×
09.11.2018
218.016.9b55

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ КОЛИЧЕСТВА КАЖДОЙ КОМПОНЕНТЫ ДВУХКОМПОНЕНТНОЙ ЖИДКОСТИ В МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002672038
Дата охранного документа
08.11.2018
Аннотация: Изобретение относится к измерительной технике и может быть использовано для измерения количества (объема, массы) каждой компоненты двухкомпонентной диэлектрической жидкости в металлической емкости произвольной конфигурации. Технический результат: повышение точности измерения каждой компоненты. Сущность: в первом цикле измерений излучают электромагнитные волны длины волны λ в свободном пространстве, меньшей характерного размера полости, в пространство, ограниченное металлической оболочкой емкости, циклически изменяют конфигурацию полости, выводят часть мощности электромагнитного поля из полости и измеряют среднее за цикл значение выводимой из полости мощности P электромагнитного поля на длине волны λ. Во втором цикле измерений производят излучение электромагнитных волн длины волны λ в свободном пространстве, меньшей характерного размера полости и при этом λ>λ, в пространство, ограниченное металлической оболочкой емкости, с объемом, уменьшенным на величину ΔV по сравнению с объемом V при первом цикле измерений, измеряют среднее за цикл значение выводимой из полости мощности P электромагнитного поля на длине волны λ. В третьем цикле измерений производят излучение электромагнитных волн длины волны λ в свободном пространстве, меньшей характерного размера полости и при этом λ>λ>λ, в пространство, ограниченное металлической оболочкой емкости, с объемом, уменьшенным на величину ΔV+ΔV по сравнению с объемом V при первом цикле измерений, измеряют среднее за цикл значение выводимой из полости мощности Р электромагнитного поля на длине волны λ. Осуществляют совместное функциональное преобразование P, Р и Робъема и/или массы компонент. 2 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения количества (объема, массы) каждой компоненты двухкомпонентной диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от электрофизических параметров обеих компонент жидкости.

Известны способы измерения количества (объема, массы) вещества, содержащегося в какой-либо металлической емкости и реализующие их устройства, заключающиеся в рассмотрении этой емкости в качестве объемного резонатора и измерении его собственной (резонансной) частоты электромагнитных колебаний (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат. 1989. 208 с.). Однако, при изменении электрофизических параметров вещества имеет место погрешность измерения количества (объема, массы) вещества. Эти известные способы и устройства могут быть неприменимы и при изменении количества (объема, массы) двухкомпонентного вещества при изменении электрофизических параметров одной или обеих его компонент.

Известно также техническое решение (SU 1446480 А1, 23.12.1988), которое содержит описание способа измерения количества диэлектрического вещества, который заключается в том, что в металлической емкости возбуждают электромагнитные колебания на фиксированной частоте, для которой длина волны в свободном пространстве по крайней мере на порядок меньше характерного размера полости, циклически изменяют конфигурацию полости и измеряют среднее за цикл измерения значение выводимой из полости мощности электромагнитного излучения. При этом операцию изменения конфигурации полости возможно осуществлять посредством циклического перемещения отражающего тела в пределах диаграммы направленности вводимого электромагнитного излучения.

Недостатком этого способа является невысокая точность измерения, обусловленная зависимостью результата измерения количества (объема, массы) контролируемого диэлектрического вещества от величины е его диэлектрической проницаемости (см. формулу (8) в описании изобретения SU 1446480 А1). Это приводит к существенному уменьшению точности измерения.

Известно также техническое решение (RU 2511646 С1, 10.042014), которое содержит описание способа измерения количества (объема, массы) диэлектрического вещества, по технической сущности наиболее близкого к предлагаемому способу и принятого в качестве прототипа. Этот способ-прототип заключается в том, что в первом цикле измерений излучают электромагнитные волны фиксированной частоты ƒ1, для которой длина волны λ1 в свободном пространстве меньше характерного размера полости, в пространство, ограниченное металлической оболочкой емкости, циклическом изменяют конфигурацию полости, выводят часть мощности электромагнитного поля из полости и измеряют среднее за цикл значение выводимой из полости мощности Р1 электромагнитного поля на длине волны λ1, во втором цикле измерений производят излучение электромагнитных волн фиксированной частоты ƒ2, для которой длина волны λ2 в свободном пространстве меньше характерного размера полости, в пространство, ограниченное металлической оболочкой емкости, с объемом, уменьшенным на фиксированную величину ΔV1 по сравнению с объемом V0 полости при первом цикле измерений, измеряют среднее за цикл значение выводимой из полости мощности Р2 электромагнитного поля на длине волны λ2. Измеряют среднее за цикл значение выводимой из полости мощности Р2 электромагнитного поля на длине волны λ2, и осуществляют совместное функциональное преобразование P1 и Р2.

Недостатком этого способа также является невысокая точность измерения при измерении каждой компоненты двухкомпонентной жидкости, с непостоянными значениями электрофизических параметров обеих компонент среды.

Техническим результатом настоящего изобретения является повышение точности измерения каждой компоненты двухкомпонентной жидкости в металлической емкости.

Технический результат в предлагаемом способе измерения количества каждой компоненты двухкомпонентной жидкости в металлической емкости достигается тем, что в в первом цикле измерений излучают электромагнитные волны фиксированной длины волны λ1 в свободном пространстве, меньшей характерного размера полости, в пространство, ограниченное металлической оболочкой емкости, циклическом изменяют конфигурацию полости, выводят часть мощности электромагнитного поля из полости и измеряют среднее за цикл значение выводимой из полости мощности Р1 электромагнитного поля на длине волны λ1, во втором цикле измерений производят излучение электромагнитных волн фиксированной длины волны λ2 в свободном пространстве, меньшей характерного размера полости и при этом λ21, в пространство, ограниченное металлической оболочкой емкости, с объемом, уменьшенным на фиксированную величину ΔV1 по сравнению с объемом V0 полости при первом цикле измерений, измеряют среднее за цикл значение выводимой из полости мощности Р2 электромагнитного поля на длине волны λ2. При этом дополнительно, в третьем цикле измерений, производят излучение электромагнитных волн фиксированной длины волны λ3 в свободном пространстве, меньшей характерного размера полости и при этом λ321, в пространство, ограниченное металлической оболочкой емкости, с объемом, уменьшенным на фиксированную величину ΔV1+ΔV2 по сравнению с объемом V0 полости при первом цикле измерений, измеряют среднее за цикл значение выводимой из полости мощности Р3 электромагнитного поля на длине волны λ3, и осуществляют совместное функциональное преобразование P1, Р2 и Р3. Совместное функциональное преобразование Р1, Р2 и Р3 для определения количества как объема V одной из компонент жидкости осуществляют согласно соотношению , где ; ; ; ; ; ; ; а1, а2 и а3 - постоянные коэффициенты, характеризующие величину запасаемой полостью емкости электромагнитной энергии, с - скорость света в свободном пространстве, объем другой компоненты определяют по величине V0-V. Совместное функциональное преобразование Р1, Р2 и Р3 для определения количества как массы каждой компоненты жидкости осуществляют согласно соотношениям и , где А1 и А2 - постоянные для каждой компоненты величины и - диэлектрическая проницаемость соответствующей компоненты, А1 и А2 - постоянные для соответствующей компоненты величины.

Предлагаемый способ поясняется чертежами на фиг. 1 и фиг. 2.

На фиг. 1 показана металлическая емкость с контролируемой двухкомпонентной жидкостью, где указаны уменьшаемые части полости металлической емкости.

На фиг. 2 приведена функциональная схема устройства для реализации способа.

Здесь введены обозначения: металлическая емкость 1, компоненты 2 и 3 жидкости, уменьшаемые части 4 и 5 объема полости, волновод 6, металлическая стенка 7, волновод 8, металлическая стенка 9, генераторы 10, 11 и 12, коммутатор 13, передающая антенна 14, вращающийся элемент 15, приемная антенна 16, детектор 17, блок усреднения 18, вычислительный блок 19, регистратор 20.

Сущность способа измерения состоит в следующем.

При возбуждении в полости металлической емкости электромагнитных колебаний от источника электромагнитных колебаний, фиксированная длина λ которых существенно меньше минимального размера D полости (λ<<D или λ3<<V0, где V0 - объем емкости), резонансные явления на отдельных типах колебаний проявляются слабо, так как расстояние между соседними резонансными (собственными) частотами меньше ширины резонансных кривых на частотной оси, которая (ширина) определяется потерями электромагнитной энергии; в то же время интегральная добротность полости является высокой (SU 1446480, 23.12.1988). При λ<<D существенно снижена зависимость результата измерения количестве вещества в емкости от наличия стоячих электромагнитных волн в полости емкости; принятие же специальных мер - механического перемешивания электромагнитных колебаний возбуждаемых типов колебаний позволяет, за счет изменения конфигурации полости, достичь независимости выходного сигнала от распределения вещества в емкости.

Прием мощности после многократного рассеяния и переотражения электромагнитных волн в полости емкости можно осуществить с помощью антенны, в частности, рупорной, подсоединенной к емкости через отверстие в ее стенке. Принимаемая при этом мощность Р зависит от плотности электромагнитной энергии, запасаемой в полости при возбуждении в ней колебаний от источника электромагнитной энергии с помощью передающей антенны.

Если металлическая емкость 1 произвольной формы с объемом V0 полости заполнена частично диэлектрическим жидкостью 2 имеющей объем V (фиг. 1), с диэлектрической проницаемостью ε, то принимаемая мощность Р есть (SU 1446480, 23.12.1988):

где a=ε0⎪E⎪2=const, Е - амплитуда напряженности электрического поля, ε0 - диэлектрическая проницаемость вакуума, с - скорость света.

Если же в металлической полости содержится двухкомпонентная диэлектрическая жидкость с компонентами 2 и 3, имеющими, соответственно, объем V и V0-V (фиг. 1), и, соответственно, диэлектрическую проницаемость ε1 и ε2, то принимаемая мощность Р есть в этом случае

Как следует из (2), Р зависит не только от измеряемых объемов V и V0-V, но и от значений ε1 и ε2 диэлектрической проницаемости обеих компонент контролируемой жидкости. При изменении температуры окружающей среды, приводящем к изменению ε1 и ε2, или (и) при изменении плотности, сортности компонент жидкости, находящейся в металлической емкости, имеет место погрешность измерения количества каждой компоненты двухкомпонентной диэлектрической жидкости.

Предлагаемый способ позволяет обеспечить определения количество (как объема, так и массы) каждой компоненты двухкомпонентной диэлектрической жидкости в емкости независимо от значений ε1 и ε2 диэлектрической проницаемости обеих компонент контролируемой жидкости и их возможных изменений, т.е. обеспечивается достижение инвариантности результатов измерения количества к величинам ε1 и ε2.

Для достижения инвариантности результатов измерения объемов V и V0-V диэлектрической жидкости к величинам ε1 и ε2 согласно предлагаемому способу производят измерения на трех фиксированных длинах волн λ1, λ2 и λ3 генераторов таких, что если на длине волны λ1 возбуждаются колебания в контролируемой емкости 1 объемом V0, то на длине волны λ21 из объема V0 удаляется (условно) некоторая часть 2 с объемом ΔV1, в которой есть электромагнитное поле, а на длине λ321 - еще одна часть 3 с объемом ΔV2 (фиг. 1). Объемы ΔV1 и ΔV2 является частями объема V0 емкости, в которой при длине волны, соответственно, λ2 и λ1 отсутствует электромагнитное поле. Такое удаление объемов ΔV1 и ΔV2 возможно обеспечить, в частности, при применении волновода 4, соединяющего объемы V0 и V0-ΔV1 и являющегося запредельным волноводом для волн с длиной λ2, и волновода 5, соединяющего объемы ΔV1 и ΔV2 и являющегося запредельным волноводом для волн с длиной λ3 (фиг. 2).

В соответствии с (2) на длинах волны λ1, λ2 и λ3 генераторов будем иметь, соответственно, следующие выражения Р1, Р2 и Р3 для принимаемой мощности:

Здесь a1, а2 и а3 - постоянные коэффициенты, характеризующие величину запасаемой полостью емкости электромагнитной энергии.

Рассматривая (3), (4) и (5) как систему уравнений относительно ε1, ε2 и V, получим:

инвариант по отношению к ε1 и ε2;

Здесь ; ; ; ; ; ; ; . В выражение для К входят измеряемые согласно данному способу значения P1, Р2 к Р3 к константы, а в выражения для b1, b2, c1, c2, k1, k2, и k3 входят только константы.

В формуле (7) содержится подлежащая измерению величина V, текущее определяемое значение которой выражается формулой (6). В формуле (8) содержатся подлежащие измерению величины V и ε1, текущие определяемые значения которых выражаются формулами (6) и (7), соответственно.

Таким образом, измеряя значения P1, Р2 и Р3 мощности принимаемых антеннами волн на длинах волн λ1, λ2 и λ3, можно определить значения как объемов V и V0-V компонент двухкомпонентного диэлектрического вещества в емкости независимо от величин ε1 и ε2, так и самих величин ε1 и ε2, функционально связанных с физическими свойствами (плотностью) соответствующих компонент жидкости.

Дополнительное измерение плотности ρ жидкости с применением того или иного плотномера позволяет определить массу М жидкости в емкости: М=ρV. В данном случае, зная ε1 и ε2, возможно найти функционально связанные с ε1 и ε2 значения ρ11) и ρ22) плотности соответствующей компоненты двухкомпонентной жидкости и, значения М1 и М2 массы каждой компоненты: М111)V, М222)(V0-V). Нетрудно видеть, что соотношения (6), (7) и (8) являются основой для получения не только алгоритмов инвариантности к ε1 и ε2 при измерениях объемов V и V0-V компонент произвольно распределенного вещества, но и алгоритма для определения значений М1 и М2 массы соответствующей компоненты жидкости:

При этом важно, что процесс измерения массы для ряда жидкостей, в частности неполярных диэлектриков, не связан с раздельным измерением объема вещества и его плотности. Для неполярных диэлектрических жидкостей, к числу которых относятся, в частности, криогенные жидкости, справедливо соотношение Клаузиуса-Мосотти:

где - постоянная для каждого вещества величина; N - число Авогадро - постоянная для каждого вещества величина, μ - молекулярный вес вещества, β - поляризуемость его молекул.

Подставив выражение для ρ согласно (11) в соотношения (9) и (10), после преобразования получим:

При этом значения ε1 в формуле (12) и ε2 в формуле (13) выражаются, соответственно, формулами (7) и (8); А1 в формуле (12) и A2 формуле (13) - постоянные для соответствующей компоненты вещества величины.

Итак, производя измерение мощностей Р1, Р2 и Р3, найдены значения количества каждой компоненты двухкомпонентной диэлектрической жидкости: 1) значения количества как значений объемов V и V0-V компонент (формула (6) для V; при этом количество второй компоненты есть V0-V); 2) значения количества как значений М1 и М2 массы компонент (формулы (9), (10) и (12) и (13)). Данные математические преобразования нетрудно произвести в вычислительном блоке устройства, реализующего данный способ измерения количества.

Для реализации данного способа возможно в соответствующих циклах измерений осуществлять уменьшение начального объема V0 полости на величины ΔV1 и ΔV2 механически, перемещая часть стенки полости. Но можно такую реализацию производить электрическим методом (фиг. 2).

В металлической емкости 1 произвольной формы, имеющей объем V0, с контролируемой двухкомпонентной диэлектрической жидкостью с объемами V и V0-V ее компонент нижняя часть 3 объемом ΔV1 отделена от основного объема V0 полости с помощью волновода 6 и металлической стенки 7; другая часть 4 объемом ΔV2 отделена от основного объема V0 полости с помощью волновода 8 и металлической стенки 9 (фиг. 2). Контролируемая жидкость имеет возможность свободно проходить через волноводы 6 и 8 и заполнять как основную часть объема емкости, так и ее части 3 и 4.

Электромагнитные колебания от СВЧ генераторов 10, 11 и 12 с фиксированной длиной волны, соответственно, λ1, λ2 и λ3, причем λ321, поступают попеременно, в первом, втором и третьем циклах измерений, в полость металлической емкости 1 по волноводу (не показан) и коммутатор 8 на передающую антенну 9. Для волн с длиной λ2 волновод 6 является запредельным волноводом; при этом в часть 4 полости объемом ΔV1 емкости 1 электромагнитное излучение не поступает и находится в части объемом V0-ΔV1. Для волн с длиной λ3 волновод 8 является запредельным волноводом; при этом в часть 5 полости объемом ΔV2 металлической емкости электромагнитное излучение не поступает. Для волн с длиной λ3 и волновод 6 является запредельным волноводом; при этом как в часть 4 полости объемом ΔV1 металлической емкости, так и в часть 5 объемом ΔV2 электромагнитное излучение не поступает и находится в части объемом V0-ΔV1-ΔV2.

Каждый из волноводов 6 и 8 может быть выполнен в виде отрезка металлической трубы, открытой на обоих торцах, длина и поперечные размеры которой выбирают так, чтобы он работал в режиме распространения волн с длиной λ1 и был бы запредельным волноводом для волн длиной λ2 или для волн длиной как λ2, так и λ3 (Семенов Н.А. Техническая электродинамика. М.: Связь. 1973. С. 224-226).

Внутри полости содержится вращающийся элемент 15, например металлическая лопасть (для лучшего рассеяния волн лопасть может быть скручена вдоль ее оси на некоторый угол, например на 90°). Вращающийся элемент 15 целесообразно расположить, с точки зрения эффективности перемешивания электромагнитных колебаний, вблизи апертуры антенны 14. Закрепление вращающегося элемента 15 может быть выполнено на вращающейся оси, которая приводится в движение от находящегося вне полости миниатюрного двигателя. Частота вращения элемента может составлять 10÷20 Гц. Каждый цикл измерений может соответствовать, как минимум, полному обороту вращающегося элемента 15. В пределах первого, второго и третьего циклов измерений, на которых в полость емкости поступают попеременно электромагнитные волны длиной λ1, λ2 и λ3, осуществляется усреднение значений электромагнитной мощности.

Прием полезных сигналов, несущих информацию об измеряемом количестве жидкости в емкости, осуществляют с помощью приемной рупорной антенны 16. Принятые колебания поступают на детектор 17 и далее в блок усреднения 18, в котором осуществляется усреднение принимаемого сигнала за каждый цикл измерения. С выхода блока усреднения 18 сигналы, соответствующие длине электромагнитных волн λ1, λ2 и λ3, попеременно поступают в вычислительный блок 19 и затем в регистратор 20. В вычислительном блоке 19 производят вычислительные операции с принимаемыми сигналами согласно соотношениям (6) для определения количества каждой компоненты как объемов жидкости V и V0-V или соотношениям количества как значений М1 и М2 массы обеих компонент (формулы (9), (10) и (12) и (13)).

В зависимости от объема полости металлической емкости 1 частоты генераторов могут соответствовать сантиметровому или миллиметровому диапазонам длин электромагнитных волн. Например, для емкостей с минимальным размером ~500 мм и более могут быть применены волны стандартного трехсантиметрового диапазона.

Таким образом, данный способ позволяет измерять количество - объем и (или) массу - каждой компоненты диэлектрической двухкомпонентной жидкости в металлической емкости произвольной конфигурации независимо от величин диэлектрической проницаемости обеих компонент жидкости.


СПОСОБ ИЗМЕРЕНИЯ КОЛИЧЕСТВА КАЖДОЙ КОМПОНЕНТЫ ДВУХКОМПОНЕНТНОЙ ЖИДКОСТИ В МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ
СПОСОБ ИЗМЕРЕНИЯ КОЛИЧЕСТВА КАЖДОЙ КОМПОНЕНТЫ ДВУХКОМПОНЕНТНОЙ ЖИДКОСТИ В МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ
СПОСОБ ИЗМЕРЕНИЯ КОЛИЧЕСТВА КАЖДОЙ КОМПОНЕНТЫ ДВУХКОМПОНЕНТНОЙ ЖИДКОСТИ В МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ
СПОСОБ ИЗМЕРЕНИЯ КОЛИЧЕСТВА КАЖДОЙ КОМПОНЕНТЫ ДВУХКОМПОНЕНТНОЙ ЖИДКОСТИ В МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ
СПОСОБ ИЗМЕРЕНИЯ КОЛИЧЕСТВА КАЖДОЙ КОМПОНЕНТЫ ДВУХКОМПОНЕНТНОЙ ЖИДКОСТИ В МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ
СПОСОБ ИЗМЕРЕНИЯ КОЛИЧЕСТВА КАЖДОЙ КОМПОНЕНТЫ ДВУХКОМПОНЕНТНОЙ ЖИДКОСТИ В МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ
СПОСОБ ИЗМЕРЕНИЯ КОЛИЧЕСТВА КАЖДОЙ КОМПОНЕНТЫ ДВУХКОМПОНЕНТНОЙ ЖИДКОСТИ В МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ
СПОСОБ ИЗМЕРЕНИЯ КОЛИЧЕСТВА КАЖДОЙ КОМПОНЕНТЫ ДВУХКОМПОНЕНТНОЙ ЖИДКОСТИ В МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ
СПОСОБ ИЗМЕРЕНИЯ КОЛИЧЕСТВА КАЖДОЙ КОМПОНЕНТЫ ДВУХКОМПОНЕНТНОЙ ЖИДКОСТИ В МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ
СПОСОБ ИЗМЕРЕНИЯ КОЛИЧЕСТВА КАЖДОЙ КОМПОНЕНТЫ ДВУХКОМПОНЕНТНОЙ ЖИДКОСТИ В МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ
СПОСОБ ИЗМЕРЕНИЯ КОЛИЧЕСТВА КАЖДОЙ КОМПОНЕНТЫ ДВУХКОМПОНЕНТНОЙ ЖИДКОСТИ В МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ
СПОСОБ ИЗМЕРЕНИЯ КОЛИЧЕСТВА КАЖДОЙ КОМПОНЕНТЫ ДВУХКОМПОНЕНТНОЙ ЖИДКОСТИ В МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ
СПОСОБ ИЗМЕРЕНИЯ КОЛИЧЕСТВА КАЖДОЙ КОМПОНЕНТЫ ДВУХКОМПОНЕНТНОЙ ЖИДКОСТИ В МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ
СПОСОБ ИЗМЕРЕНИЯ КОЛИЧЕСТВА КАЖДОЙ КОМПОНЕНТЫ ДВУХКОМПОНЕНТНОЙ ЖИДКОСТИ В МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 276.
10.07.2014
№216.012.dc1f

Способ преобразования энергии ветра в полезную энергию

Изобретение относится к области ветроэнергетики. Способ преобразования энергии ветра в полезную энергию путем воздействия на струны набегающего потока воздуха. Колебания струн под действием потока воздуха усиливают за счет увеличения их поверхности путем навешивания на них полотнищ....
Тип: Изобретение
Номер охранного документа: 0002522129
Дата охранного документа: 10.07.2014
10.08.2014
№216.012.e7b6

Устройство формирования переноса в сумматоре

Изобретение относится к области вычислительной техники и может быть использовано в КМДП интегральных схемах для реализации арифметических устройств. Техническим результатом является повышение надежности. Устройство содержит логические транзисторы n-типа, предзарядовые транзисторы р-типа,...
Тип: Изобретение
Номер охранного документа: 0002525111
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e7c4

Малогабаритный музыкальный фонтан

Изобретение относится к гидротехническим устройствам, а именно к фонтанам, в том числе к декоративным и демонстративным, в которых изменяется характер струи. Малогабаритный музыкальный фонтан содержит основание, с закрепленными на нем корпусом, электродвигателем и кронштейнами крепления траверс...
Тип: Изобретение
Номер охранного документа: 0002525125
Дата охранного документа: 10.08.2014
10.09.2014
№216.012.f364

Устройство для измерения свойства диэлектрического материала

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение точности измерения. Устройство для измерения свойства диэлектрического материала содержит генератор электромагнитных колебаний, первый развязывающий элемент,...
Тип: Изобретение
Номер охранного документа: 0002528130
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f365

Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Технический результат - повышение точности достигается тем, что устройство содержит генератор сверхвысокочастотных электромагнитных...
Тип: Изобретение
Номер охранного документа: 0002528131
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f3f3

Способ измерения вектора гармонического сигнала

Изобретение относится к области электроизмерительной техники и может использоваться при измерениях пассивных и активных комплексных электрических величин. Способ состоит в том, что амплитуду А и начальный фазовый сдвиг φ вектора гармонического сигнала S(t) с известным периодом Т, действующего...
Тип: Изобретение
Номер охранного документа: 0002528274
Дата охранного документа: 10.09.2014
20.10.2014
№216.012.fe4b

Способ позиционного управления газовой турбиной

Изобретение относится к области позиционного управления газовой турбиной. Технический результат изобретения - обеспечение позиционного управления газовой турбиной с получением необходимой динамики и точности позиционирования. Газ подают на лопатки турбины до достижения точки позиционирования,...
Тип: Изобретение
Номер охранного документа: 0002530955
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe96

Объемный расходомер

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Объемный расходомер содержит последовательно соединенные с входным каналом сумматор, расходомер напорного потока и делитель потока,...
Тип: Изобретение
Номер охранного документа: 0002531030
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe98

Способ измерения расхода среды

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Способ измерения расхода среды, при котором основной поток суммируют с обратным потоком, проводят суммарный поток через основной...
Тип: Изобретение
Номер охранного документа: 0002531032
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe99

Устройство для измерения количества вещества в металлической емкости

Изобретение относится к измерительной технике и может быть использовано для измерения объемов металлических полостей произвольной формы, а также для измерения количества (объема, массы) содержащихся в таких полостях веществ, занимающих произвольное положение в объеме емкости, в том числе и...
Тип: Изобретение
Номер охранного документа: 0002531033
Дата охранного документа: 20.10.2014
Показаны записи 31-40 из 86.
27.03.2016
№216.014.c78d

Способ определения положения границы раздела двух веществ в емкости

Изобретение относится к измерительной технике. В заявленном способе определения положения границы раздела двух веществ в емкости, при котором в емкости с веществами, одно над другим, образующими плоскую горизонтальную границу раздела, размещают вертикально отрезок длинной линии длиной l,...
Тип: Изобретение
Номер охранного документа: 0002578749
Дата охранного документа: 27.03.2016
10.04.2016
№216.015.2e71

Способ измерения физической величины

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин. Согласно способу возбуждают колебания в резонаторе на фиксированной частоте. При изменении начальной собственной частоты резонатора в фиксированных пределах...
Тип: Изобретение
Номер охранного документа: 0002579359
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.4603

Устройство для измерения давления

Изобретение относится к измерительной технике. Устройство для измерения давления содержит СВЧ чувствительный элемент в виде металлической полости, часть стенки которой выполнена упругой, соединенный с помощью элемента возбуждения и элемента съема электромагнитных колебаний с электронным блоком,...
Тип: Изобретение
Номер охранного документа: 0002586388
Дата охранного документа: 10.06.2016
25.08.2017
№217.015.a204

Способ измерения физической величины

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин, в частности механических величин, геометрических параметров объектов и физических свойств веществ. При реализации способа измерения физической величины с помощью...
Тип: Изобретение
Номер охранного документа: 0002606807
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a7eb

Способ измерения количества каждой компоненты многокомпонентной среды в емкости

Изобретение относится к измерительной технике и может быть использовано для измерения покомпонентного количества (объема) многокомпонентной среды в емкости, произвольным образом распределенной внутри нее. В частности, оно может быть применено для измерения количества каждой компоненты...
Тип: Изобретение
Номер охранного документа: 0002611210
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a8da

Устройство для измерения внутреннего диаметра металлической трубы

Изобретение может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб на металлургических, машиностроительных предприятиях, в том числе при их производстве, например, по методу центробежного литья. Оно может быть применено также при бесконтактном измерении...
Тип: Изобретение
Номер охранного документа: 0002611334
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a8e8

Способ измерения состава двухфазного вещества в потоке

Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами двухфазного вещества, неподвижного или транспортируемого по трубопроводу. В частности, данный способ может быть применен для...
Тип: Изобретение
Номер охранного документа: 0002611439
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.ab10

Способ измерения состава трехкомпонентного водосодержащего вещества в потоке

Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами трехкомпонентного вещества, неподвижного или транспортируемого по трубопроводу. В частности, данный способ может быть применен для...
Тип: Изобретение
Номер охранного документа: 0002612033
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b28a

Способ измерения влагосодержания жидкости

Изобретение относится к электротехнике и может быть использовано для высокоточного измерения влагосодержания различных диэлектрических жидких веществ, в частности нефти и нефтепродуктов, находящихся в емкостях или перекачиваемых по трубопроводам. Способ измерения влагосодержания жидкости...
Тип: Изобретение
Номер охранного документа: 0002614054
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.c922

Устройство для измерения диаметра провода

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения диаметра провода как готового изделия, так и при его производстве. Оно может быть применено также для измерения диаметра других протяженных металлических изделий (стержней, нитей и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002619356
Дата охранного документа: 15.05.2017
+ добавить свой РИД