×
14.11.2018
218.016.9cc1

Результат интеллектуальной деятельности: Устройство автоматизированного геотехнического мониторинга для подземных трубопроводов

Вид РИД

Изобретение

Аннотация: Изобретение относится к средствам диагностики технического состояния трубопроводов и может быть использовано для непрерывного мониторинга технического состояния подземных трубопроводов, проложенных в суровых климатических и геологических условиях. Технический результат достигается за счет того, что устройство выполнено в виде закрепляемого на трубопроводе с помощью гибких элементов фиксации изогнутого основания, на котором установлена несущая стойка, на боковой стороне которой закреплены первая и вторая дополнительные стойки. Нижняя часть первой дополнительной стойки выполнена изогнутой по дуге, повторяющей дугу окружности трубопровода, внутри нее установлен датчик температуры, соединенный с логгером, расположенным внутри второй дополнительной стойки, причем датчик температуры является многозонным цифровым датчиком температуры с по меньшей мере пятью измерительными зонами. Внутри несущей стойки в ее нижней части установлен первый термопреобразователь сопротивления, соединенный с регистратором, на несущей стойке в ее верхней части размещены второй термопреобразователь сопротивления, установленный на опоре отражатель, деформационная марка, распределительная и коммутационная коробки, при этом отражатель установлен с возможностью поворота, а кабели коммутации первого и второго термопреобразователей сопротивления и регистратора снабжены кабельными вводами. При этом несущая стойка, дополнительные стойки выполнены в виде труб, а термопреобразователи сопротивления являются программируемыми. Причем отражатель выполнен в виде пластины, со стороной квадрата размером не менее 500 мм. Гибкие элементы фиксации выполнены в виде металлических лент. На все сопрягаемые с трубопроводом поверхности устройства установлены защитные резиновые элементы. Внутри несущей стойки в верхней и в нижней ее части установлена теплоизоляция. 8 з.п. ф-лы, 2 ил.

Изобретение относится к средствам диагностики технического состояния трубопроводов и может быть использовано для непрерывного мониторинга технического состояния подземных трубопроводов, проложенных в суровых климатических и геологических условиях.

Известно устройство для определения положения оси заглубленного трубопровода (патент RU №2451874, G01С 15/06, опубл. 2005 г.), состоящее из соединенных между собой и установленных в штанге стержней.

Недостатком известного устройства является неполнота анализ состояния заглубленного трубопровода.

Известна система мониторинга и оценки технического состояния магистрального трубопровода (патент RU №139 945, F17D 5/00, опубл. 2014 г.), включающая набор датчиков таких, как датчик температуры трубопровода, датчика температуры грунта, служащих для измерения физических параметров и средства для обработки измеренных физических параметров. Устройство позволяет изучать внешние влияющие на техническое состояние трубопровода факторы и обеспечивает удобную форму предоставления информации.

Недостатком известного устройства является невозможность надежного определения разности температур между трубопроводом и вмещающим его грунтом и, следовательно, передачи тепла между ними, а также невозможность обнаруживать места активизации геокриологических процессов, вызванных влиянием на грунт со стороны трубопровода. Все вместе взятое не обеспечивает надежность проводимых измерений и, соответственно, полноту сведений об истинном состоянии трубопровода.

Техническая проблема, на решение которой направлено заявляемое изобретение, состоит в выявлении напряженно-деформированного состояния трубопровода.

Техническим результатом, достигаемым при реализации изобретения, является повышение надежности проводимых измерений, что приведет к повышению эксплуатационной надежности трубопроводов в сложных эксплуатационных условиях.

Технический результат достигается за счет того, что в устройстве автоматизированного геотехнического мониторинга для подземных трубопроводов, включающем датчик температуры и регистратор, устройство выполнено в виде закрепляемого на трубопроводе с помощью гибких элементов фиксации изогнутого основания, на котором установлена несущая стойка, на боковой стороне которой закреплены первая и вторая дополнительные стойки, при этом нижняя часть первой дополнительной стойки выполнена изогнутой по дуге, повторяющей дугу окружности трубопровода, внутри первой дополнительной стойки установлен датчик температуры, соединенный с логгером, расположенным внутри второй дополнительной стойки, причем датчик температуры является многозонным цифровым датчиком температуры с по меньшей мере пятью измерительными зонами, кроме того, внутри несущей стойки в ее нижней части посредством штанги установлен первый термопреобразователь сопротивления, соединенный с регистратором, на несущей стойки в ее верхней части размещены второй термопреобразователь сопротивления, установленный на опоре отражатель, деформационная марка, распределительная и коммутационная коробки, при этом отражатель установлен с возможностью поворота, а кабели коммутации первого и второго термопреобразователей сопротивления и регистратора снабжены кабельными вводами.

При этом несущая стойка, первая и вторая дополнительные стойки выполнены в виде труб.

А первый и второй термопреобразователи сопротивления являются программируемыми.

Причем регистратором является регистратор-измеритель температуры.

Кроме того, отражатель выполнен в виде пластины, которая является квадратной пластины со стороной квадрата размером не менее 500 мм.

Гибкие элементы фиксации выполнены в виде металлических лент, а на все сопрягаемые с трубопроводом поверхности устройства установлены защитные резиновые элементы. А внутри несущей стойки в верхней и в нижней ее части установлена теплоизоляция.

Изобретение поясняется чертежом, где на фиг. 1 представлен общий вид устройства, на фиг. 2 - вид на устройство сбоку.

Устройство автоматизированного геотехнического мониторинга состоит из несущей стойки 1, штанги 2 для установки и извлечения первого термопреобразователя сопротивления 3, второго термопреобразователя сопротивления 4, опоры 5, отражателя 6 виде пластины, многозонного цифрового датчика температуры 7 с по меньшей мере пятью измерительными зонами (участками), первой 8 и второй 9 дополнительной стойки, деформационной марки 10, регистратора - измерителя температуры 11, логгера 12, теплоизоляции 13, кабельных вводов 14, коммутационной коробки 15, распределительной коробки 16, гибких элементов фиксации 17 в виде лент, защитных резиновых элементов 18, изогнутое основание 19 несущей стойки 1.

Первый термопреобразователь сопротивления 3 (программируемый) установлен на стенке трубопровода 20 с помощью штанги 2, расположен внутри несущей стойки 1 в месте ее крепления к изогнутому основанию 19 и предназначен для замера температуры по наружной поверхности стенки трубопровода 20.

Второй термопреобразователь сопротивления 4 (программируемый) установлен на опоре 5 и предназначен для замера температуры окружающего воздуха.

Для измерения планово-высотного положения (ПВП) с использованием дистанционных методов - воздушного лазерного сканирования (ВЛС) в верхней части несущей стойки 1 установлен отражатель 6 в виде съемной квадратной пластины со стороной размером не менее 500 мм. Причем отражатель 6 крепится к несущей стойке 1 с помощью опоры 5, позволяющей осуществлять установку и регулирование угла наклона отражателя 6 по уровню горизонта.

Многозонный цифровой датчик температуры 7 установлен внутри первой дополнительной стойки 8 на подземный трубопровод 20 без теплоизоляции, а также на подземный трубопровод с теплоизоляцией и позволяет замерять температуру по периметру наружной поверхности трубопровода на границе трубопровод/грунт или по периметру наружной поверхности теплоизоляции на границе теплоизоляция/грунт с устанавливаемой периодичностью измерений. Выбор количества участков измерительных зон не менее пяти обусловлен неоднородностью теплового поля вокруг эксплуатируемого трубопровода.

Деформационная марка 10 на несущей стойке 1 служит для измерения ПВП с применением оборудования глобальной навигационной спутниковой системы (ГНСС) и геодезического оборудования.

Объем памяти регистратора - измерителя температуры 11, размещенного в штанге 2, объем памяти которого обеспечивает запоминание и хранение данных по измерениям показаний по температуре наружной поверхности стенки трубопровода 20.

Снятие и передача накопленных регистратором - измерителем температуры 11 данных производится с коммутационной коробки 15.

Логгер 12, размещенный во второй дополнительной стойке 9, представляет собой запоминающее устройство с автоматическим сохранением показаний многозонного цифрового датчика температуры 7.

Снятие и передача накопленных логгером 12 данных производится с распределительной коробки 16.

При работе устройства возможна передача данных с коммутационной коробки 15 и с распределительной коробки 16 на автоматизированное рабочее место (АРМ) для дальнейшей обработки специалистом службы эксплуатации.

Для ограничения теплового влияния внешней среды на показания первого термопреобразователя сопротивления 3 в верхней и в нижней части несущей стойки 1 устройства устанавливается теплоизоляция 13.

Обеспечение герметизации вывода кабелей коммутации первого 3 и второго 4 термопреобразователей сопротивления и регистратора - измерителя температуры 11 осуществляется с помощью кабельных вводов 14.

Фиксация устройства на трубопроводе 20 производится при помощи изогнутого основания 19 и гибких элементов фиксации 17 посредством защитных резиновых элементов 18.

Устройство может эксплуатироваться при температуре воздуха от минус 60°С и устанавливаться на территориях с сейсмичностью до 9 баллов включительно по шкале MSK-64.

Монтаж устройства производится как на вновь строящиеся, так и на эксплуатируемые трубопроводы без остановки перекачки, без проведения огневых работ.

Монтаж устройства автоматизированного геотехнического мониторинга для подземных трубопроводов осуществляется в следующей последовательности:

- разработка котлована под монтаж устройства на трубопровод;

- монтаж несущей стойки 1 на поверхность трубопровода 20 изогнутым основанием 19 через резиновый элемент 18 с герметизирующим кольцом (не показано). Фиксация устройства на трубопроводе 20 производится при помощи гибких элементов фиксации 17 через резиновые элементы 18;

- установка первой 8 и второй 9 дополнительных стоек с многозонным цифровым датчиком температуры 7 и логгером 12 и их фиксация на несущей стойке 1 с помощью хомутов (не показаны);

- монтаж штанги 2 с оборудованием для мониторинга температуры поверхности трубопровода 20 с установленным первым термопреобразователем сопротивления 3 и регистратором - измерителем температуры 11 с фиксацией и уплотнением;

- вывод кабелей первого 3 и второго 4 программируемых термопреобразователей и регистратора - измерителя температуры 11 в коммутационную коробку 15 с использованием кабельных вводов 14;

- монтаж на несущую стойку 1 отражателя 6 для проведения ВЛС. Устройство автоматизированного геотехнического мониторинга для подземных трубопроводов работает следующим образом:

- выполняется измерение температуры стенки трубопровода 20 с заданной периодичностью для мониторинга фактических данных температур стенки трубопровода 20;

- выполняется измерение температуры окружающего воздуха;

- выполняется измерение температуры по периметру наружной поверхности трубопровода 20 (на границе трубопровод/грунт) или температуры по периметру наружной поверхности теплоизоляции (на границе теплоизоляция/грунт) в автоматизированном режиме;

- выполняется снятие и передача данных, накопленных логгером 12 и регистратором - измерителем температуры 11;

- выполняется измерение ПВП трубопровода с использованием оборудования ГНСС, оборудования ВЛС и геодезического оборудования.

В результате работы устройства обеспечивается:

- определение фактического теплового баланса в системе «трубопровод-грунт-атмосфера»;

- возможность калибровки математических теплогидравлических моделей эксплуатируемых трубопроводов и калибровки моделей теплопередачи в системе «трубопровод-грунт-атмосфера» в части определения той части выделяемой движущейся жидкостью энергии, которая уходит на нагрев трубопровода;

- определение температурного перепада в стенке трубопровода и его учета при расчете напряженно-деформированного состояния трубопровода.

Кроме того, при измерении ПВП трубопровода обеспечивается:

- выявление перемещений трубопровода;

- применение в качестве маркерных пунктов при внутритрубной диагностике трубопроводов;

- применение для калибровки математических моделей расчета перемещений подземного трубопровода.

Устройство обеспечивает получение данных, необходимых для оценки технического состояния:

- температуры наружной поверхности трубопровода с заводским полимерным покрытием (температурным датчиком с автоматическим сохранением показаний с заданной дискретностью);

- температуры окружающего воздуха в районе размещения объекта (температурным датчиком с автоматическим сохранением показаний с заданной дискретностью);

- температуры по периметру наружной поверхности трубопровода или теплоизоляции (на границе трубопровод/грунт или теплоизоляция/грунт) (многозонным цифровым датчиком температуры с автоматическим сохранением показаний с заданной дискретностью);

- ПВП подземного трубопровода (установленной деформационной маркой с использованием оборудования ГНСС, а также возможность использования дистанционных методов - ВЛС с использованием пластины-отражателя).

Таким образом, предлагаемое техническое решение позволяет обеспечить повышение надежности проводимых измерений.

Устройство может устанавливаться на любом участке трубопровода в любом количестве.


Устройство автоматизированного геотехнического мониторинга для подземных трубопроводов
Устройство автоматизированного геотехнического мониторинга для подземных трубопроводов
Устройство автоматизированного геотехнического мониторинга для подземных трубопроводов
Источник поступления информации: Роспатент

Показаны записи 21-30 из 153.
25.08.2017
№217.015.ce21

Способ термостабилизации многолетнемерзлых грунтов и устройство для его реализации

Изобретение относится к области строительства трубопроводов подземной прокладки и может быть использовано для обеспечения термостабилизации грунтов при подземной прокладке трубопроводов на многолетнемерзлых и слабых грунтах. Устройство термостабилизации многолетнемерзлых грунтов содержит по...
Тип: Изобретение
Номер охранного документа: 0002620664
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d098

Способ внутритрубного ультразвукового контроля сварных швов

Использование: для контроля технического состояния магистральных нефтепроводов в процессе их эксплуатации. Сущность изобретения заключается в том, что для стопроцентного контроля всего сечения трубы на дефектоскопе устанавливают большое количество ультразвуковых преобразователей. Ультразвуковые...
Тип: Изобретение
Номер охранного документа: 0002621216
Дата охранного документа: 01.06.2017
26.08.2017
№217.015.d562

Способ монтажа теплоизоляционного покрытия подземного трубопровода в трассовых условиях и сборная конструкция теплоизоляционного покрытия подземного трубопровода для монтажа в трассовых условиях

Изобретение относится к области строительства и капитального ремонта трубопроводов, а именно к способам монтажа теплоизоляции подземного трубопровода в трассовых условиях. Сборная конструкция теплоизоляционного покрытия подземного трубопровода для монтажа в трассовых условиях содержит по...
Тип: Изобретение
Номер охранного документа: 0002623014
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d89b

Теплоизоляционное покрытие подземного трубопровода для монтажа в трассовых условиях

Изобретение относится к области строительства и капитального ремонта трубопроводов, а именно к способам монтажа теплоизоляции подземного нефтепровода в трассовых условиях. Теплоизоляционное покрытие трубопровода включает по меньшей мере один слой теплоизоляции, выполненный из герметично...
Тип: Изобретение
Номер охранного документа: 0002622727
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.de4d

Система автоматического управления технологическими процессами отопительной установки

Изобретение относится к области автоматизации управления технологическими процессами установок водогрейных и теплоцентралей. Система автоматического управления технологическими процессами отопительной установки содержит размещенные в шкафу управления контроллер для управления технологическими...
Тип: Изобретение
Номер охранного документа: 0002624723
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.dea0

Сейсмостойкая неподвижная опора трубопровода, узел соединения катушки трубопровода с ростверком опоры трубопровода для сейсмостойкой неподвижной опоры трубопровода и продольное демпферное устройство для сейсмостойкой неподвижной опоры трубопровода

Группа изобретений относится к области строительства надземных трубопроводов в сейсмически опасных районах. Узел соединения катушки трубопровода с ростверком содержит установленный на опорной поверхности ростверка корпус, выполненный с возможностью продольного вдоль оси трубопровода перемещения...
Тип: Изобретение
Номер охранного документа: 0002624681
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.e28e

Способ изготовления фланцевой вставки для проверки работоспособности внутритрубных инспекционных приборов на испытательном трубопроводном полигоне

Использование: для проверки работоспособности внутритрубных инспекционных приборов на испытательном трубопроводном полигоне. Сущность изобретения заключается в том, что используют катушки трубных секций с естественными дефектами с действующих трубопроводов и катушки трубных секций с нанесенными...
Тип: Изобретение
Номер охранного документа: 0002625985
Дата охранного документа: 20.07.2017
26.08.2017
№217.015.e598

Внутритрубный ультразвуковой дефектоскоп

Использование: для внутритрубного обследования трубопроводов. Сущность изобретения заключается в том, что внутритрубный ультразвуковой дефектоскоп оснащен устройством измерения скорости звука в перекачиваемой жидкости V и блоком автоматической регулировки длительности временного окна ΔT во...
Тип: Изобретение
Номер охранного документа: 0002626744
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.ea7d

Способ компенсации погрешности измерения пройденной дистанции одометрической системой вип с приведением диагностических данных к паспортным длинам трубных секций

Изобретение относится к процессу обработки результатов внутритрубных диагностических обследований магистральных нефте- и нефтепродуктопроводов, выполненных всеми методами неразрушающего контроля, а именно к способу построения отображения диагностических данных на развертке трубы. Заявленный...
Тип: Изобретение
Номер охранного документа: 0002628041
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.eb51

Способ изготовления сферообразных двухслойных изделий из полиуретана

Изобретение относится к способу изготовления сферообразных двухслойных изделий из полиуретана. Техническим результатом является изготовление изделий из полиуретана с заданными техническими характеристиками. Технический результат достигается способом изготовления сферообразных двухслойных...
Тип: Изобретение
Номер охранного документа: 0002628392
Дата охранного документа: 16.08.2017
Показаны записи 21-30 из 111.
10.07.2015
№216.013.61d6

Свайный фундамент для обустройства опор воздушной линии электропередачи

Изобретение относится к области энергетики, а точнее к свайным фундаментам опор линий электропередач, устраиваемых в различных типах грунтов. Свайный фундамент для обустройства опор воздушной линии электропередачи содержит обсадную трубу и размещенную в ней сваю, включающую ствол и пяту,...
Тип: Изобретение
Номер охранного документа: 0002556588
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.61d7

Способ обустройства опор воздушных линий передач на вечномерзлых грунтах

Изобретение относится к области энергетики, а точнее к свайным фундаментам опор линий электропередач, устраиваемых в различных типах грунтов. Способ обустройства опор воздушных линий передач на вечномерзлых грунтах, в котором забивают обсадную трубу и погружают в нее сваю. В процессе погружения...
Тип: Изобретение
Номер охранного документа: 0002556589
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.61d9

Устройство для температурной термостабилизации многолетнемерзлых грунтов

Изобретение относится к теплотехнике в области строительства, а именно к индивидуальным сезонно-действующим охлаждающим устройствам - термостабилизаторам грунтов. Устройство для температурной термостабилизации многолетнемерзлых грунтов содержит термостабилизатор на основе двухфазного...
Тип: Изобретение
Номер охранного документа: 0002556591
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6ad5

Теплоизолированный резервуар

Изобретение относится к теплоизоляционной технике, а именно к теплоизолированным резервуарам, преимущественно вертикальным стальным объемом от 200 до 20000 м, предназначенным для хранения нефти и нефтепродуктов. Предлагаемый теплоизолированный резервуар включает теплоизолированные стенку, крышу...
Тип: Изобретение
Номер охранного документа: 0002558907
Дата охранного документа: 10.08.2015
20.09.2015
№216.013.7b09

Неподвижная опора трубопровода

Изобретение относится к области строительства надземных трубопроводов и может быть использовано при организации опор трубопровода в сложных геологических условиях, например в условиях вечной мерзлоты. Технический результат заключается в обеспечении устойчивости конструкции и перераспределении...
Тип: Изобретение
Номер охранного документа: 0002563094
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7dc4

Способ сварки трубопроводов из высокопрочных труб с контролируемым тепловложением

Изобретение относится к способу сварки трубопроводов из высокопрочных труб. Разделывают кромки соединяющих торцов труб под сварку с соотношением суммарной ширины разделки кромок к толщине свариваемых элементов в диапазоне от 1,3 до 2,0. Собирают элементы. Осуществляют предварительный подогрев...
Тип: Изобретение
Номер охранного документа: 0002563793
Дата охранного документа: 20.09.2015
20.12.2015
№216.013.9bc0

Способ мониторинга технического состояния трубопроводов надземной прокладки в условиях вечной мерзлоты

Изобретение относится к области мониторинга трубопроводных систем, эксплуатируемых в сложных климатических условиях, в частности к способам оценки технического состояния трубопроводов надземной прокладки в условиях вечной мерзлоты. Способ мониторинга заключается в выполнении этапов установки...
Тип: Изобретение
Номер охранного документа: 0002571497
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9f57

Способ установки неподвижной опоры в проектное положение с возможностью регулировки высотного положения в процессе эксплуатации

Изобретение относится к области строительства надземных трубопроводов. В способе последовательно размещают и жестко закрепляют катушку опоры трубопровода на двух опорных осях, представляющих собой балки, поперечно расположенные и установленные в рамах опоры с возможностью перемещения вместе с...
Тип: Изобретение
Номер охранного документа: 0002572428
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.a08d

Опора подвижная трубопровода и ее опорный узел

Группа изобретений относится к области строительства надземных трубопроводов. Опора трубопровода содержит взаимодействующие подвижную и неподвижную части. Подвижная часть включает полуцилиндрический ложемент с полукольцевыми ребрами жесткости на внешней стороне ложемента, разъемные полухомуты...
Тип: Изобретение
Номер охранного документа: 0002572743
Дата охранного документа: 20.01.2016
20.03.2016
№216.014.caf1

Турбулентный реометр и способ определения эффективности противотурбулентных присадок (птп), реализуемый посредством турбулентного реометра

Изобретение относится к области реологии разбавленных растворов полимеров, а также поверхностно-активных веществ (ПАВ), и может быть использовано для определения эффективности противотурбулентных присадок (ПТП), используемых при перекачке углеводородных жидкостей по трубопроводам. Турбулентный...
Тип: Изобретение
Номер охранного документа: 0002577797
Дата охранного документа: 20.03.2016
+ добавить свой РИД