×
08.11.2018
218.016.9a87

КОМПОЗИТНОЕ РАДИОПОГЛОЩАЮЩЕЕ ПОКРЫТИЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002671749
Дата охранного документа
06.11.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к маскировочным радиопоглощающим покрытиям, снижающим заметность объектов техники, а более конкретно к устройствам для поглощения излучаемых электромагнитных волн, выполненных из композитных пористых материалов на основе вспененных высокомолекулярных соединений, содержащих распределенные электропроводящие элементы. Композитное радиопоглощающее покрытие содержит основу из пенополиуретана, в объеме которого распределены функциональные электропроводящие частицы. Новым является то, что функциональные частицы выполнены в виде фрагментов микропровода длиной 0,3-3,0 мм и диаметром 3-40 мкм из аморфного кобальта, помещенного внутри стеклянной оболочки. Предложенное техническое решение обеспечило расширение функциональных возможностей маскирующего покрытия высококонтрастных объектов за счет кратного повышения магнитных свойств покрытия.
Реферат Свернуть Развернуть

Изобретение относится к маскировочным радиопоглощающим покрытиям, снижающим заметность объектов техники, а более конкретно, к устройствам для поглощения излучаемых электромагнитных волн, выполненных из композитных пористых материалов на основе вспененных высокомолекулярных соединений, содержащих распределенные электропроводящие элементы.

Уровень данной области техники характеризует широкополосное радиопоглощающее маскировочное покрытие, описанное в изобретении к патенту RU 2280229 С2, F41Н 3/00, 2006 г., включающее два примыкающих композитных модуля, каждый из которых содержит комплексные нити различного электросопротивления, выполненные из несущих диэлектрических стеклонитей, плотно обвитых микропроводом, изготовленным из железа с добавлением кобальта, диаметром 3 мм и 5 мм соответственно, которые вплетены в сетчатую основу из стекловолокна, закрепленного на каркасе.

Материал функционального заполнения одного модуля выполнен с электросопротивлением 300 кОм/м, а другого - 60 кОм/м, что расширяет диапазон поглощаемых радиоволн зондирующего излучения, так как один модуль работает в коротковолновой, а другой - в длинноволновой области спектра.

Описанное покрытие обеспечивает снижение уровня максимального значения мощности отраженного сигнала в диапазоне длины волны 0,2-30 см от замаскированных широкополосным радиопоглощающим покрытием высококонтрастных объектов до требуемого уровня и тем самым уменьшается вероятность их обнаружения средствами оптической и радиолокационных разведок.

Это покрытие предназначено для маскировки стационарных крупногабаритных объектов, значимых и дорогостоящих.

Недостатком описанного радиопоглощающего покрытия является высокая трудоемкость и технологическая сложность изготовления и его нанесения на маскируемый объект, что исключает практическое использование для защиты, в частности, подвижной бронетехники от зондирующего радиоизлучения.

Кроме того, доступный в описанной композиции для атмосферной влаги функциональный материал микропровода (железо с добавлением кобальта) при эксплуатации окисляется, в результате чего заметно ухудшаются показатели назначения радиопоглощающего покрытия, что неприемлемо для маскировки ответственных изделий.

Отмеченные недостатки исключены в поглощающем электромагнитные волны покрытии по изобретению Японии, описанному в заявке №61-228032, C08J 9/02, H01Q 17/00, Н05K 9/00, 1986 г., содержащее несущую диэлектрическую основу, выполненную из пористого отверждающегося материала - пенополиуретана, в объеме которого распределены функциональные электропроводящие частицы в форме магнитного порошка (до 10 мас. %).

Известное радиопоглощающее покрытие, за счет использования магнитных порошков различной фракционности и материалов, работает в широком диапазоне частот и является высокотехнологичным в изготовлении функционально наполненного пенополиуретана простым смешиванием магнитных порошков с жидкими компонентами вспенивающейся технологической смеси, а также при формировании и нанесении композиции путем разлива или напыления непосредственно на поверхность маскируемого объекта, где завершается полимеризация основы пористой структуры, формируя примыкающее в адгезионном взаимодействии с поверхностью маскируемого объекта несущее покрытие конгруэнтной формы.

Продолжением отмеченных достоинств известного радиопоглощающего покрытия является присущий недостаток, который заключается в ограниченном диапазоне поглощаемого электромагнитного излучения из-за сферической формы частиц магнитного порошка, так как в силу граничных условий уравнений Максвелла магнитное и электрическое поля наиболее эффективно проникают и, соответственно, поглощаются в частицах игольчатой и пластинчатой форм.

Кроме того, технологическая взвесь компонентов известного состава, из которой вспениванием и последующей полимеризацией формируется пористое композитное покрытие, характеризуется высокой степенью расслоения, когда функциональные частицы, гравитационно оседая, не обеспечивают равномерности их распределения в объеме формируемого слоя, в результате чего технологически гарантированно не обеспечиваются заданные магнитные характеристики и требуемые показатели назначения маскирующего радиопоглощающего покрытия.

Технической задачей, на решение которой направлено настоящее изобретение, является структурное и качественное усовершенствование композитного радиопоглощающего покрытия, изготавливаемого из седиментационно устойчивой технологической взвеси и обеспечивающего эффективное поглощение энергии зондирующего электромагнитного излучения в широком диапазоне волн.

Требуемый технический результат достигается тем, что в известном композитном радиопоглощающем покрытии, содержащем основу из пенополиуретана, в объеме которого распределены функциональные электропроводящие частицы, согласно изобретению, функциональные частицы выполнены в виде фрагментов микропровода длиной 0,3-3,0 мм и диаметром 3-40 мкм из аморфного кобальта, помещенного внутри стеклянной оболочки.

Отличительные признаки предложенного технического решения обеспечили расширение функциональных возможностей маскирующего покрытия за счет кратного повышения магнитных свойств покрытия.

Выполнение функциональных частиц наполнения в виде фрагментированного микропровода обеспечило им игольчатую форму, что по определению увеличило магнитную восприимчивость локальных антенн и композитного радиопоглощающего покрытия в целом.

Выполнение функциональных частиц в виде фрагментов микропровода из аморфного кобальта, который характеризуется гигантским магнитным импедансом, обуславливающим магнитную проницаемость на 1-2 порядка больше, чем у железа (как в аналогах), обеспечивает максимальное поглощение электромагнитного излучения.

Экспериментально установлено, что функциональные частицы из микропровода диаметром 3-40 мкм создают слабый «скин-эффект» в рабочем диапазоне длины волны 0,2-15 см зондирующих радиосигналов, чем обеспечивается максимальная эффективность их поглощения.

При использовании функциональных частиц длиной меньше 0,3 мм маскирующее покрытие характеризуется значительным снижением магнитного импеданса из-за вырождения их игольчатой формы.

Функциональные частицы микропровода длиной более 3,0 мм технологически сложно равномерно распределить в несущей основе покрытия из пенополиуретана, вспенивание которого при этом без специальных мер и дополнительных устройств в пеногенераторе затруднено.

Оптически и радиопрозрачная стеклянная оболочка на фрагментах микропровода повышает анизотропию магнитных свойств функциональных частиц, обеспечивая тем самым повышение эффективности поглощающих свойств покрытия.

Стеклянная оболочка является несущим каркасом для тонкого сердечника в виде мерных фрагментов микропровода, что позволяет комплексные функциональные частицы механически смешивать без деформаций в пеногенераторе с жидкими компонентами пенополиуретана, получая устойчивую к расслоению технологическую взвесь, в которой равномерно распределены игольчатой формы приемники зондирующего излучения, хаотично ориентированные в объеме формируемого покрытия.

Высокая степень адгезии стеклянной оболочки к пенополиуретану практически исключает расслоение технологической взвеси на время полимеризации покрытия.

При хаотическом распределении игольчатых фрагментов микропровода в композиционном покрытии ориентацию на источник зондирующих сигналов имеет не менее трети функционального наполнения, суммарное поглощение которых существенно превышает соответствующую величину для сферических частиц магнитного порошка по прототипу.

Произвольно ориентированные в пространстве игольчатой формы функциональные частицы наполнения основы радиопоглощающего покрытия обеспечивают максимальное взаимодействие с зондирующим облучением маскируемого объекта, падающим под любым углом сканирования к поверхности, то есть является универсальным и высокоэффективным.

Следовательно, каждый существенный признак необходим, а их совокупность в устойчивой взаимосвязи являются достаточными для достижения новизны качества, то есть поставленная в изобретении техническая задача решается не суммой эффектов, а новым сверхэффектом суммы признаков.

Аморфный кобальт, используемый в качестве микропровода, представляет собой сплав кобальта (не менее % атомных %) с добавками кремния, бора, углерода и марганца. Смесь этих компонентов сплавляют и резко охлаждают для получения требуемой структуры и необходимых магнитных свойств при низкой проводимости.

Магнитные сплавы на основе переходных металлов (железо, кобальт, никель) легко намагничиваются во внешнем поле и легко меняют свое магнитное состояние при изменении поля. В сочетании с высоким электросопротивлением, которое в 3-4 раза выше, чем у аналогичных кристаллических сплавов, эти качества делают аморфные сплавы магнитомягкими материалами.

Микропровод из аморфного сплава на основе кобальта, который является магнитомягким материалом с наиболее высокими значениями магнитно-импедансной характеристики (до 1000% Э), обеспечивает хорошую магнитную восприимчивость радиопоглощающего покрытия и, следовательно, большое поглощение зондирующего радиолокационного сигнала.

Аморфная структура микропровода функциональных частиц маскирующего покрытия приводит к очень высокой магнитной проницаемости и низким энергетическим потерям, характеризуется высокой обменной энергией, обеспечивающей упорядочение спинов.

Экспериментально было установлено, что магнитострикция функциональных частиц радиопоглощающего покрытия, представляющих собой микропровод со стеклянной оболочкой зависит главным образом от химического состава аморфного сплава микропровода и внутренних напряжений в композитном элементе.

Микропровод на основе железа (в аналогах) имеет магнито-бистабильный характер, в то время как микропровод по изобретению из аморфного кобальта имеет отрицательную магнитострикцию и характеризуется наклонной петлей гистерезиса.

Поле магнитной анизотропии (Н, А/м) в микропроводе растет при увеличении отношения толщины стеклянной оболочки к диаметру микропровода функциональных частиц покрытия.

В аморфном сплаве на основе кобальта (выше 70%) значения магнито-стрикции достигает околонулевых значений.

Внутренние напряжения в микропроводе со стеклянной оболочкой возникают вследствие разницы коэффициентов теплового расширения материалов, достигая значений 100-1000 МПа, причем с увеличением толщины стеклянной оболочки растет поле анизотропии, что позволяет управлять магнитными свойствами радиопоглощающего покрытия через изменение магнитной анизотропии, контролируя внутренние напряжения посредством геометрического соотношения структурных элементов функциональных частиц маскирующего покрытия.

Для увеличения доли рассеянной энергии на отдельных частицах и в покрытии в целом диаметр микропровода определен в диапазоне 3-40 мкм, что в сочетании с невысокой приводимостью аморфного сплава на основе кобальта создает слабый «скин-эффект» в широком диапазоне длин волн, позволяя выполнять радиопоглощающее покрытие с заданными показателями назначения.

Опытные образцы предложенного комплексного радиопоглощающего покрытия на поверхности высококонтрастных объектов формировались напылением из серийного пеногенератоа (пистолета), в котором посредством сжатого воздуха смешивались жидкие компоненты (изоционат и полиол) с предварительно приготовленными мерными фрагментами микропровода из аморфного кобальта в стеклянной оболочке.

Пенополиуретан обладает исключительной адгезией практически к любым материалам, прочно беззазорно сцепляется с поверхностью любых геометрических форм и протяженности, без швов и стыков.

При этом покрытие обеспечивает изоляцию маскируемого объекта.

Пенополиуретан относится к группе трудносгораемых и самозатухающих материалов, который не разрушают мелкие грызуны и птицы, на нем исключено появление конденсата, плесени и грибков, что обеспечивает гарантированный срок эксплуатации покрытия не менее 20 лет.

Покрытие по изобретению абсолютно безвредно как для окружающей среды, так и для человека и животных, не выделяет вредных веществ и не имеет запаха.

Ниже в таблице приведены технические показатели примера практической реализации покрытия по изобретению.

Использование в качестве несущей основы покрытия самоотверждающегося при полимеризации пористого материала - пенополиуретана обеспечивает преобразование технологической вязкотекучей композиции, содержащей наполнение из распределенных в объеме фрагментов, имеющих оптимальную форму и структуру, микропровода из аморфного кобальта в стеклянной оболочке, позволяет напылением оперативно получить примыкающее в прочном сцеплении с поверхностью маскируемого объекта готовое покрытие конгруэнтной формы с требуемыми физико-механическими характеристиками.

Проведенный сопоставительный анализ предложенного технического решения с выявленными аналогами уровня техники, из которого изобретение явным образом не следует для специалиста по радиолокации, показал, что оно неизвестно, а с учетом практической возможности изготовления распылением композитного радиопоглощающего покрытия посредством существующего пеногенератора, можно сделать вывод о соответствии критериям патентоспособности.

Композитное радиопоглощающее покрытие, содержащее основу из пенополиуретана, в объеме которого распределены функциональные электропроводящие частицы, отличающееся тем, что функциональные частицы выполнены в виде фрагментов микропровода длиной 0,3-3,0 мм и диаметром 3-40 мкм из аморфного кобальта, помещенного внутри стеклянной оболочки.
КОМПОЗИТНОЕ РАДИОПОГЛОЩАЮЩЕЕ ПОКРЫТИЕ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 10.
20.02.2013
№216.012.2666

Способ гидроабразивной резки листового металлического материала

Изобретение относится к гидроабразивной резке листового металлического материала. Осуществляют подачу листового металлического материала или струйной головки. Обеспечивают точечный фокусированный нагрев зоны резания листового металлического материала внешним источником фокусированного нагрева...
Тип: Изобретение
Номер охранного документа: 0002475350
Дата охранного документа: 20.02.2013
20.06.2014
№216.012.d336

Способ непрерывной стерилизации жидкости и устройство для его осуществления

Заявляемая группа изобретений относится к области стерилизации жидких пищевых продуктов и может быть использована в пищевой, медицинской и микробиологической отраслях промышленности, а также в сфере обслуживания. Задача и технический результат заключаются в повышении надежности стерилизации за...
Тип: Изобретение
Номер охранного документа: 0002519841
Дата охранного документа: 20.06.2014
27.03.2016
№216.014.c7ca

Способ обработки жидкости

Изобретение относится к управляемому изменению свойств жидкостей путем интенсивного динамического воздействия на них и может быть использовано в пищевой и нефтехимической промышленности, биотехнологии, медицине, в промышленной гидроэкологии для водоподготовки и сельском хозяйстве для получения...
Тип: Изобретение
Номер охранного документа: 0002578324
Дата охранного документа: 27.03.2016
10.05.2018
№218.016.480e

Способ исследования анизотропии эксплуатационно-технологических свойств объектов

Изобретение относится к области исследования эксплуатационно-технологических свойств токопроводящих конструкционных материалов и может быть использовано для определения анизотропии их физико-механических характеристик, формируемой на этапах изготовления и эксплуатации различных изделий,...
Тип: Изобретение
Номер охранного документа: 0002650731
Дата охранного документа: 17.04.2018
19.10.2018
№218.016.93f6

Пенное хлорактивное средство и способ его получения на основе фторорганического пенообразователя и n, n-дихлорарилсульфамидов

Изобретение относится к пенному хлорактивному средству, которое может быть использовано для получения дегазирующих, дезинфицирующих, отбеливающих средств, применяющемуся в чрезвычайных ситуациях и при ликвидации аварий, также для дегазации лабораторной посуды, инструментов, аппаратуры, вытяжных...
Тип: Изобретение
Номер охранного документа: 0002669850
Дата охранного документа: 16.10.2018
26.05.2019
№219.017.611e

Способ исследования состояния мягких тканей человека

Изобретение относится к медицинской технике, а именно к способу исследования упругости мягких тканей тела человека. Способ включает размещение вокруг части конечности тела человека измерительной манжеты. Далее подают в измерительную манжету воздух. Затем меряют давление в измерительной...
Тип: Изобретение
Номер охранного документа: 0002689017
Дата охранного документа: 23.05.2019
24.11.2019
№219.017.e64f

Способ изготовления провода постоянного и переменного диаметра из аморфного сплава

Изобретение относится к области металлургии, а именно к способам изготовления аморфного провода из высокопрочных, магнитомягких сплавов с высокой стеклообразующей способностью системы Fe-Co-Ni-Si-B, с постоянным или с градиентным изменением диаметра вдоль длины провода. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002706794
Дата охранного документа: 21.11.2019
19.12.2019
№219.017.eeb5

Сенсорный элемент для дополнительного селективного усиления сигнала гигантского комбинационного рассеяния света

Изобретение относится к области оптических сенсоров и может быть использовано для сверхчувствительного анализа молекулярного строения вещества в разных областях. Сенсорный элемент для дополнительного селективного усиления сигнала гигантского комбинированного рассеяния света включает...
Тип: Изобретение
Номер охранного документа: 0002709411
Дата охранного документа: 17.12.2019
12.04.2020
№220.018.1432

Способ определения остаточных напряжений

Изобретение относится к области определения остаточных напряжений в материале конструкции изделий на различных этапах их жизненного цикла и может быть использовано в машиностроительных технологиях, в том числе после изготовления: качества отверждения полимерных композиционных материалов,...
Тип: Изобретение
Номер охранного документа: 0002718631
Дата охранного документа: 10.04.2020
07.07.2020
№220.018.306b

Машиночитаемая идентификационная метка на основе аморфного микропровода для бумажного листового материала на целлюлозной основе

Изобретение относится к идентификационным меткам, которые могут быть использованы в качестве устройств, обеспечивающих идентификацию товара или изделий, в частности могут быть использованы при изготовлении листового материала, такого как банкноты, ценные бумаги, документы с целью установления...
Тип: Изобретение
Номер охранного документа: 0002725755
Дата охранного документа: 06.07.2020
+ добавить свой РИД