×
09.11.2018
218.016.9c1f

ОДНОПОЗИЦИОННЫЙ УГЛОМЕРНО-ДАЛЬНОМЕРНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002671828
Дата охранного документа
07.11.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы). Техническим результатом является определение КМПИРИ одним постом радиоконтроля (РКП). В основе способа лежит корреляционный принцип, заключающийся в вычислении азимутов с дополнительной(ных) точке(ках) на ИРИ по измеренным (или вычисленным значениям) азимутов с МП РКП на ИРИ. При этом азимут ИРИ на РКП измеряют, а в дополнительной(ных) точке(ках) вычисляют. В качестве дополнительной точки в способе предложен виртуальный пост (ВП), координаты которого задаются. При использовании n ВП их размещают не на одной прямой с РКП, а относят от него на несколько угловых минут с увеличением расстояния между ними и приближением к среднему азимуту на ИРИ по мере удаления от МП РКП. Вычисление азимута на ВП основано на принципе корреляционной зависимости азимутов (КЗА) с МП ВП от азимутов с МП РКП. Корреляционную зависимость азимутов (КЗА) получают по результатам расчета азимутов с МП РКП и МП ВП на q базовых РЭС (q БРЭС), расположенных в секторе утроенного среднеквадратического отклонения азимута на ИРИ от среднего его значения. Для получения КЗА производят повторное определение (переопределение) известных координат МП q БРЭС, которое выполняют в два этапа. На первом этапе составляют квадратных уравнений с одним неизвестным расстоянием, равных количеству треугольников, образованных точками местоположения q БРЭС, МП РКП и МП ВП, и определяют расстояния от МП РКП и МП ВП до каждого из q БРЭС. При этом каждое расстояние будет определено К раз. На втором этапе по вычисленным с МП РКП и МП ВП азимутам вычисляют (переопределяют) координаты q БРЭС (широту и долготу). Для этого составляют (К+1) уравнений азимутальных лучей, по вычисленным с МП РКП и МП ВП азимутам на q БРЭС и вычисленным расстояниям получают 2М значений пар координат для каждого из q БРЭС. Затем создают (К+1) калибровочных характеристик (КХ) для МП РКП и МП ВП по широте (КХШ), долготе (КХД) и азимуту (КХА) как зависимости разности истинных и вычисленных значений широт, долгот и азимутов от соответствующих вычисленных значений широт, долгот и азимутов; вычисляют азимуты с каждого МП ВП на ИРИ, используя КЗА, КХА и среднее значение измеренного с МП РКП на ИРИ азимута ϕ; составляют, в соответствии с теоремой косинусов, для всех М треугольников, образованных точкой местоположения ИРИ, МПРКП и МП ВП, М квадратных уравнений, и вычисляют (К+1) неизвестных расстояний от МП РКП и МП ВП до МП ИРИ по К раз каждое; составляют, по среднему значению азимута ϕ с РКП, и вычисленным с МП ВП азимутам, (К+1) уравнений азимутальных лучей от них на ИРИ, определяют 2М предварительных значений КМП ИРИ, корректируют их по своим КХШ и КХД, усредняют, а затем фиксируют как окончательные. 6 ил., 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников радиоизлучения УКВ-СВЧ-диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы или государственной службы надзора за связью). Изобретение может быть использовано также при поиске местоположения средств радиосвязи, как возможных источников помех связи.

Из известных способов и устройств, близкими аналогами предлагаемого способа по технической сущности и предназначенными для использования при радиоконтроле может быть [1].

Способ [1] основан на приеме сигналов тремя антеннами, образующими две пары измерительных баз, измерении разностей времени прихода сигналов ИРИ и детерминированных вычислений искомых координат.

К недостаткам способа следует отнести:

1) Большое количество антенн.

2) Способ не ориентирован на использование РКП.

3) Измерительные базы для вычисления разности времен прихода сигналов ИРИ парами антенн существенно ограничивают разнос этих антенн, не говоря о нецелесообразности и большой технической сложности реализации способа.

Разнесенный разностно-дальномерный пеленгатор [2], состоящий из двух периферийных пунктов, центрального и системы единого времени. Периферийные пункты предназначены для приема, хранения, обработки сигналов и передачи фрагментов сигналов на ЦП, на котором вычисляется разность времени прихода сигналов. В системе единого времени применяется хронизатор, представляющий привязанный к шкале единого времени хранитель шкалы текущего времени (часы), предназначенный для привязки записываемых в запоминающее устройство значений уровня сигнала к значению времени приема.

Данному пеленгатору свойственны следующие недостатки:

1) Не адаптирован к РКП, используемым в филиалах федеральных округов государственной радиочастотной службы или государственной службы надзора за связью.

2) Большое количество специализированных пеленгационных (но не радиоконтрольных) постов.

3) Необоснованное и не раскрытое (хотя бы до функциональной схемы) применение системы единого времени на ЦП и хронизаторов на 1111, синхронизированных с системой единого времени.

4) Необходимость в наличии радиоканалов с большой пропускной способностью (до 625 Мбод) для передачи даже фрагментов сигналов с ПП1 и ПП2 на ЦП.

5) Для организации радиоканала необходимы радиопередающие устройства и получение разрешения на их работу в определенных условиях эксплуатации.

Известно также техническое решение [3], которое относится к радиолокации, в частности к определению местоположения источников радиоизлучений. Техническим результатом является обеспечение возможности определения координат источников радиоизлучений однопозиционной наземной радиолокационной станцией и независимо от условий местности.

Указанный технический результат достигается также тем, что в радиолокационной станции, содержащей пассивный канал обнаружения, включающий последовательно соединенные антенну и приемник, а также блок вычисления координат, содержащий последовательно соединенные устройство измерения сдвига принимаемых сигналов во времени и устройство вычисления координат.

Суть предлагаемого способа состоит в следующем.

Для определения координат источника радиоизлучения используют два канала: пассивный и активный каналы обнаружения. Вся система размещена на одной позиции.

Антенна пассивного канала обнаружения направлена на источник и принимает его прямое радиоизлучение. Для измерения дальности до источника радиоизлучения с угловыми координатами (угол места) и (азимут) используется объект, отражающий радиоизлучение этого источника. При этом, с помощью активного канала обнаружения, работающего в пассивном режиме, осуществляются операции поиска, обнаружения и измерения угловых координат (угла места и азимута ) объекта, отражающего излучение, коррелированное с прямым излучением (т.е. осуществляется поиск отражающего объекта). По положению максимума взаимной корреляционной функции излучений, принятых двумя каналами обнаружения, определяют величину временного сдвига Δt этих излучений.

После чего осуществляется зондирование направления с координатами и измеряется дальность RO до объекта, при необходимости уточняются координаты

Недостатками этого аналога являются:

1. Способ может применяться только к цифровым (дискретным) видам связи.

2. Необходимы два канала: активный и пассивный, что совершенно недопустимо в военных условиях применения из за демаскировния средства.

3. Необходимость измерения сдвига принимаемых сигналов во времени требует системы жесткой синхронизации.

4. Необходимо осуществлять операции поиска, обнаружения и измерения угловых координат (угла места и азимута ) объекта, отражающего излучение.

5. Нет простого способа повышения точности определения координат местоположения ИРИ.

Известен угломерно-корреляционный способ оценивания местоположения наземных источников радиоизлучения [4], принятый за прототип. Угломерно-корреляционный способ оценивания координат местоположения наземных источников радиоизлучения (ИРИ), заключающийся в том, что на борту самолета-пеленгатора одновременно измеряют собственные координаты местоположения x(k), угол курса ψ(k), пеленг ИРИ отличающийся тем, что бортовая вычислительная система (БВС) осуществляет разбиение участка местности вокруг ИРИ с грубо определенными прямоугольными координатами xц, zц на I×J прямоугольников с координатами центров xi, zi; для каждого прямоугольника и всех точек пеленгации рассчитывают ожидаемые значения пеленгов, затем осуществляют поиск элементарного участка местности возможного местоположения ИРИ, которому соответствует совокупность измеренных значений пеленгов, определяют текущее местоположение ИРИ по величине функционала качества, характеризующего степень соответствия текущей измеренной совокупности пеленгов и их ожидаемых расчетных значений, соответствующих элементарным участкам местности, координаты которых известны, при этом в качестве функционала качества используется экстремум взаимно-корреляционной функции реализации , определяющий совпадение текущего местоположения ИРИ с измеренным элементарным участком местности, координаты которого известны, или взвешенные суммы квадратов разностей текущих измеренных и расчетных значений пеленгов , при этом критерием совпадения текущей реализации пеленгов и их расчетных значений является минимум функционала качества

Недостатки этого аналога:

1. Способ рассчитан только на применение на борту самолета-пеленгатора,

2. Требуется измерение собственных координат местоположения самолета-пеленгатора,

3. Требуется предварительное грубое определение местоположения ИРИ,

4. Требуется разбиение участка местности вокруг предполагаемого местоположения ИРИ,

5. Ожидаемые значения пеленгов искомого ИРИ зависят от координат местоположения ЛА и его курса и не связаны с параметрами ИРИ.

6. Критерием совпадения текущей реализации азимутов и их расчетных значений является минимум функционала качества который может быть и неразличим на уровне шумов этого функционала.

7. Статистика измерения азимутов ограничена по времени нахождения ЛА в зоне возможного местоположения ИРИ и нет простого способа ее увеличения для повышения точности определения координат местоположения ИРИ.

Целью настоящего изобретения является разработка способа, обеспечивающего определение координат местоположения ИРИ УКВ-СВЧ-диапазонов из одного РКП без недостатков, присущих прототипу. Эта цель достигается с помощью признаков, указанных в формуле изобретения, общих с прототипом: однопозиционный угломерно-дальномерный способ определения координат местоположения (КМП) источников радиоизлучения (КМПИРИ), основанный на измерении параметров искомого источника радиоизлучений (ИРИ) на одном радиоконтрольном посту (РКП) и вычислении тех же параметров в точках, местоположение которых полагается известным, отличающийся тем, что, измеряют десятикратно азимут на искомый ИРИ, применяя РКП с логопериодической поворотной антенной системой (ЛПАС), вычисляют среднеквадратическое отклонение азимута от среднего, задают координаты местоположения К виртуальных постов (ВП), на расстоянии нескольких угловых минут от РКП, вокруг азимутального луча с РКП на ИРИ в секторе утроенного среднеквадратического отклонения азимута на ИРИ от среднего его значения, увеличивая расстояния между ВП и приближая их местоположения (МП ВП) к лучу от РКП на ИРИ, по мере удаления от РКП, составляют перечень из q базовых РЭС по базе данных используемого РКП, вычисляют, по координатам МП РКП и каждого МП ВП азимуты на q БРЭС и устанавливают корреляционную зависимость азимутов (КЗА) между МП РКП и МП ВП; составляют для каждого из q БРЭС, в соответствии с теоремой косинусов, для всех треугольников, образованных точками местоположения q БРЭС, МП РКП и МП ВП, М квадратных уравнений с одним неизвестным, находят (К+1) неизвестных расстояний по К раз от МП РКП и МПВП до каждого из q БРЭС, составляют в соответствии с теоремой косинусов квадратных уравнений с одним неизвестным и находят (К+1) неизвестных расстояний по К раз каждое до каждого из q БРЭС, а затем составляют (К+1) уравнений азимутальных лучей по вычисленным с МП РКП и МП ВП азимутам на q БРЭС, и получают 2М значений пар координат для каждого из q БРЭС; после чего создают (К+1) калибровочных характеристик (КХ) для МП РКП и МП ВП по широте (КХШ), долготе (КХД) и азимуту (КХА) как зависимости разности истинных и вычисленных значений широт, долгот и азимутов от соответствующих вычисленных значений широт, долгот и азимутов; вычисляют азимуты с каждого МП ВП на ИРИ, используя КЗА, КХА и среднее значение измеренного с МП РКП на ИРИ азимута ϕ; затем составляют, в соответствии с теоремой косинусов, для всех треугольников, образованных точкой местоположения ИРИ, МПРКП и МП ВП, М квадратных уравнений, каждый с одним неизвестным, и вычисляют (К+1) неизвестных расстояний от МП РКП и МП ВП до МП ИРИ по К раз каждое; составляют, по среднему значению азимута ϕ с РКП и вычисленным с МП ВП азимутам (К+1) уравнений азимутальных лучей от них на ИРИ, определяют 2М предварительных значений КМП ИРИ, корректируют их по своим КХШ и КХД, усредняют, а затем фиксируют, как окончательные.

Заявленный способ поясняется чертежами, на которых:

фиг. 1 показаны расположение РКП, ВП, ИРИ и q БРЭС,

фиг. 2 - расположение РКП, ВП, ИРИ,

фиг. 3 - корреляционной зависимости по азимутам для пары РКП/ВП, пример.

фиг. 4 - калибровочной характеристики по долготе для РКП, пример.

фиг. 5 - калибровочной характеристики по широте для пары РКП, пример.

фиг. 6 - калибровочной характеристики по азимутам для пары РКП, пример.

В основе способа лежит корреляционный принцип, заключающийся в вычислении азимутов с дополнительной(ных) точке(ках) на ИРИ по измеренным (или вычисленным значениям) азимутов с МП РКП на ИРИ. При этом азимут ИРИ на РКП измеряют, а в дополнительной точке(точках) вычисляют. В качестве дополнительной точки в способе предложен виртуальный пост (ВП), координаты которого задаются. При использовании n ВП их размещают не на одной прямой с РКП и удаляют от него на несколько угловых минут с увеличением расстояния между ними и приближением к среднему азимуту на ИРИ по мере удаления от МП РКП. Вычисление азимута на ВП основано на принципе корреляционной зависимости азимутов (КЗА) с МП ВП от азимутов с МП РКП. Корреляционная зависимость азимутов выявляется по результатам расчета азимутов с МП РКП и МП ВП на q базовых РЭС (q БРЭС), расположенных в секторе утроенного среднеквадратического отклонения азимута на ИРИ от среднего его значения (фиг. 1 и фиг. 2).

В качестве примера, на фиг. 3 приведена КЗА азимутов для пары РКП и одним из ВП (РКП/ВП). Поясним переопределение координат БРЭС. Используем для иллюстрации фиг. 1., на которой приведены, для упрощения, только два БРЭС из всего их возможного количества q БРЭС. Рассмотрим все треугольники, образующиеся точкой расположения БРЭС 1 и точками МП ВП и МП РКП. Таких треугольников на фиг. 1 для РКП и трех ВП (К=3) всего 6: ABE, АДЕ, АСЕ, ВДЕ, ВСЕ, ДСЕ. В общем случае, для К виртуальных постов, таких треугольников будет Переопределение координат МП БРЭС осуществляется в два этапа. На первом этапе составляют, по количеству треугольников, квадратных уравнений с одним неизвестным расстоянием в каждом уравнении и определяют расстояния от МП РКП и МП ВП до каждого из БРЭС. При этом, каждое расстояние будет определено К раз. А затем, на втором этапе, по вычисленным с МП РКП и МП ВП азимутам вычисляют (переопределяют) координаты БРЭС (широту и долготу).

Поясним эти этапы на примере. На фиг. 1 рассмотрим три треугольника: ABE, АДЕ, ВСЕ, ВДЕ. Запишем для них, согласно теореме косинусов, три уравнения: ,

Из (3) получим .

Подставив (4) в (1) и приравняв потом (1) и (2), получим: . Получили квадратное уравнение относительно одного неизвестного расстояния С. После этого, по уравнениям, составленным по теореме косинусов, определяют и все остальные неизвестные расстояния. Так как каждое неизвестное расстояние по составленным уравнениям вычислятся К раз, то их усредняют. Затем составляют по известным координатам МП РКП: широте (Xa), долготе (Ya) и вычисленному азимуту ψ с него на БРЭС уравнение азимутального луча с МП РКП (Xa, Ya) на БРЭС (X, Y). Его уравнение имеет вид: Y=Ya+(X-Xa) tan ϕ.

Используя это уравнение азимутального луча и зная расстояние Ra, координаты q БРЭС (X, Y) определяют, как: X=Xa+Rasinϕ, Y=Ya+Racosϕ. Те же координаты БРЭС (X, Y) по известным координатам i-го ВП (Xi, Yi) азимутам c них на БРЭС и вычисленным расстояниям Ri, получают, как: , . Вычисленные значения широт и долгот местоположения переопределяемого БРЭС сравнивают путем вычитания с истинными по базе данных БРЭС значениями широт и долгот. Получают для МП РКП и каждого МП ВП калибровочные характеристики, как зависимости разности вычисленных и истинных значений широт и долгот каждого из q БРЭС от вычисленных значений их широт и долгот (КХШ и КХД). Эти характеристики используют, в дальнейшем, для корректировки значений определяемых координат искомого ИРИ. Всего будет вычислено К(К+1) пар значений широт и долгот местоположения переопределяемого БРЭС, то есть 2М пар значений его координат. По переопределенным координатам q БРЭС переопределяют и вычисленные азимуты на q БРЭС с МП РКП и каждого МП ВП, как:

. По разностям вычисленных азимутов по базе данных и переопределенных азимутов для каждого из БРЭС формируют калибровочные характеристики по азимутам (КХА) как для МП РКП, так и для каждого МП ВП.

Затем измеряют азимут на искомый ИРИ и по полученным КЗА пары РКП/ВП и находят азимуты на ИРИ с каждого МП ВП. По составленным выше М квадратным уравнениям, для такого же количества треугольников, определяют расстояния от МП РКП и МП ВП до искомого ИРИ, аналогично описанной выше процедуре в отношении БРЭС. А потом, по измеренному с МП РКП на ИРИ азимуту и азимутам с МП ВП на ИРИ, полученным и с пользованием КЗА и КХА, определяют и КМП ИРИ - широту и долготу его местоположения. Определенные при этом значения широт и долгот ИРИ корректируются по полученным ранее соответствующим КЗШ и КЗД. Всего будет вычислено и откорректировано К(К+1) пар значений широт и долгот местоположения искомого ИРИ, то есть 2М пар значений его координат.

Еще раз опишем алгоритм способа по пунктам:

1. По координатам РКП (Xa, Ya) формируют координаты нескольких ВП, не лежащих на одной прямой с РКП и отличающиеся от его координат (Xa, Ya) на несколько угловых минут.

2. Используя базу данных радиоэлектронных средств (БД РЭС) РКП, определяют q базовых передающих РЭС (q БРЭС).

3. По БД РЭС и координатам МП РКП (Xa, Ya) вычисляют азимуты с МП и МП ВП1 на q .

4. Составляют, по количеству треугольников, образованных точками с координатами МП РКП, МП ВП и q БРЭС,

квадратных уравнений,

с одним неизвестным расстоянием в каждом, и по ним определяют расстояния от МП РКП и МП ВП до каждого из q БРЭС.

5. По вычисленным значениям азимутов устанавливают корреляционную зависимость азимутов (КЗА) с МП РКП на q БРЭС и азимутами с МП ВПi на q БРЭС.

6. По вычисленным значениям азимутов составляют уравнения азимутальных лучей, по которым, используя вычисленные в п. 4 расстояния, определяют (переопределяют) координаты местоположения каждого из q БРЭС.

7. По переопределенным координатам для q БРЭС и координатам МП РКП и МП ВП вычисляют переопределенные азимуты на МП РКП - и МП ВП - .

8. По переопределенным координатам для q БРЭС и азимутам и их истинным значениям (по базе данных) получают калибровочные характеристики для МП РКП и каждого из МП ВП (КХШ, КХД), как зависимости ошибки определения координаты и азимутов (КХА) от вычисленного из значения.

9. Измеряют азимут ϕ с МП РКП на ИРИ и формируют уравнение азимутального луча с РКП на ИРИ.

10. По КЗА определяют азимуты с МП ВП на ИРИ.

11. Формируют уравнения азимутальных лучей с МП РКП и МП ВП на ИРИ.

12. Определяют расстояния от МП РКП и МП ВП до ИРИ, выполняя п. 4 в отношении ИРИ.

13. По уравнениям азимутальных лучей, значениям азимутов с МП РКП и МП ВП на ИРИ и, найденным в п. 11 расстояниям, вычисляют КМП ИРИ (широту и долготу).

14. Определенные, при этом, значения широт и долгот ИРИ корректируются по полученным ранее соответствующим КЗШ и КЗД. Всего будет вычислено и откорректировано К(К+1) пар значений широт и долгот местоположения искомого ИРИ, то есть 2М пар значений его координат.

15. Откорректированные 2М значений КМП ИРИ усредняют и затем фиксируют, как окончательные.

В заявленном способе устранены все недостатки прототипа. Для пояснения возможностей способа приведем расчетное количество статистики для усреднения и повышения точности определения как по расстоянию от РКП до ИРИ, так и по координатам местоположения КОРИ. Расчет приведен для различного количества ВП, от трех до десяти, и представлен в таблице:

Предложенный способ является универсальным для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ-диапазонов как цифровых, так и аналоговых видов связи. Способ является универсальным не только по видам связи, но и по расположению искомых ИРИ - на поверхности Земли или в пространстве (виртуальные посты могут размещаться и в пространстве). Используется сканирующий радиоприемник с логопериодической поворотной антенной системой. Способ не требует затрат на дополнительное оборудование, например, в виде радиоприемного устройства с автокоррелятором и пеленгатора. За счет применения виртуальных постов достигается без каких-либо затрат большая статистическая база, позволяющая повысить точность определения координат местоположения ИРИ.

Проведенный анализ уровня техники позволяет установить, что аналоги и наиболее близкий из них - прототип, характеризующиеся совокупностью признаков, тождественных всем признакам заявляемого способа определения координат местоположения ИРИ, отсутствуют и, следовательно, заявляемый способ обладает свойством новизны.

Исследование известных решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявляемого способа, показало, что он не следует явным образом из уровня техники, из которого не выявлена также известность влияния преобразований, предусматриваемых существенными признаками заявляемого изобретения, на достижение указанного результата, что позволяет считать заявляемый объект соответствующим уровню патентоспособности "изобретательский уровень".

Источники информации

1. Разностно-дальномерный способ пеленгования источника радиоизлучения. Патент РФ №2325666 С2. Авторы: Сайбель А.Г., Сидоров П.А.

2. Разнесенный разностно-дальномерный пеленгатор. Патент РФ №2382378, С1. Авторы: Ивасенко А.В., Сайбель А.Г., Хохлов П.Ю.

3. Способ определения координат источника радиоизлучения и радиолокационная станция для его реализации. Патент РФ №2217773. Автор(ы): Беляев Б.Г., Голубев Г.Н., Жибинов В.А., Кисляков В.И., Лужных С.Н.

4. Угломерно-корреляционный способ оценивания координат местоположения наземных источников радиоизлучения. Патент РФ №2458358.

Однопозиционный угломерно-дальномерный способ определения координат местоположения (КМП) источников радиоизлучения (КМПИРИ), основанный на измерении параметров искомого источника радиоизлучений (ИРИ) на одном радиоконтрольном посту (РКП) и вычислении тех же параметров в точках, местоположение которых полагается известным, отличающийся тем, что измеряют десятикратно азимут на искомый ИРИ, применяя РКП с логопериодической поворотной антенной системой (ЛПАС), вычисляют среднеквадратическое отклонение азимута от среднего, задают координаты местоположения К виртуальных постов (ВП), на расстоянии нескольких угловых минут от РКП, вокруг азимутального луча с РКП на ИРИ в секторе утроенного среднеквадратического отклонения азимута на ИРИ от среднего его значения, увеличивая расстояния между ВП и приближая их местоположения (МП ВП) к лучу от РКП на ИРИ, по мере удаления от РКП, составляют перечень из q базовых радиоэлектронных средств (q БРЭС), представляющих собой источники радиоизлучения, согласно базе данных находящиеся в зоне электромагнитной доступности используемого РКП вычисляют, по координатам МП РКП и каждого МП ВП, азимуты на q БРЭС и устанавливают корреляционную зависимость азимутов (КЗА) между МП РКП и МП ВП; составляют для каждого из q БРЭС, в соответствии с теоремой косинусов, для всех треугольников, образованных точками местоположения q БРЭC, МП РКП и МП ВП, М квадратных уравнений с одним неизвестным, находят (К+1) неизвестных расстояний по К раз от МП РКП и МПВП до каждого из q БРЭС, составляют в соответствии с теоремой косинусов квадратных уравнений с одним неизвестным и находят (К+1) неизвестных расстояний по К раз каждое до каждого из q БРЭС, а затем составляют (К+1) уравнений азимутальных лучей, по вычисленным с МП РКП и МП ВП азимутам на q БРЭС, и получают 2М значений пар координат для каждого из q БРЭС; после чего создают (К+1) калибровочных характеристик (КХ) для МП РКП и МП ВП по широте (КХШ), долготе (КХД) и азимуту (КХА), как зависимости разности истинных и вычисленных значений широт, долгот и азимутов от соответствующих вычисленных значений широт, долгот и азимутов; вычисляют азимуты с каждого МП ВП на ИРИ, используя КЗА, КХА и среднее значение измеренного с МП РКП на ИРИ азимута ϕ; затем составляют в соответствии с теоремой косинусов, для всех треугольников, образованных точкой местоположения ИРИ, МПРКП и МП ВП, М квадратных уравнений, каждый с одним неизвестным и вычисляют (K+1) неизвестных расстояний от МП РКП и МП ВП до МП ИРИ по К раз каждое; составляют, по среднему значению азимута ϕ с РКП и вычисленным с МП ВП азимутам, (К+1) уравнений азимутальных лучей от них на ИРИ, определяют 2М предварительных значений КМП ИРИ, корректируют их по своим КХШ и КХД, усредняют, а затем фиксируют как окончательные.
ОДНОПОЗИЦИОННЫЙ УГЛОМЕРНО-ДАЛЬНОМЕРНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ
ОДНОПОЗИЦИОННЫЙ УГЛОМЕРНО-ДАЛЬНОМЕРНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ
ОДНОПОЗИЦИОННЫЙ УГЛОМЕРНО-ДАЛЬНОМЕРНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ
ОДНОПОЗИЦИОННЫЙ УГЛОМЕРНО-ДАЛЬНОМЕРНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ
ОДНОПОЗИЦИОННЫЙ УГЛОМЕРНО-ДАЛЬНОМЕРНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ
ОДНОПОЗИЦИОННЫЙ УГЛОМЕРНО-ДАЛЬНОМЕРНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ
ОДНОПОЗИЦИОННЫЙ УГЛОМЕРНО-ДАЛЬНОМЕРНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ
ОДНОПОЗИЦИОННЫЙ УГЛОМЕРНО-ДАЛЬНОМЕРНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКОВ РАДИОИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 10.
10.05.2018
№218.016.3aa2

Мультипликативный разностно-относительный способ определения координат местоположения источника импульсного радиоизлучения

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников импульсных радиоизлучений. Достигаемый технический результат – упрощение путем определения пространственных координат местоположения источников радиоизлучений (ИРИ) четырьмя...
Тип: Изобретение
Номер охранного документа: 0002647495
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.4aff

Однопозиционный мультипликативный разностно-относительный способ определения координат местоположения источников радиоизлучений

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной...
Тип: Изобретение
Номер охранного документа: 0002651793
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4b3a

Однопозиционный корреляционный мультипликативный разностно-относительный способ определения координат местоположения источников радиоизлучений

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов, как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной...
Тип: Изобретение
Номер охранного документа: 0002651796
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4b80

Мультипликативный разностно-относительный способ определения координат местоположения источника импульсного радиоизлучения

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников импульсных радиоизлучения. Техническим результатом является определение пространственных координат местоположения источников радиоизлучений (ИРИ) тремя стационарными постами...
Тип: Изобретение
Номер охранного документа: 0002651587
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4f79

Дихотомический мультипликативный разностно-относительный способ определения координат местоположения источников радиоизлучений

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников радиоизлучения. Достигаемый технический результат - определение пространственных координат местоположения источников радиоизлучений (ИРИ) тремя стационарными постами простым...
Тип: Изобретение
Номер охранного документа: 0002652439
Дата охранного документа: 27.04.2018
29.05.2018
№218.016.58b6

Однопозиционный энергетический дальномерно-угломерный способ определения координат местоположения источников радиоизлучения

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников радиоизлучения (ИРИ) УКВ-СВЧ диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной...
Тип: Изобретение
Номер охранного документа: 0002653506
Дата охранного документа: 10.05.2018
09.11.2018
№218.016.9b7b

Мультипликативный разностно-относительный способ двухмобильного определения координат местоположения источника радиоизлучения

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников радиоизлучения. Техническим результатом является определение пространственных координат местоположения стационарных источников радиоизлучений (ИРИ) двумя мобильными (на...
Тип: Изобретение
Номер охранного документа: 0002671831
Дата охранного документа: 07.11.2018
09.11.2018
№218.016.9b96

Однопозиционный корреляционно-угломерный способ определения координат источников радиоизлучения

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной...
Тип: Изобретение
Номер охранного документа: 0002671826
Дата охранного документа: 07.11.2018
09.11.2018
№218.016.9bbe

Однопозиционный корреляционно-угломерный разностно-относительный способ определения координат источников радиоизлучения

Изобретение относится к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов, как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы). Технический...
Тип: Изобретение
Номер охранного документа: 0002671823
Дата охранного документа: 07.11.2018
09.11.2018
№218.016.9c1c

Однопозиционный корреляционный мультипликативный разностно-относительный способ определения координат источников радиоизлучения

Изобретение относится к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы). Технический результат - определение КМПИРИ одним постом...
Тип: Изобретение
Номер охранного документа: 0002671825
Дата охранного документа: 07.11.2018
Показаны записи 1-10 из 26.
27.01.2014
№216.012.9cc1

Разностно-энергетический способ определения координат местоположения источников радиоизлучения

Изобретение предназначено для определения местоположения источников радиоизлучения (ИРИ). Достигаемый технический результат - повышение точности определения координат местоположения ИРИ. Способ основан на использовании измерений на радиоконтрольных постах значений уровней сигналов (УС) на...
Тип: Изобретение
Номер охранного документа: 0002505835
Дата охранного документа: 27.01.2014
20.03.2014
№216.012.ad23

Дальномерно-разностно-дальномерный способ определения координат местоположения источников радиоизлучения и реализующее его устройство

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (ИРИ). Достигаемый технический результат - снижение аппаратных затрат. Предлагаемый способ основан на приеме сигналов ИРИ антеннами, измерении...
Тип: Изобретение
Номер охранного документа: 0002510038
Дата охранного документа: 20.03.2014
10.08.2015
№216.013.69cc

Мультипликативный разностно-относительный способ стационарно-мобильного определения координат местоположения источника радиоизлучения

Изобретение относится к системам радиоконтроля для определения местоположения источников радиоизлучения. Достигаемый технический результат - определение пространственных координат местоположения стационарных источников радиоизлучений (ИРИ) одним стационарным и одним (или двумя) мобильным...
Тип: Изобретение
Номер охранного документа: 0002558637
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69cd

Мультипликативный разностно-относительный способ стационарно-мобильного определения координат местоположения источника радиоизлучения

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников радиоизлучения. Достигаемый технический результат - определение пространственных координат местоположения источников радиоизлучений (ИРИ) путем измерения его уровня сигнала...
Тип: Изобретение
Номер охранного документа: 0002558638
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69cf

Мультипликативный разностно-относительный способ определения координат местоположения источника импульсного радиоизлучения

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников импульсных радиоизлучений. Достигаемый технический результат - определение пространственных координат местоположения источников радиоизлучений (ИРИ) тремя стационарными...
Тип: Изобретение
Номер охранного документа: 0002558640
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.7930

Дихотомический мультипликативный разностно-относительный способ определения координат местоположения источника импульсного радиоизлучения

Изобретение относится к системам радиоконтроля для определения местоположения источников импульсного радиоизлучения. Достигаемый технический результат - определение координат местоположения источников радиоизлучений (ИРИ) тремя стационарными постами. Способ основан на использовании измерений на...
Тип: Изобретение
Номер охранного документа: 0002562613
Дата охранного документа: 10.09.2015
17.02.2018
№218.016.2bff

Однопозиционный мультипликативный виртуально-реальный способ определения координат местоположения источников радиоизлучения

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной...
Тип: Изобретение
Номер охранного документа: 0002643154
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2d24

Однопозиционный способ определения координат местоположения источников радиоизлучения

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) ультракороткого–сверхвысокочастотного (УКВ-СВЧ) диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в...
Тип: Изобретение
Номер охранного документа: 0002643513
Дата охранного документа: 02.02.2018
17.02.2018
№218.016.2dd1

Однопозиционный мультипликативный разностно-относительный способ определения координат местоположения источников радиоизлучения

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной...
Тип: Изобретение
Номер охранного документа: 0002643780
Дата охранного документа: 06.02.2018
10.05.2018
№218.016.3aa2

Мультипликативный разностно-относительный способ определения координат местоположения источника импульсного радиоизлучения

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников импульсных радиоизлучений. Достигаемый технический результат – упрощение путем определения пространственных координат местоположения источников радиоизлучений (ИРИ) четырьмя...
Тип: Изобретение
Номер охранного документа: 0002647495
Дата охранного документа: 16.03.2018
+ добавить свой РИД