jm - фактическое значение плотности защитного тока СКЗ на m-ой секции j-го расчетного участка, А/м2;

Jва - плотность защитного тока, соответствующая высокой коррозионной активности на участке МТ, равная 0,2 А/м2.

Показатель , учитывающий тип АКП на j-ом расчетном участке, определяется как средний показатель по формуле

где Lj - длина j-го расчетного участка, м;

Mj - количество трубных секций в j-м расчетном участке;

Ljm - длина m-ой секции j-го расчетного участка, м;

Qnjm - показатель типа АКП m-ой секции j-го расчетного участка, значения которого приведены в таблице 2.

Показатель , учитывающий наличие на j-м расчетном участке трубных секций, изготовленных из марок сталей, имеющих повышенную склонность к трещинообразованию на j-м расчетном участке, определяется как средний показатель по формуле

где Lj - длина j-го расчетного участка, м;

Ljm - длина m-ой секции j-го расчетного участка, м;

Mj - количество трубных секций в j-м расчетном участке;

- показатель склонности к трещинообразованию марки стали m-ой секции j-го расчетного участка, определяемый по таблице 3.

Показатель принимается равным 1 для расчетных участков, содержащих следующие трубные секции:

- эксплуатируемые на ППМТ, имеющих отклонения от требований нормативной документации;

- эксплуатируемые на переходах МТ через автомобильные и железные дороги, не соответствующих требованиям нормативной документации;

- эксплуатируемые на ППМТ или на переходах МТ через автомобильные и железные дороги со сроком эксплуатации свыше 49 лет или, выполненных из сталей, имеющих повышенную склонность к трещинообразованию (показатель склонности к трещинообразованию отличен от нуля);

- имеющие допустимое рабочее давление, не обеспечивающее проектное давление на выходе насосной перекачивающей станции.

6. Для каждого j-го расчетного участка вычисляется значение общего показателя приоритетности замены труб Kj по формуле

где KTC,j - суммарный показатель технического состояния трубопровода на участке МТ;

KУ,j - суммарный показатель условий эксплуатации участка МТ;

KР,j - показатель возможности технологического резервирования на участке МТ;

KДО,j - показатель, характеризующий наличие подкладных колец на участке МТ;

KПО,j - показатель, характеризующий потенциальную опасность последствий отказа на участке ЛТ МТ, в зависимости от условий эксплуатации.

Суммарный показатель KУ,j для каждого j-го расчетного участка определяется по формуле

где βk - весовой коэффициент показателя . Значения весовых коэффициентов показателей условий эксплуатации приведены в таблице 4;

- показатель, характеризующий номинальный диаметр трубопровода;

- показатель, характеризующий величину рабочего давления в трубных секциях.

Величина показателя, характеризующего номинальный диаметр трубопровода, принимается равной 1 для участков МТ с DN 1000 и более, 0 - для прочих.

Показатель , учитывающий отношение давления в трубных секциях с учетом перспективной загрузки к нормативному максимальному давлению по СП 36.13330.2012 «Свод правил «СНиП 2.05.06-85* Магистральные трубопроводы» (далее - СП 36.13330.2012), определяется как средний показатель по формуле

где Lj - длина j-го расчетного участка, м;

Mj - количество трубных секций на j-м расчетном участке;

m - порядковый номер секции;

Pj,m - максимальное рабочее давление при эксплуатации в секции m с учетом перспективной загрузки, МПа;

Lj,m - длина секции m, м;

Pнорм j,m - нормативное максимальное давление по СП 36.13330.2012 в секции m, МПа.

Величина показателя, учитывающего возможность технологического резервирования, КР,j, принимается равной 0,8 при наличии резервного трубопровода, 1,0 - при отсутствии резервного трубопровода.

Величина показателя, учитывающего наличие подкладных колец на участке МТ, КДО,j определяется как средний показатель по формуле

где Lj - длина j-го расчетного участка, м;

Mj - количество трубных секций на j-м расчетном участке;

m - порядковый номер секции;

Ljm - длина m-ой секции j-го расчетного участка, м;

- показатель наличия подкладных колец на m-ой секции j-го расчетного участка (принимается равным 1,0 при наличии подкладных колец и 0,2 - при их отсутствии на m-ой секции j-го расчетного участка).

При наличии на участке ЛЧ МТ других ограничений для проведения внутритрубной диагностики или при отсутствии результатов пропусков ВИП WM или ВИП MFL по коррозионному состоянию за последние 6 лет до даты выполнения расчета значение показателя КДО,j принимается равным 1,0.

Величина показателя, характеризующего потенциальную опасность последствий отказа на участке МТ, КПО,j, определяется в зависимости от условий эксплуатации. Значение показателя КПО,j приведено в таблице 5.

7. Для определения протяженности участков замены ЛТМТ по всем j-м расчетным участкам рассчитываемых участков ЛЧ МТ проводится расчет значений Kj. Под замену трубы выделяются ЛЧ МТ, для которых Kj не менее Kзам.

Для определения значения Kзам проводится расчет суммы протяженностей трубных секций по j-м расчетным участкам ЛЧ МТ, для которых Kj не менее задаваемых значений Kзам. Итоговое значение Kзам определяется как соответствующее планируемому суммарному значению протяженности участков замены трубопроводов с учетом обеспечения надежной и бесперебойной транспортировки нефти и нефтепродуктов и финансовых возможностей.

8. Используя полученное значение Kзам, выделяются под замену расчетные участки ЛЧ МТ (за исключением расчетных участков ППМТ), на которых выполняется условие.

Дополнительно выделяются под замену все расчетные участки, расположенные в пределах границ каждого ППМТ, для которого выполняется соотношение

где Ln - длина n-го ППМТ, м;

Lnj - длина j-го расчетного участка без учета протяженности тройников и задвижек в соответствии с 6.1.1, принадлежащего n-му ППМТ, м;

Kj - общий показатель приоритетности для j-го диапазона, принадлежащего n-му ППМТ;

а - первый j-й расчетный участок, принадлежащий n-му ППМТ;

b - последний j-й расчетный участок, принадлежащий n-му ППМТ.

Длина n-го ППМТ Ln, м, рассчитывается по формуле

9. Для каждого расчетного участка, выделенного под замену, вычисляются средние показатели в относительных единицах в диапазоне от 0 до 2 приоритетности замены участка трубопровода Kcp,z по формуле

где Lz - длина z-го участка замены трубы без учета трубных секций, включенных в заменяемый участок в соответствии с 7.4-7.5, м;

Lzj - длина j-го расчетного участка без учета протяженности тройников и задвижек, удовлетворяющего условию (20) или (21), на z-м участке замены трубопровода, м;

Kj - общий показатель приоритетности для j-го расчетного участка, входящего в z-й участок замены трубопровода;

a - первый j-й расчетный участок, входящий в z-й участок замены трубопровода, для которого выполняется соотношение (20) или (21);

b - последний j-й расчетный участок, входящий в z-й участок замены трубопровода, для которого выполняется соотношение (20) или (21).

Длина z-го участка замены трубопровода рассчитывается по формуле

10. Все участки замен ранжируются по значениям среднего показателя приоритетности замен с определением номера очередности по убыванию.

Определение приоритета проведения замены трубы на участке ЛЧ МТ проводится в соответствии с номерами очередности каждого расчетного участка. Чем меньше номер очередности участка замены, тем в более ранние сроки должна быть проведена замена.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 150.
25.08.2017
№217.015.be59

Способ ремонта дефектного участка трубопровода надземной прокладки

Изобретение относится к способу ремонта магистральных трубопроводов надземной прокладки методом вырезки/врезки катушки. Перед вырезкой дефектного участка трубопровода осуществляют подъем корпуса-ложемента с трубопроводом посредством грузоподъемного механизма, установку антифрикционного...
Тип: Изобретение
Номер охранного документа: 0002616735
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bf81

Способ совмещения диагностических данных отдельных листов днища рвс с целью построения визуального образа днища рвс с привязкой диагностических данных к номерам листов и сварных швов

Использование: для неразрушающего контроля днища резервуаров вертикальных стальных (далее РВС) для хранения нефти и нефтепродуктов. Сущность изобретения заключается в том, что обследование днища резервуара вертикального стального (далее РВС) производят комплексом для диагностики днищ, в котором...
Тип: Изобретение
Номер охранного документа: 0002617175
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c0c9

Способ создания раскладки трубных секций по данным внутритрубного инспекционного прибора определения положения трубопровода

Изобретение относится к способу обработки данных внутритрубных дефектоскопов. Для осуществления способа загружают диагностические данные внутритрубного инспекционного прибора определения положения трубопровода (ВИП ОПТ) через интерфейс передачи входных данных. Затем выполняют предварительную...
Тип: Изобретение
Номер охранного документа: 0002617628
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c155

Способ преобразования диагностических данных внутритрубных обследований магистральных трубопроводов, работающих в реверсном режиме в вид, позволяющий проводить интерпретацию с использованием данных предыдущих инспекций, проведенных при работе нефтепровода в прямом режиме

Изобретение относится к методам неразрушающего контроля трубопроводов и может быть использовано для обработки диагностических данных внутритрубных обследований магистральных трубопроводов. Диагностические данные, полученные при внутритрубном обследовании магистральных трубопроводов, работающих...
Тип: Изобретение
Номер охранного документа: 0002617612
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c388

Носитель датчиков ультразвукового дефектоскопа

Изобретение относится к устройству и способу контроля технического состояния магистральных нефтепроводов и нефтепродуктопроводов, а также газопроводов путем пропуска внутри трубопровода ультразвукового дефектоскопа с установленными на нем носителями датчиков. Заявленный носитель датчиков...
Тип: Изобретение
Номер охранного документа: 0002617225
Дата охранного документа: 24.04.2017
25.08.2017
№217.015.c4a9

Способ определения инерционности установки подслойного пожаротушения (упп) резервуара для хранения легковоспламеняющихся или горючих жидкостей

Изобретение относится к определению инерционности автоматических резервуаров для легковоспламеняющихся жидкостей. При осуществлении способа определяют для одного линейного ввода установки подслойного пожаротушения суммарные протяженности и внутренние диаметры растворопроводов, проходящих от...
Тип: Изобретение
Номер охранного документа: 0002618199
Дата охранного документа: 02.05.2017
25.08.2017
№217.015.cb92

Двудечная плавающая крыша вертикального стального резервуара для нефти и нефтепродуктов

Изобретение относится к области хранения нефти, в частности к плавающим крышам резервуаров для хранения нефти и/или нефтепродуктов. Двудечная плавающая крыша нефтяного резервуара включает в себя расположенные концентрически сегменты крыши, содержащие соединенные между собой отсеки, при этом...
Тип: Изобретение
Номер охранного документа: 0002620243
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.ce21

Способ термостабилизации многолетнемерзлых грунтов и устройство для его реализации

Изобретение относится к области строительства трубопроводов подземной прокладки и может быть использовано для обеспечения термостабилизации грунтов при подземной прокладке трубопроводов на многолетнемерзлых и слабых грунтах. Устройство термостабилизации многолетнемерзлых грунтов содержит по...
Тип: Изобретение
Номер охранного документа: 0002620664
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d098

Способ внутритрубного ультразвукового контроля сварных швов

Использование: для контроля технического состояния магистральных нефтепроводов в процессе их эксплуатации. Сущность изобретения заключается в том, что для стопроцентного контроля всего сечения трубы на дефектоскопе устанавливают большое количество ультразвуковых преобразователей. Ультразвуковые...
Тип: Изобретение
Номер охранного документа: 0002621216
Дата охранного документа: 01.06.2017
26.08.2017
№217.015.d562

Способ монтажа теплоизоляционного покрытия подземного трубопровода в трассовых условиях и сборная конструкция теплоизоляционного покрытия подземного трубопровода для монтажа в трассовых условиях

Изобретение относится к области строительства и капитального ремонта трубопроводов, а именно к способам монтажа теплоизоляции подземного трубопровода в трассовых условиях. Сборная конструкция теплоизоляционного покрытия подземного трубопровода для монтажа в трассовых условиях содержит по...
Тип: Изобретение
Номер охранного документа: 0002623014
Дата охранного документа: 21.06.2017
Показаны записи 11-20 из 81.
12.01.2017
№217.015.58f6

Централизованная система противоаварийной автоматики магистральных нефтепроводов и нефтепродуктопроводов

Изобретение относится к нефтяной промышленности и может быть использовано на трубопроводах в качестве централизованной системы автоматических защит от превышения давления, обеспечивающей безаварийность технологического процесса транспортировки нефти (нефтепродуктов). Централизованная система...
Тип: Изобретение
Номер охранного документа: 0002588330
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.634c

Способ неразрушающего контроля литых корпусных деталей

Использование: для неразрушающего контроля литых корпусных деталей. Сущность изобретения заключается в том, что выполняют секторное сканирование датчиком ФАР посредством качания луча с одновременным перемещением датчика ФАР по участку контроля сначала в поперечной, а затем в продольной...
Тип: Изобретение
Номер охранного документа: 0002589456
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.67cd

Способ построения карты экзогенных геологических процессов местности вдоль трассы магистрального нефтепровода

Изобретение относится к области получения топографической информации о рельефе земной поверхности по данным аэрофотосъемки и лазерного сканирования местности с борта воздушного судна, в частности к мониторингу участков трассы магистрального нефтепровода (МН) для выявления признаков экзогенных...
Тип: Изобретение
Номер охранного документа: 0002591875
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.8242

Опора подвесная для участков подземной прокладки трубопроводов

Изобретение относится к области строительства подземных трубопроводов в условиях вечной мерзлоты. Опора подвесная содержит подвижную и неподвижную части, соединенные гибкой цепной подвеской. Подвижная часть включает ложемент в виде полуцилиндра с полукольцевыми шпангоутами на внешней стороне....
Тип: Изобретение
Номер охранного документа: 0002601651
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8247

Сейсмостойкая двухсвайная подвижная опора трубопровода и демпферное устройство для сейсмостойкой двухсвайной подвижной опоры трубопровода

Группа изобретений относится к области строительства надземных трубопроводов. Опора состоит из закрепленного на двух сваях через опорные муфты опорного стола-ростверка с подвижно установленной на нем подошвой опоры, шарнирно соединенной с ложементом опоры. Ложемент разъемно соединен с по...
Тип: Изобретение
Номер охранного документа: 0002601683
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.99a7

Способ подготовки магистрального нефтепровода для транспортировки светлых нефтепродуктов

Изобретение относится к области трубопроводного транспорта, в частности к способам очистки внутренней поверхности магистральных нефтепроводов. Осуществляют химическую очистку внутренней поверхности нефтепровода, предварительного разделенного на очищаемые участки, путем пропуска по всей длине...
Тип: Изобретение
Номер охранного документа: 0002609786
Дата охранного документа: 03.02.2017
25.08.2017
№217.015.ac33

Технологическая смесь для удаления пластовой жидкости, содержащей высокоминерализованную пластовую воду и увк, из газовых и газоконденсатных скважин

Настоящее изобретение относится к области добычи газа и конденсата газового, а именно к химическим реагентам для удаления жидкости из скважин газовых месторождений (ГМ) и газоконденсатных месторождений (ГКМ), в продукции которых содержится высокоминерализованная пластовая вода (общая...
Тип: Изобретение
Номер охранного документа: 0002612164
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b904

Способ маркировки трубных изделий, трубное изделие с маркировкой и система идентификации трубных изделий

Изобретение относится к области маркировки и последующей идентификации трубных изделий. Технический результат - обеспечение возможности идентификации завода-изготовителя трубных секций как во время строительства и реконструкции трубопровода, так и в процессе эксплуатации трубопровода подземной...
Тип: Изобретение
Номер охранного документа: 0002615329
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.bc3b

Способ термостабилизации грунтов оснований свайных фундаментов опор трубопровода

Изобретение относится к теплотехнике в области строительства, а именно к термостабилизации грунтовых оснований свайных фундаментов опор трубопровода и трубопроводов подземной прокладки, расположенных на многолетнемерзлых грунтах. Способ термостабилизации грунтов оснований свайных фундаментов...
Тип: Изобретение
Номер охранного документа: 0002616029
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.be59

Способ ремонта дефектного участка трубопровода надземной прокладки

Изобретение относится к способу ремонта магистральных трубопроводов надземной прокладки методом вырезки/врезки катушки. Перед вырезкой дефектного участка трубопровода осуществляют подъем корпуса-ложемента с трубопроводом посредством грузоподъемного механизма, установку антифрикционного...
Тип: Изобретение
Номер охранного документа: 0002616735
Дата охранного документа: 18.04.2017
+ добавить свой РИД