×
14.11.2018
218.016.9cc1

Результат интеллектуальной деятельности: Устройство автоматизированного геотехнического мониторинга для подземных трубопроводов

Вид РИД

Изобретение

Аннотация: Изобретение относится к средствам диагностики технического состояния трубопроводов и может быть использовано для непрерывного мониторинга технического состояния подземных трубопроводов, проложенных в суровых климатических и геологических условиях. Технический результат достигается за счет того, что устройство выполнено в виде закрепляемого на трубопроводе с помощью гибких элементов фиксации изогнутого основания, на котором установлена несущая стойка, на боковой стороне которой закреплены первая и вторая дополнительные стойки. Нижняя часть первой дополнительной стойки выполнена изогнутой по дуге, повторяющей дугу окружности трубопровода, внутри нее установлен датчик температуры, соединенный с логгером, расположенным внутри второй дополнительной стойки, причем датчик температуры является многозонным цифровым датчиком температуры с по меньшей мере пятью измерительными зонами. Внутри несущей стойки в ее нижней части установлен первый термопреобразователь сопротивления, соединенный с регистратором, на несущей стойке в ее верхней части размещены второй термопреобразователь сопротивления, установленный на опоре отражатель, деформационная марка, распределительная и коммутационная коробки, при этом отражатель установлен с возможностью поворота, а кабели коммутации первого и второго термопреобразователей сопротивления и регистратора снабжены кабельными вводами. При этом несущая стойка, дополнительные стойки выполнены в виде труб, а термопреобразователи сопротивления являются программируемыми. Причем отражатель выполнен в виде пластины, со стороной квадрата размером не менее 500 мм. Гибкие элементы фиксации выполнены в виде металлических лент. На все сопрягаемые с трубопроводом поверхности устройства установлены защитные резиновые элементы. Внутри несущей стойки в верхней и в нижней ее части установлена теплоизоляция. 8 з.п. ф-лы, 2 ил.

Изобретение относится к средствам диагностики технического состояния трубопроводов и может быть использовано для непрерывного мониторинга технического состояния подземных трубопроводов, проложенных в суровых климатических и геологических условиях.

Известно устройство для определения положения оси заглубленного трубопровода (патент RU №2451874, G01С 15/06, опубл. 2005 г.), состоящее из соединенных между собой и установленных в штанге стержней.

Недостатком известного устройства является неполнота анализ состояния заглубленного трубопровода.

Известна система мониторинга и оценки технического состояния магистрального трубопровода (патент RU №139 945, F17D 5/00, опубл. 2014 г.), включающая набор датчиков таких, как датчик температуры трубопровода, датчика температуры грунта, служащих для измерения физических параметров и средства для обработки измеренных физических параметров. Устройство позволяет изучать внешние влияющие на техническое состояние трубопровода факторы и обеспечивает удобную форму предоставления информации.

Недостатком известного устройства является невозможность надежного определения разности температур между трубопроводом и вмещающим его грунтом и, следовательно, передачи тепла между ними, а также невозможность обнаруживать места активизации геокриологических процессов, вызванных влиянием на грунт со стороны трубопровода. Все вместе взятое не обеспечивает надежность проводимых измерений и, соответственно, полноту сведений об истинном состоянии трубопровода.

Техническая проблема, на решение которой направлено заявляемое изобретение, состоит в выявлении напряженно-деформированного состояния трубопровода.

Техническим результатом, достигаемым при реализации изобретения, является повышение надежности проводимых измерений, что приведет к повышению эксплуатационной надежности трубопроводов в сложных эксплуатационных условиях.

Технический результат достигается за счет того, что в устройстве автоматизированного геотехнического мониторинга для подземных трубопроводов, включающем датчик температуры и регистратор, устройство выполнено в виде закрепляемого на трубопроводе с помощью гибких элементов фиксации изогнутого основания, на котором установлена несущая стойка, на боковой стороне которой закреплены первая и вторая дополнительные стойки, при этом нижняя часть первой дополнительной стойки выполнена изогнутой по дуге, повторяющей дугу окружности трубопровода, внутри первой дополнительной стойки установлен датчик температуры, соединенный с логгером, расположенным внутри второй дополнительной стойки, причем датчик температуры является многозонным цифровым датчиком температуры с по меньшей мере пятью измерительными зонами, кроме того, внутри несущей стойки в ее нижней части посредством штанги установлен первый термопреобразователь сопротивления, соединенный с регистратором, на несущей стойки в ее верхней части размещены второй термопреобразователь сопротивления, установленный на опоре отражатель, деформационная марка, распределительная и коммутационная коробки, при этом отражатель установлен с возможностью поворота, а кабели коммутации первого и второго термопреобразователей сопротивления и регистратора снабжены кабельными вводами.

При этом несущая стойка, первая и вторая дополнительные стойки выполнены в виде труб.

А первый и второй термопреобразователи сопротивления являются программируемыми.

Причем регистратором является регистратор-измеритель температуры.

Кроме того, отражатель выполнен в виде пластины, которая является квадратной пластины со стороной квадрата размером не менее 500 мм.

Гибкие элементы фиксации выполнены в виде металлических лент, а на все сопрягаемые с трубопроводом поверхности устройства установлены защитные резиновые элементы. А внутри несущей стойки в верхней и в нижней ее части установлена теплоизоляция.

Изобретение поясняется чертежом, где на фиг. 1 представлен общий вид устройства, на фиг. 2 - вид на устройство сбоку.

Устройство автоматизированного геотехнического мониторинга состоит из несущей стойки 1, штанги 2 для установки и извлечения первого термопреобразователя сопротивления 3, второго термопреобразователя сопротивления 4, опоры 5, отражателя 6 виде пластины, многозонного цифрового датчика температуры 7 с по меньшей мере пятью измерительными зонами (участками), первой 8 и второй 9 дополнительной стойки, деформационной марки 10, регистратора - измерителя температуры 11, логгера 12, теплоизоляции 13, кабельных вводов 14, коммутационной коробки 15, распределительной коробки 16, гибких элементов фиксации 17 в виде лент, защитных резиновых элементов 18, изогнутое основание 19 несущей стойки 1.

Первый термопреобразователь сопротивления 3 (программируемый) установлен на стенке трубопровода 20 с помощью штанги 2, расположен внутри несущей стойки 1 в месте ее крепления к изогнутому основанию 19 и предназначен для замера температуры по наружной поверхности стенки трубопровода 20.

Второй термопреобразователь сопротивления 4 (программируемый) установлен на опоре 5 и предназначен для замера температуры окружающего воздуха.

Для измерения планово-высотного положения (ПВП) с использованием дистанционных методов - воздушного лазерного сканирования (ВЛС) в верхней части несущей стойки 1 установлен отражатель 6 в виде съемной квадратной пластины со стороной размером не менее 500 мм. Причем отражатель 6 крепится к несущей стойке 1 с помощью опоры 5, позволяющей осуществлять установку и регулирование угла наклона отражателя 6 по уровню горизонта.

Многозонный цифровой датчик температуры 7 установлен внутри первой дополнительной стойки 8 на подземный трубопровод 20 без теплоизоляции, а также на подземный трубопровод с теплоизоляцией и позволяет замерять температуру по периметру наружной поверхности трубопровода на границе трубопровод/грунт или по периметру наружной поверхности теплоизоляции на границе теплоизоляция/грунт с устанавливаемой периодичностью измерений. Выбор количества участков измерительных зон не менее пяти обусловлен неоднородностью теплового поля вокруг эксплуатируемого трубопровода.

Деформационная марка 10 на несущей стойке 1 служит для измерения ПВП с применением оборудования глобальной навигационной спутниковой системы (ГНСС) и геодезического оборудования.

Объем памяти регистратора - измерителя температуры 11, размещенного в штанге 2, объем памяти которого обеспечивает запоминание и хранение данных по измерениям показаний по температуре наружной поверхности стенки трубопровода 20.

Снятие и передача накопленных регистратором - измерителем температуры 11 данных производится с коммутационной коробки 15.

Логгер 12, размещенный во второй дополнительной стойке 9, представляет собой запоминающее устройство с автоматическим сохранением показаний многозонного цифрового датчика температуры 7.

Снятие и передача накопленных логгером 12 данных производится с распределительной коробки 16.

При работе устройства возможна передача данных с коммутационной коробки 15 и с распределительной коробки 16 на автоматизированное рабочее место (АРМ) для дальнейшей обработки специалистом службы эксплуатации.

Для ограничения теплового влияния внешней среды на показания первого термопреобразователя сопротивления 3 в верхней и в нижней части несущей стойки 1 устройства устанавливается теплоизоляция 13.

Обеспечение герметизации вывода кабелей коммутации первого 3 и второго 4 термопреобразователей сопротивления и регистратора - измерителя температуры 11 осуществляется с помощью кабельных вводов 14.

Фиксация устройства на трубопроводе 20 производится при помощи изогнутого основания 19 и гибких элементов фиксации 17 посредством защитных резиновых элементов 18.

Устройство может эксплуатироваться при температуре воздуха от минус 60°С и устанавливаться на территориях с сейсмичностью до 9 баллов включительно по шкале MSK-64.

Монтаж устройства производится как на вновь строящиеся, так и на эксплуатируемые трубопроводы без остановки перекачки, без проведения огневых работ.

Монтаж устройства автоматизированного геотехнического мониторинга для подземных трубопроводов осуществляется в следующей последовательности:

- разработка котлована под монтаж устройства на трубопровод;

- монтаж несущей стойки 1 на поверхность трубопровода 20 изогнутым основанием 19 через резиновый элемент 18 с герметизирующим кольцом (не показано). Фиксация устройства на трубопроводе 20 производится при помощи гибких элементов фиксации 17 через резиновые элементы 18;

- установка первой 8 и второй 9 дополнительных стоек с многозонным цифровым датчиком температуры 7 и логгером 12 и их фиксация на несущей стойке 1 с помощью хомутов (не показаны);

- монтаж штанги 2 с оборудованием для мониторинга температуры поверхности трубопровода 20 с установленным первым термопреобразователем сопротивления 3 и регистратором - измерителем температуры 11 с фиксацией и уплотнением;

- вывод кабелей первого 3 и второго 4 программируемых термопреобразователей и регистратора - измерителя температуры 11 в коммутационную коробку 15 с использованием кабельных вводов 14;

- монтаж на несущую стойку 1 отражателя 6 для проведения ВЛС. Устройство автоматизированного геотехнического мониторинга для подземных трубопроводов работает следующим образом:

- выполняется измерение температуры стенки трубопровода 20 с заданной периодичностью для мониторинга фактических данных температур стенки трубопровода 20;

- выполняется измерение температуры окружающего воздуха;

- выполняется измерение температуры по периметру наружной поверхности трубопровода 20 (на границе трубопровод/грунт) или температуры по периметру наружной поверхности теплоизоляции (на границе теплоизоляция/грунт) в автоматизированном режиме;

- выполняется снятие и передача данных, накопленных логгером 12 и регистратором - измерителем температуры 11;

- выполняется измерение ПВП трубопровода с использованием оборудования ГНСС, оборудования ВЛС и геодезического оборудования.

В результате работы устройства обеспечивается:

- определение фактического теплового баланса в системе «трубопровод-грунт-атмосфера»;

- возможность калибровки математических теплогидравлических моделей эксплуатируемых трубопроводов и калибровки моделей теплопередачи в системе «трубопровод-грунт-атмосфера» в части определения той части выделяемой движущейся жидкостью энергии, которая уходит на нагрев трубопровода;

- определение температурного перепада в стенке трубопровода и его учета при расчете напряженно-деформированного состояния трубопровода.

Кроме того, при измерении ПВП трубопровода обеспечивается:

- выявление перемещений трубопровода;

- применение в качестве маркерных пунктов при внутритрубной диагностике трубопроводов;

- применение для калибровки математических моделей расчета перемещений подземного трубопровода.

Устройство обеспечивает получение данных, необходимых для оценки технического состояния:

- температуры наружной поверхности трубопровода с заводским полимерным покрытием (температурным датчиком с автоматическим сохранением показаний с заданной дискретностью);

- температуры окружающего воздуха в районе размещения объекта (температурным датчиком с автоматическим сохранением показаний с заданной дискретностью);

- температуры по периметру наружной поверхности трубопровода или теплоизоляции (на границе трубопровод/грунт или теплоизоляция/грунт) (многозонным цифровым датчиком температуры с автоматическим сохранением показаний с заданной дискретностью);

- ПВП подземного трубопровода (установленной деформационной маркой с использованием оборудования ГНСС, а также возможность использования дистанционных методов - ВЛС с использованием пластины-отражателя).

Таким образом, предлагаемое техническое решение позволяет обеспечить повышение надежности проводимых измерений.

Устройство может устанавливаться на любом участке трубопровода в любом количестве.


Устройство автоматизированного геотехнического мониторинга для подземных трубопроводов
Устройство автоматизированного геотехнического мониторинга для подземных трубопроводов
Устройство автоматизированного геотехнического мониторинга для подземных трубопроводов
Источник поступления информации: Роспатент

Показаны записи 31-40 из 153.
26.08.2017
№217.015.ed1d

Биосорбент для очистки почвы и воды от нефти и нефтепродуктов

Изобретение относится к биотехнологии, а именно к экологическим препаратам, обеспечивающим очистку почвы и водной поверхности, загрязненных нефтью и нефтепродуктами. Данный препарат обладает как адсорбционной способностью за счет гидрофобного торфоминерального сорбента, так и нефтедеструктивной...
Тип: Изобретение
Номер охранного документа: 0002628692
Дата охранного документа: 21.08.2017
29.12.2017
№217.015.f48c

Способ очистки внутренней поверхности технологических трубопроводов нефтеперекачивающих станций при подготовке к перекачке светлых нефтепродуктов

Изобретение относится к способам очистки внутренней поверхности трубопроводов, в частности к способам очистки технологических трубопроводов и оборудования нефтеперекачивающих станций от асфальтосмолопарафиновых отложений. Способ очистки характеризуется тем, что очищаемый участок закольцовывают...
Тип: Изобретение
Номер охранного документа: 0002637328
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.f53b

Волоконно-оптическое устройство мониторинга трубопроводов

Изобретение относится к устройствам виброакустического мониторинга внешних воздействий на трубопровод. Заявленное волоконно-оптическое устройство мониторинга трубопроводов содержит два объединенных в одну систему независимых рефлектометра, каждый из которых подключен к разным оптическим...
Тип: Изобретение
Номер охранного документа: 0002637722
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f55c

Способ использования саморазрушающегося устройства при запасовке внутритрубного дефектоскопа

Изобретение относится к технологии эксплуатации магистральных трубопроводов и может быть использовано в нефтяной и газовой промышленности. При запасовке многосекционного внутритрубного дефектоскопа в трубопровод используют саморазрушающиеся устройства, которыми фиксируют шарнирные соединения...
Тип: Изобретение
Номер охранного документа: 0002637325
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.f97e

Способ обработки результатов внутритрубных диагностических обследований магистральных трубопроводов, выполненных комбинированными методами неразрушающего контроля с учетом конструктивных характеристик внутритрубного инспекционного прибора (вип), скорости движения и изменения углового положения вип

Изобретение относится к трубопроводному транспорту и может быть использовано для обработки результатов внутритрубных диагностических обследований магистральных трубопроводов, выполненных комбинированными методами неразрушающего контроля. В способе обработки результатов учитывают конструктивные...
Тип: Изобретение
Номер охранного документа: 0002639466
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.f997

Индивидуальный диспетчерский тренажер для тренинга оперативно-диспетчерского персонала магистральных нефтепроводов

Изобретение относится к области диспетчеризации потоков нефти и нефтепродуктов, а именно к тренажерным комплексам диспетчера, которые предназначены для начальной подготовки и периодического обучения оперативно-диспетчерского персонала. Индивидуальный диспетчерский тренажер включает в себя...
Тип: Изобретение
Номер охранного документа: 0002639932
Дата охранного документа: 25.12.2017
19.01.2018
№218.015.ff17

Способ определения общей зоны защиты от молнии тросового и стержневого молниеотвода для резервуаров нефти и нефтепродуктов

Изобретение относится к способам определения защиты от молнии резервуаров нефти и нефтепродуктов при использовании стержневых и тросовых молниеотводов. Способ состоит в том, что определяют высоту стержневого молниеотвода, высоту провиса тросового молниеотвода и наименьшее расстояние между...
Тип: Изобретение
Номер охранного документа: 0002629370
Дата охранного документа: 29.08.2017
19.01.2018
№218.015.ff5a

Обратный затвор (варианты)

Заявляемая группа изобретений относится к трубопроводной арматуре, предназначенной для перекрытия обратного потока транспортируемой среды в нефтепроводах и нефтепродуктопроводах. Обратный затвор содержит корпус с седлом и запирающим элементом, установленным подвижно вращательно на оси, жестко...
Тип: Изобретение
Номер охранного документа: 0002629630
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.01a7

Установка для оценки эффективности агентов снижения гидравлического сопротивления

Изобретение относится к области гидродинамики жидкостей, в частности к устройствам для изучения агентов снижения гидравлического сопротивления, например полимерных противотурбулентных присадок (ПТП) или поверхностно-активных веществ (ПАВ), и может быть использовано для создания...
Тип: Изобретение
Номер охранного документа: 0002629884
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.02c0

Способ ремонта отливок с применением дуговой сварки

Изобретение относится к способу ремонта отливки. На ремонтируемом дефекте осуществляют разделку кромок под сварку. Удаляют дефектный участок отливки. Осуществляют предварительный подогрев по контуру ремонтируемого дефектного участка на ширину не менее 250 мм в диапазоне температур от 150 до...
Тип: Изобретение
Номер охранного документа: 0002630080
Дата охранного документа: 05.09.2017
Показаны записи 31-40 из 111.
20.02.2016
№216.014.cdca

Способ теплоизоляции сварных соединений предварительно изолированных труб при подземной прокладке трубопровода

Группа изобретений относится к теплоизоляции труб, а именно к способам монтажа теплоизоляции на сварных стыках труб, предназначенных для транспортировки нефти и нефтепродуктов. В способе монтажа теплоизоляции сварных стыков труб для подземной прокладки производят антикоррозионную защиту...
Тип: Изобретение
Номер охранного документа: 0002575528
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.ce19

Способ теплоизоляции сварных соединений предварительно изолированных труб при надземной прокладке трубопровода

Группа изобретений относится к теплоизоляции труб, а именно к способам монтажа теплоизоляции на сварных стыках труб, предназначенных для транспортировки нефти и нефтепродуктов. В способе монтажа теплоизоляции сварных стыков труб для надземной прокладки производят антикоррозионную защиту...
Тип: Изобретение
Номер охранного документа: 0002575522
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.ce96

Способ тепловой изоляции запорной арматуры трубопроводов надземной прокладки и теплоизоляционное устройство для реализации способа

Группа изобретений относится к устройствам для теплоизоляции запорной арматуры предварительно теплоизолированных трубопроводов. Теплоизолированный короб содержит внешнюю защитную оболочку из оцинкованной стали с теплоизоляционным покрытием со стороны внутренней поверхности оболочки, выполненную...
Тип: Изобретение
Номер охранного документа: 0002575534
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.e8af

Способ противопожарной и тепловой изоляции сварных соединений предварительно изолированных труб при надземной прокладке трубопровода

Изобретение относится к противопожарной и тепловой изоляции труб, а именно к способам монтажа противопожарной и тепловой изоляции на сварных стыках труб, предназначенных для транспортировки нефти и нефтепродуктов. В способе монтажа теплоизоляции сварных стыков труб для надземной прокладки...
Тип: Изобретение
Номер охранного документа: 0002575533
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.3076

Система компаундирования высокосернистых нефтей по нескольким направлениям перекачки смешанного потока

Изобретение относится к средствам автоматизации и может быть использовано в трубопроводном транспорте при подкачке нефти из одного трубопровода или из его нескольких ответвлений в несколько общих магистралей, по которым смесь нефтей транспортируется к потребителю. Отличительной особенностью...
Тип: Изобретение
Номер охранного документа: 0002580909
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.334b

Способ определения места повреждения протяженного анодного заземлителя

Изобретение относится к защите подземных сооружений от коррозии и может быть использовано при контроле работы устройств катодной защиты от коррозии. Сущность: поиск места повреждения протяженного анодного заземлителя (ПАЗ) индукционным способом осуществляют в три этапа с использованием...
Тип: Изобретение
Номер охранного документа: 0002582301
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.37aa

Способ контроля положения трубопроводов надземной прокладки в условиях вечной мерзлоты

Изобретение относится к области инженерной геодезии и может быть использовано для контроля положения трубопроводов надземной прокладки. На сваи опор трубопровода устанавливают деформационные марки. На расстоянии не более 50 м от трубопровода устанавливают грунтовые глубинные реперы, вдоль...
Тип: Изобретение
Номер охранного документа: 0002582428
Дата охранного документа: 27.04.2016
12.01.2017
№217.015.58f6

Централизованная система противоаварийной автоматики магистральных нефтепроводов и нефтепродуктопроводов

Изобретение относится к нефтяной промышленности и может быть использовано на трубопроводах в качестве централизованной системы автоматических защит от превышения давления, обеспечивающей безаварийность технологического процесса транспортировки нефти (нефтепродуктов). Централизованная система...
Тип: Изобретение
Номер охранного документа: 0002588330
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.634c

Способ неразрушающего контроля литых корпусных деталей

Использование: для неразрушающего контроля литых корпусных деталей. Сущность изобретения заключается в том, что выполняют секторное сканирование датчиком ФАР посредством качания луча с одновременным перемещением датчика ФАР по участку контроля сначала в поперечной, а затем в продольной...
Тип: Изобретение
Номер охранного документа: 0002589456
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.67cd

Способ построения карты экзогенных геологических процессов местности вдоль трассы магистрального нефтепровода

Изобретение относится к области получения топографической информации о рельефе земной поверхности по данным аэрофотосъемки и лазерного сканирования местности с борта воздушного судна, в частности к мониторингу участков трассы магистрального нефтепровода (МН) для выявления признаков экзогенных...
Тип: Изобретение
Номер охранного документа: 0002591875
Дата охранного документа: 20.07.2016
+ добавить свой РИД