×
09.11.2018
218.016.9b4e

Результат интеллектуальной деятельности: Способ моделирования параметров геометрической неоднородности поверхности микрополосковой линии передачи

Вид РИД

Изобретение

№ охранного документа
0002672031
Дата охранного документа
08.11.2018
Аннотация: Изобретение относится к области радиотехники. Технический результат - повышение точности компьютерного моделирования целостности сигнала и электромагнитной совместимости проектируемых СВЧ устройств в расширенном диапазоне рабочих частот до 100 ГГц и более. Для этого расчет параметров геометрической неоднородности поверхности микрополосковой линии передач проводят последовательно в три этапа: при этом на подготовительном этапе проводят получение микрофотографии поверхности микрополосковой линии передачи, например, с помощью сканирующей электронной микроскопии, ввод исходных данных, вычисление глубины скин-слоя; на втором этапе задают градиент неоднородности по указанной области неоднородности, параметрам самой глубокой впадины и калибровочной линейки на микрофотографии поверхности микрополосковой линии передачи и на основе рекурсивного метода цифровой обработки микрофотографии проводят наложение и обработку маски неоднородности; на заключительном этапе на основе введенных исходных данных и полученной маски неоднородности поверхности проводят построение эквивалентной RLCG-модели микрополосковой линии передачи, учитывающей параметры геометрической неоднородности ее поверхности. 6 ил.

Изобретение относится к области радиотехники и может быть использовано при проектировании сложных радиотехнических изделий, к примеру, сверхвысокочастотных (СВЧ) устройств, выполненных на основе низкотемпературной совместно-обжигаемой керамики. Реализация изобретения позволяет повысить точность проектирования изделий за счет определения геометрической неоднородности микрополосковых линий передач при компьютерном моделировании целостности сигналов, паразитных связей, перекрестных наводок и др. в обеспечение требований их электромагнитной совместимости.

Известны аналогичные способы моделирования параметров геометрической неоднородности поверхности линий передач:

1) Hall S. Modeling Requirements for Transmission Lines in Multi-Gigabit // Electrical Performance of Electronic Packaging, IEEE 13th Topical Meeting. 2004. - pp. 67-70;

2) Huray P.G., Pytel S.G., Hall S.H., Oluwafemi F., Mellitz R.I., Hua D., and Ye P. Fundamentals of a 3-D "Snowball" Model for Surface Roughness Power Losses" // 11th Annual IEEE SPI Proceedings. May 13-16, 2006. - pp. 121-124;

3) Brian C. Loss Modeling in Non-Ideal Transmission Lines for Optimal Signal Integrity. 1st ed. Berlin: Technischen Berlin, 2012. - 106 pp.;

4) Method for modeling conductor surface roughness US 8527246 B1.

Данные способы позволяют математически описать определенную геометрию поверхности линии передачи в виде корректирующего коэффициента параметров отражения и передачи. При этом модель:

- Хэммерстада - описывает пилообразный профиль;

- Холла - аппроксимирует неоднородность поверхности в виде серии полушарий;

- Холла-Хуррея - описывает поперечное сечение проводника в виде сфер, расположенных на полусферах.

Точность вычисляемых значений и результатов расчетов коэффициентов с использованием перечисленных моделей, как правило, сильно зависит от рабочей частоты и достоверности исходных данных для расчета, вводимых вручную, таких как: высота, диаметр и средняя плотность распределения неоднородностей.

При этом за прототип взят метод моделирования шероховатости поверхности проводника (Method for modeling conductor surface roughness US 8527246 В1). Данный метод заключается в двухуровневом определении размеров и расположения выступов на поверхности проводника с последующим получением трех поправочных коэффициентов, причем, последний фактор коррекции получается путем объединения первого и второго поправочного коэффициента. Определение размеров и габаритов выступов предлагается делать путем анализа микрофотографии поверхности. В общем виде метод позволяет получить поверхностное волновое сопротивление проводника следующим образом:

1) Определение количества уровней N для модели шероховатости;

2) Определение профиля шероховатости поверхности;

3) Выявление ith выступов с использованием ith базовой поверхности для ith уровня;

4) Определение ith корректирующего коэффициента Ki для ith уровня используя параметры для ith выступа;

5) Повторение пунктов 3 и 4 до тех пор пока I не станет равно N;

6) Расчет финального корректирующего коэффициента Ks;

7) Расчет поверхностного волнового сопротивления появляющегося на шероховатой поверхности с использованием Ks.

Из данного прототипа взята идея получения профиля шероховатости поверхности по реальной микрофотографии поверхности исследуемого материала. Однако прототип имеет существенные недостатки:

- частотный диапазон применимости ограничен частотой в 50 ГГц;

- отсутствует возможность учета геометрической неоднородности поверхности линий передач пористых структур, выполненных, к примеру, на основе технологии низкотемпературной совместно-обжигаемой керамики;

- необходимость ручного подбора параметров геометрической неоднородности поверхности для достижения удовлетворительной точности расчета;

- использование корректирующего коэффициента исключает возможность учета пространственного распределения геометрической неоднородности по поверхности линии передачи.

Задачей изобретения является устранение указанных выше недостатков прототипа, а именно:

- повышение точности компьютерного моделирования целостности сигнала и электромагнитной совместимости проектируемых СВЧ устройств в расширенном диапазоне рабочих частот до 100 ГГц и более;

- возможность учета геометрической неоднородности поверхности линий передач (в том числе пористых структур);

- автоматическое определение параметров геометрической неоднородности поверхности для достижения удовлетворительной точности расчета;

- исключение корректирующего коэффициента путем учета пространственного распределения геометрической неоднородности по поверхности линии передачи.

Поставленная задача решается за счет того, что моделирование параметров геометрической неоднородности поверхности микрополосковой линии передач на основе пространственной дискретизации эквивалентной RLCG-модели (где: L - индуктивность линии; R - активное сопротивление линии; С - емкость пленочного конденсатора; G -проводимость утечки через изоляцию) проводится последовательно в три этапа:

- на подготовительном этапе, например, с помощью метода сканирующей электронной микроскопии проводится получение микрофотографии поверхности линии передачи. Затем вводятся исходные данные, необходимые для расчета: рабочая частота проектируемого СВЧ-устройства, характеристики применяемых диэлектрических материалов (диэлектрическая проницаемость, тангенс угла диэлектрических потерь), параметры линии передачи (коэффициент передачи, коэффициент отражения). Корме того, на данном этапе проводится вычисление глубины скин-слоя и указывается область неоднородности на микрофотографии поверхности.

- на втором этапе по указанной области неоднородности, параметрам самой глубокой впадины и калибровочной линейки на микрофотографии поверхности микрополосковой линии передачи задается градиент неоднородности. После чего по микрофотографии поверхности, например, с помощью рекурсивного метода цифровой обработки изображений, проводится наложение и обработка маски неоднородности.

- на заключительном этапе, на основе введенных исходных данных и полученной маски неоднородности поверхности, проводится построение эквивалентной RLCG-модели микрополосковой линии передачи, в которой учитываются параметры геометрической неоднородности ее поверхности.

Суть изобретения поясняется чертежами, где на Фиг. 1 изображен алгоритм моделирования, на Фиг. 2 представлены микрофотографии пористой поверхности микрополосковой линии передачи, выполненной на основе технологии низкотемпературной совместно-обжигаемой керамики: увеличение в 600 раз (слева) и увеличение в 2300 раз (справа), на Фиг. 3 приведена иллюстрация базовой ячейки RLCG-компонентов, на Фиг. 4 представлен фрагмент эквивалентной электрической модели микрополосковой линии передачи, в центре которой встречается геометрическая неоднородность поверхности в виде паза.

На Фиг. 1 изображен алгоритм моделирования посредством дискретизации поверхности, где:

- Этап 1. Подготовительный;

- Этап 2. Вычисление маски геометрической неоднородности поверхности;

- Этап 3. Построение эквивалентной RLCG-модели микрополосковой линии передачи, учитывающей геометрическую неоднородность поверхности.

Определение параметров геометрической неоднородности поверхности линии передачи начинается с того, что на исходном микроизображении поверхности линий передач, окно обработки (Фиг. 5) построчно, пиксель за пикселем, принимает все возможные положения на плоскости микроизображения, и в каждом положении по значениям, лежащим в нем выходных отчетов, рассчитывается значение одного отсчета получаемой маски неоднородности.

Таким образом, пространственно-инвариантная обработка записана следующим соотношением:

где f(n1-m1,n2-m2) и g(n1,n2) - двумерные последовательности отсчетов входного и выходного изображения соответственно; G - оператор преобразования; D - конечное множество отсчетов, заданное относительно начала координат и определяющее форму и размеры окна обработки.

При этом D ограничивается прямоугольной областью:

где , , , - параметры, указывающие границы окна по следующим координатам (, ). При этом используется прямоугольное окно, симметричное относительно центрального пикселя:

Определение принадлежности соседних пикселей внутри области будет определяться следующим образом:

где Р0 - пиксель, указанный пользователем как пиксель неоднородности; Рn - анализируемый пиксель; Т - порог отклонения от указанного пикселя неоднородности.

Поскольку каждый пиксель изображения состоит из трех цветов - красного, зеленого и синего, то и проверка принадлежности пикселя к неоднородности проводится для каждого цвета отдельно, и только в случае, если все три цвета удовлетворяют условию, пиксель считается пикселем неоднородности.

На Фиг. 6 представлены результаты накладываемой маски неоднородности при различных значениях градиента неоднородности (слева-направо): 0,2; 0,3; 0,4.

На основе проведенной дискретизации и вычисленной маски неоднородности поверхности микрополосковая линия передачи впоследствии представляется в виде эквивалентной RLCG-модели, реализуемой с использованием последовательного включения базовых ячеек пассивных компонентов (Фиг. 3). С помощью последовательного включения RL-компонентов имитируют распространение сигнала, а с помощью параллельного включения CG-компонентов - взаимосвязь линии с опорным слоем, при этом в местах наличия геометрической неоднородности поверхности RL-цепь разрывают (Фиг.4).

Расчет значений RLCG-компонентов линии передачи проводится согласно следующим выражениям:

где d, w - длина и ширина линии передачи (м);

μ0 - магнитная проницаемость вакуума (Гн/м);

ρ - проводимость линии передачи (Ом);

ƒ - частота (Гц);

Zc - волновое сопротивление (Ом);

с - скорость света в вакууме (м/с);

εeƒƒ - эффективная диэлектрическая проницаемость;

tan(δ) - тангенс угла диэлектрических потерь;

ω - угловая частота (ω=2πƒ) (рад/с).

Способ моделирования параметров геометрической неоднородности поверхности микрополосковой линии передач с использованием автоматического построения расчетных эквивалентных RLCG-моделей является универсальным и легко интегрируется в различные системы схемотехнического (SPICE) моделирования. Так же будет действовать правило: чем больше цепей и звеньев эквивалентной RLCG-модели, тем точнее имитация геометрической неоднородности поверхности.

Данный способ программно проработан и прошел отладку и верификацию при проектировании СВЧ устройств. Практическое применение данного способа позволяет уменьшить сроки проектирования СВЧ устройств на основе компьютерного моделирования задач электромагнитной совместимости, что подтверждает эффективность предложенного способа.

Способ моделирования параметров геометрической неоднородности поверхности микрополосковой линии передач, включающий получение профиля шероховатости поверхности по реальной микрофотографии поверхности исследуемого материала, последующее получение распределения геометрических неоднородностей по поверхности, а также их параметров, отличающийся тем, что расчет параметров геометрической неоднородности поверхности микрополосковой линии передач, основанный на пространственной дискретизации эквивалентной RLCG-модели, где L - индуктивность линии, R - активное сопротивление линии, С - емкость пленочного конденсатора, G - проводимость утечки через изоляцию, проводят последовательно в три этапа: на подготовительном этапе проводят получение микрофотографии поверхности микрополосковой линии передачи с помощью сканирующей электронной микроскопии; вводят исходные данные, необходимые для расчета: рабочую частоту проектируемого СВЧ-устройства, характеристики применяемых диэлектрических материалов, а также учитывают параметры линии передачи - коэффициент передачи и отражения; вычисляют глубину скин-слоя; указывают область неоднородности на микрофотографии поверхности; на втором этапе задают градиент неоднородности по указанной области неоднородности, параметрам самой глубокой впадины и калибровочной линейки на микрофотографии поверхности микрополосковой линии передачи; на основе рекурсивного метода цифровой обработки по микрофотографии поверхности проводят наложение и обработку маски неоднородности; на заключительном этапе на основе введенных исходных данных и полученной маски неоднородности поверхности проводят построение эквивалентной RLCG-модели микрополосковой линии передачи, учитывающей параметры геометрической неоднородности ее поверхности.
Способ моделирования параметров геометрической неоднородности поверхности микрополосковой линии передачи
Способ моделирования параметров геометрической неоднородности поверхности микрополосковой линии передачи
Способ моделирования параметров геометрической неоднородности поверхности микрополосковой линии передачи
Способ моделирования параметров геометрической неоднородности поверхности микрополосковой линии передачи
Способ моделирования параметров геометрической неоднородности поверхности микрополосковой линии передачи
Источник поступления информации: Роспатент

Показаны записи 1-10 из 193.
27.06.2015
№216.013.5815

Способ защиты командно-измерительной системы космического аппарата

Изобретение относится к области автоматизированных систем управления подвижными объектами, в частности космическими аппаратами (КА), и, более конкретно, к способам защиты командно-измерительной системы космического аппарата от несанкционированного вмешательства, возможного со стороны...
Тип: Изобретение
Номер охранного документа: 0002554090
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5824

Способ эскплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата, эксплуатирующегося на низкой околоземной орбите

Предлагаемое изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей в автономных системах электропитания космических аппаратов, эксплуатируемых на низкой околоземной орбите. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002554105
Дата охранного документа: 27.06.2015
10.08.2015
№216.013.6960

Способ коррекции орбитального движения космического аппарата

Изобретение относится к управлению движением космического аппарата (КА) с помощью реактивного двигателя коррекции (ДК). Способ включает приложение к КА тестового и корректирующего воздействий. При каждом из них определяют темпы нагрева стенки камеры сгорания ДК. По тестовым данным (тяге и темпу...
Тип: Изобретение
Номер охранного документа: 0002558529
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6961

Способ резервирования космического аппарата на геостационарной орбите

Изобретение относится к управлению движением геостационарных космических аппаратов (КА) в периоды резервирования и оперативного ввода в эксплуатацию. На этапе пассивного дрейфа КА из стартовой позиции резервирования (СПР) в рабочую орбитальную позицию (точку «стояния») минимизируют...
Тип: Изобретение
Номер охранного документа: 0002558530
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b09

Способ мониторинговой коллокации на геостационарной орбите

Изобретение относится к управлению движением группы (кластера) космических аппаратов (КА), преимущественно геостационарных спутников Земли. Согласно способу линии узлов и линии апсид орбит мониторингового КА (МКА) и смежных КА (СКА) поддерживают ортогональными. Сумма эксцентриситетов орбит...
Тип: Изобретение
Номер охранного документа: 0002558959
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b0a

Держатель

Изобретение относится к средствам временной фиксации различных устройств на космическом аппарате (КА), в частности панелей солнечных батарей. Держатель имеет корпус, из которого выступает стягивающий штырь (2), удерживающий элементы (4.1-4.n). Для блокировки-разблокировки оголовка штыря служат...
Тип: Изобретение
Номер охранного документа: 0002558960
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6ca4

Регулируемый узел крепления

Изобретение относится к машиностроению и может быть использовано в разъемных соединениях. Регулируемый узел крепления содержит болты, сферические шайбы, гайки, втулки с наружной резьбой, углепластиковую площадку со стропами из арамидного волокна, накладку из металлических сплавов, три...
Тип: Изобретение
Номер охранного документа: 0002559370
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6ca5

Способ автономной коллокации на геостационарной орбите

Изобретение относится к космической технике и может быть использовано для автономной коллокации на геостационарной орбите. Переводят векторы наклонения и эксцентриситета на границы разнесенных относительно друг друга областей прицеливания, измеряют параметры орбиты каждого космического аппарата...
Тип: Изобретение
Номер охранного документа: 0002559371
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6dc7

Способ электрических проверок космического аппарата

Изобретение относится к наземным испытаниям, в т.ч. при изготовлении космических аппаратов (КА). КА содержит систему электропитания с бортовыми источниками: солнечными (СБ) и аккумуляторными (АБ) батареями, а также стабилизированным преобразователем напряжения (СПН) с зарядными и разрядными...
Тип: Изобретение
Номер охранного документа: 0002559661
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6df0

Многоканальный командный аппарат с электронной коммутацией

Изобретение относится к области электронной техники и автоматики и может быть использовано для формирования импульсов команд управления исполнительными элементами. Техническим результатом является повышение надежности устройства многоканального командного аппарата с электронной коммутацией за...
Тип: Изобретение
Номер охранного документа: 0002559702
Дата охранного документа: 10.08.2015
Показаны записи 1-10 из 14.
10.03.2014
№216.012.a8e0

Способ получения ультрадисперсных порошков с узким фракционным составом

Изобретение относится к области порошковой технологии и предназначено для получения порошков с узким гранулометрическим составом со средним размером частиц, находящимся в субмикронном диапазоне. Для получения порошков образованный насыпной слой исходного порошкообразного материала перемещают...
Тип: Изобретение
Номер охранного документа: 0002508947
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.acf9

Способ испытаний электронных плат на механические воздействия

Изобретение относится к измерительной технике и может использоваться для проведения испытаний на устойчивость электронных плат (ЭП) и их компонентов к механическим воздействиям, например, в космической промышленности. Сущность: осуществляют закрепление платы в оснастке, приложение к ней...
Тип: Изобретение
Номер охранного документа: 0002509996
Дата охранного документа: 20.03.2014
10.06.2015
№216.013.5361

Устройство для испытаний электронных плат на механические воздействия

Изобретение относится к испытательной технике, применяемой при прочностных испытаниях (в частности, к испытаниям на прочность электронных плат (ЭП) при изготовлении). Устройство содержит силовой каркас, включающий крепления для установки ЭП и опорные стойки, на которых фиксируется нажимной...
Тип: Изобретение
Номер охранного документа: 0002552866
Дата охранного документа: 10.06.2015
10.08.2015
№216.013.6c80

Способ испытаний электронных плат на комбинированные механические и тепловые воздействия

Изобретение относится к измерительной технике и может использоваться для проведения испытаний на надежность электронных плат (ЭП) и их компонентов к комбинированным механическим и тепловым воздействиям. Целью изобретения является разработка комбинированного способа испытаний на механические и...
Тип: Изобретение
Номер охранного документа: 0002559334
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.71de

Система электропитания космического аппарата с экстремальным регулированием мощности солнечной батареи

Изобретение относится к преобразовательной технике, в частности к бортовым системам электропитания космических аппаратов, и может быть использовано в системе питания автоматических космических аппаратов на основе солнечных и аккумуляторных батарей. Система электропитания содержит солнечную...
Тип: Изобретение
Номер охранного документа: 0002560720
Дата охранного документа: 20.08.2015
27.09.2015
№216.013.7ec8

Способ измерения тепловых полей электрорадиоизделий

Изобретение относится к космической технике и может быть использовано при наземных тепловакуумных испытаниях бортовой радиоэлектронной аппаратуры (РЭА) негерметичных космических аппаратов (КА). Предложен способ измерения тепловых полей электрорадиоизделий, включающий использование...
Тип: Изобретение
Номер охранного документа: 0002564053
Дата охранного документа: 27.09.2015
20.01.2016
№216.013.a21a

Способ проведения анализа долговечности радиоэлектронной аппаратуры

Изобретение относится к области информационных технологий и может быть использовано при конструировании на компьютере сложных электротехнических изделий. Технический результат заключается в сокращении временных и вычислительных ресурсов, затрачиваемых на конструирование таких изделий, а также в...
Тип: Изобретение
Номер охранного документа: 0002573140
Дата охранного документа: 20.01.2016
10.02.2016
№216.014.c523

Система электропитания космического аппарата с регулированием мощности солнечной батареи инверторно-трансформаторным преобразователем

Изобретение относится к области космической энергетики. Система состоит из солнечной батареи (СБ), подключенной шинами к регулятору напряжения, причем в плюсовой шине установлен датчик тока, трансформатора, первичная обмотка которого соединена с регулятором напряжения, построенным по мостовой...
Тип: Изобретение
Номер охранного документа: 0002574565
Дата охранного документа: 10.02.2016
13.01.2017
№217.015.8fa4

Устройство охлаждения многослойной керамической платы

Изобретение относится к области радиотехники и направлено на снижение температуры мощных электрорадиоэлементов (ЭРИ), устанавливаемых на поверхности многослойных керамических плат (МКП), выполненных по технологии низкотемпературной совместно спекаемой многослойной керамики. Технический...
Тип: Изобретение
Номер охранного документа: 0002605432
Дата охранного документа: 20.12.2016
10.05.2018
№218.016.4e82

Система электропитания космического аппарата

Изобретение относится к области преобразовательной техники, в частности к бортовым системам электропитания (СЭП) космических аппаратов (КА), и может быть использовано при проектировании и создании систем электропитания автоматических космических аппаратов на основе солнечных и аккумуляторных...
Тип: Изобретение
Номер охранного документа: 0002650875
Дата охранного документа: 18.04.2018
+ добавить свой РИД